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The Interpretation of the Hubble-Effect and of Human Vision
Based on the Differentiated Structure of Space

Gerhard Dorda
Institute of Physics, University of Armed Forces Muenchen, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany.

E-mail: physik@unibw.de

Based on the differentiated structure of space, observed by the Quantum-Hall-Effect,
a comprehensive equation is presented for the description of the Hubble-Effect. This
Hubble-Effect equation reflects the experimental observation showing a casual connec-
tion to the Hubble time TU and thus to the cosmic length LU and the cosmic mass MU.
The obtained results are substantiated by the cosmic background radiation and by the
agreement of the derived data with the experimental data of the Milky Way. It is shown
that the differentiated structure of space, used for the description of the Hubble-Effect,
also refers to the process of human vision, dominating the observation.

1 Introduction

After the discovery of the Quantum-Hall-Effect (QHE) and
the associated exceptional side effects [1], it proved to be nec-
essary to re-evaluate many physical and biological phenom-
ena, e.g. the interpretation of the Hubble-Effect (HE) and, of
the basis of it, even the process of human vision, referring
to the differentiated structure of space. The differentiated
structure of the three-dimensional space was first observed
at the analysis of the experimental data of the QHE, which
was discovered in 1980 by K. von Klitzing based on MOS-
field-effect transistors.

The QHE is the first experimental observation of quanti-
zation in the macroscopic scale in solid-state physics. Only
gradually, the fundamental importance of this discovery and
of all with this discovery connected spectacular experimental
observations became apparent for the entire range of physics.
In the first instance, it was the observation of the QHE on
GaAs–AlxGa(1−x)As heterostructures [2], presented by D. C.
Tsui et al, which showed that this effect is generally valid for
the whole solid-state physics. More detailed investigations of
the experimental data revealed that the QHE is not only inde-
pendent from atomic mass, but also from the strength of the
electric current used, i.e. from frequency, i.e. from time, and
also from the form of the sample with the considered QHE
structure, i.e. from space [3].

Really, the state of QHE shows a spectacular simultaneity
of Rxx = h/ie2 = 2.58128 × 104/i Ω and Rxx = 0 Ω (i is the
quantization number), measured between different contacts at
any place of the QHE structure. This effect of the spatial in-
dependence of the observed simultaneity in resistivity is the
background of the disclosed two-dimensionality of electro-
magnetism at the causal situation. Besides that, it should be
emphasized that the simultaneity of the quantized resistivity
shows that the three-dimensional state of electromagnetism
can be clearly separated spatially in two independent condi-
tions: On one side in a 2-D state, given by the simultaneity,
and on the other side in a 1-D state, realized capacitively by

the interaction of the electron charges. The experimental ob-
servation of the possibility to split up electromagnetism in
a 2-D and a 1-D state will be described by the “differenti-
ated structure of the space” [3]. Analyzing all these novel
experimental insights allowed to deliver convincing physical
answers, for example Lee Smolin’s book The Trouble with
Physics posed fundamental and unsolved questions [4], in
particular also about the category of time [3].

The description of space and time, i.e. frequency, based
on the QHE, leads to the notion that also open questions in
astronomy and cosmology could be answered with the help of
the observations of the QHE. This, for example, includes the
question about cosmic expansion, which, on the basis of the
interpretation of the Hubble-Effect (HE), generated a vivid
discussion, leading to the unfolding of several cosmic models,
but without final solutions [5,6]. Therefore, in this work, it is
attempted to explore the experimental data of the HE on the
basis of the so-called differentiated structure of space [3].

2 The analysis of the Hubble-Effect (HE) with respect to
the differentiated structure of space

The cosmic expansion model is based on the experimentally
observed Hubble-law, given by [5]

vHE,y =
RHE,y

TU
. (1)

Here in (1), vHE,y is the velocity of a given galaxy, RHE,y has
the significance of a distance referred to a given galaxy and
TU is interpreted as the Hubble time, defining the so-called
age of the cosmos (an assumption which requires the expan-
sion of the cosmos). The index HE signifies the relation of the
Hubble-Effect (HE) to the associated redshift of the observed
radiation and the index y refers this redshift to the observed
galaxy [5, 6].

The figures of the experimental HE in [5] and [6] show
the so-called escape velocity vHE,y in relation to the velocity
of light c, meaning that (1) can be rewritten by use of c. As
a result, we receive a form which defines the HE in relation

Gerhard Dorda. The Interpretation of the Hubble-Effect and of Human Vision Based on the Differentiated Structure of Space 3



Volume 16 (2020) PROGRESS IN PHYSICS Issue 1 (April)

to the so-called length of the cosmos, obtained by LU = TU c,
and we may write

RHE,y

LU
=
vHE,y

c
. (2)

The value of the redshift is usually specified by the number
zy, which means

zy =
vHE,y

c
. (3)

Since the HE merely reflects the observation of light, i.e. pho-
ton energies, the number zy may, in accordance with (1) and
(2) and due to the c-standardization, be considered to be re-
lated to the limit of the light frequency fC or to the limit of
the light wavelength λC. As shown in Section 4, this is of
fundamental importance for the interpretation of the HE.

The concept of an escape velocity vHE,y, as stated in
(1), must originate from the existence of a given position, e.g.
from the place of observation, or in a general sense from any
localized place in the cosmos, in order to have the possibility
to speak of place in sense of the classic conception of velocity,
a model, which so far has been crucial for the interpretation
of the HE. The concept of a place requires the existence of lo-
calization related to atomic mass, i.e. to protons and neutrons,
constituting a gravitationally induced localization which only
can become real through an atomic solid-state structure.

Starting from these findings it can be shown that based on
the experimental data of the QHE, which is independent of
atomic mass, a novel form of velocity can be defined. This
velocity is also given by the relation of length and frequency,
but this specific form of velocity is merely deduced from
the dualistic character of the electron, i.e. without any con-
tribution of proton-neutron-mass related gravity. This spe-
cific i.e. structural space-time condition, which is identifi-
able in the QHE, reveals that the electron-related velocity is
given by the relation of the category of length, reflected by
the electron mass me, and the category of frequency, real-
ized by two-dimensional electromagnetism, i.e. by the elec-
tron charge e. This length-frequency, i.e. length-time rela-
tion is, in spatial terms, always mutually perpendicular to
each other, which is the background for the notion of three-
dimensionality of space and also the background for the free-
dom of choice concerning the value of light velocity. As
shown in [3, pp. 33–34,45,49–50], it therefore follows the
possibility of differentiation between the one-dimensionali-
ty, i.e. 1-D, and the two-dimensionality, i.e. 2-D. These fun-
damental circumstances were characterized in summary as a
differentiated three-dimensional spatial structure.

It is evident that this electron related form of velocity
is given at light effects, i.e. given by λ f (λ = wavelength,
f = frequency). Thus, it can be assumed that this form of ve-
locity is also displayed in the observation of the HE-galaxies,
playing an essential key role in the here presented reinterpre-

tation of the HE. Hence, unexpected statements about the HE-
galaxies may be obtained when the Hubble-law, i.e. (1), and
the model of the differentiated structure of space are applied
to Kepler’s third law.

3 The application of the Hubble-Effect to Kepler’s third
law

To begin with, it seems necessary to appropriately transform
Kepler’s third law. In doing so, we assume that due to the
cosmological principle [6], Kepler’s third law has general va-
lidity in the entire universe.

Kepler’s third law is given by [3],(
TG,y

2π

)2

= t2
G,y =

R3
G,y

G MG,y
, (4)

whereby G in (4) is the gravitational constant, given by

G = c2 L
M

. (5)

Eq. (4), in conformity with the MKSA- or MKS-system of
units, represents a universal linkage of the category of length
with the category of time, modified by the category of mass.
TG,y in (4) is the so-called orbital period of the given solid-
state celestial body (SSCB), which planets, suns and stars are
to be counted as part of. tG,y in (4) is the so-called effective
time, referred to the surface of the SSCB, RG,y is the distance
to the center of the SSCB and MG,y its mass. The index G

signifies the connection to the SSCBs. In (5), L bears the
meaning of the Planck length, L = 4.051 × 10−35 m, and M
represents the Planck mass, M = 5.456 × 10−8 kg [7]. By
transforming (4), we receive the following form, being valid
for all SSCBs

v2
G,y

c2 =
L

RG,y,1−D

MG,y

M
, (6)

whereby

vG,y =
RG,y,2−D

tG,y
. (7)

In (6), the left-hand side represents the electromagnetic ef-
fect, i.e. an effect reflecting spatial two-dimensionality, and
the right-hand side reflects a distance related, i.e. a one-di-
mensionality related gravitational effect.

Here, in (6) and (7), the findings from the Quantum-Hall-
Effect (QHE) about the possibility of the differentiated space
is used, according to which the three-dimensional space, in
case of it being structured, can be considered partitioned, and
that [3]:

1. in a one-dimensional space, described by the 1-D state,
covered by RG,y,1−D, and

2. in a two-dimensional space, described by the 2-D state,
ascertainable by R2

G,y,2−D.

4 Gerhard Dorda. The Interpretation of the Hubble-Effect and of Human Vision Based on the Differentiated Structure of Space
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Attention should be paid to the fact that the one-dimen-
sional gravitational distance RG,y,1−D of the SSCBs, as given
in (6), could be described by the number aG,y, which due to
the reference to one-dimensionality was termed gravitational
number. In [3, see p. 14], it is given by

RG,y,1−D = aG,y λG,y . (8)

Here, λG,y is a one-dimensional reference length, defined by

λG,y = MG,y
L
M

. (9)

It is easily recognizable that in accordance with (4) – (8), this
reference length λG,y signifies the connection between the cat-
egory length and the atomic mass related gravitation.

When discussing (6), it is of importance to consider that
the Planck relation L/M in (5) and (9) possess, due to the cos-
mological principle, validity for the entire being in the cos-
mos. Therefore, as an extension of L/M, we may write

L
M

=
λG,y

MG,y
=

LU

MU
, (10)

which is a consequence of the general validity of Kepler’s
third law. Here in (10), λG,y stands for the reference length
of the SSCB and MG,y for its related mass. Furthermore, LU
and MU are the limit length LU and the limit mass MU of the
cosmos, introduced by means of (1) and (2), i.e. by means of
the HE.

The masses MG,y in (4), (6), and (9) are effective as ho-
mogeneity parameters. As will be shown, the state of ho-
mogeneity can be related to two different structures in the
cosmos, which, in the three-dimensional cosmic space, are
identifiable by their dot-like centered unity. These two forms
are:

1. Celestial bodies which consist of solid state, i.e. SS-
CBs, and which can, by means of Kepler’s third law, be
very well described as spherical structures, given by in-
terwoven gravitational-electromagnetic structures ( [3],
page 44). All planets, suns and stars are to be counted
as part of this. With regard to (4), the boundary con-
dition for the homogeneity of the SSCB is the equality

RG,y,1−D =
√

R2
G,y,2−D, which enables dynamics, i.e. the

category of time, to be revealed in Section 4.

2. Celestialbodies whose existence onlyisobservablewith
the aid of optical methods, i.e. with the aid of eyesight
and technically with the aid of optical absorption meth-
ods. This includes galaxies, theoretically ascertained
by (1) and (2) of the HE. These cosmic structures are
not given by a coherent, gravitational-electromagne-
tic interwoven state, but they are to be considered a
free, i.e. dynamic cluster of different SSCBs, which,
as part of above all electromagnetic interactions, form

by the so-called “black hole” a homogeneous, i.e. dot-
like centered unity. Due to the free cluster of SSCBs,
which show only insignificant gravitational interaction,
the possibility of creating the categoryof time by means
of galaxies does not exist. Hence, we are able to clar-
ify the boundary condition for the homogeneity of the
HE-galaxies only in Section 5.

To clearly show the difference between the SSCBs and the
galaxies, (6) must be adapted to (1) and (2). Based on (6) and
(10), we may write( vHE,y

c

)2
=

LU

RHE,y,1−D

MHE,y

MU
, (11)

whereby vHE,y is given by

vHE,y =
RHE,y,2−D

TU
. (12)

MHE,y signifies the mass related to the given galaxy. The dis-
tances RHE,y,1−D and RHE,y,2−D in (11) and (12) are, according
to the cosmological principle, to be interpreted as character-
istic distances, i.e. lengths, of the given galaxy.

In conformity with (6) and (11), the fundamental differ-
ence between the SSCBs and the HE-galaxies should become
above all apparent by means of the different definitions of
vG,y, (7), and of vHE,y, (12). Thus, this difference is discussed
in the following sections.

4 The difference between solid-state celestial bodies (SS-
CBs) and HE-galaxies

When comparing the velocities vG,y and vHE,y, we proceed that
both RG,y,2−D, the distance of the given solid-state celestial
body (SSCB), and RHE,y,2−D, the distance of the given galaxy,
are to be considered their distinctive characteristic. In doing
so, the cosmological principle is to be heeded, stating that in
the cosmos there is no center and consequently no defined
position [6]. Moreover, the fundamental difference between
the time statements tG,y and TU, given in (4) and (1), has to
be taken into account since it points out that, as (4) and (6)
show, the time tG,y is one of the characteristic parameters of
any given SSCB, whereas the time TU, being valid for all HE-
galaxies, is solely a cosmic constant. From Kepler’s third law,
(4) and (6), it results that the time tG,y is given by

tG,y =
√

aG,y
RG,y,2−D

c
, (13)

whereby aG,y is the SSCB related gravitational number, de-
fined in (8). Thus, considering (6), (7), and (13), the solid-
state celestial body is characterized not only by the mass MG,y
and the radius RG,y, but also by the SSCB related category of
time tG,y.

In contrast to vG,y, the velocity vHE,y can experimentally
only be experienced by optical means, in fact with aid of the
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light i.e. photon energies, emitted by the given galaxy. This
energy spreads from the galaxy with the velocity of light and
is registered by the eye or by appropriate appliances (tele-
scopes) via absorption. Since the respective galaxies distin-
guish from each other by the emitted light i.e. photon energy,
it is physically permitted, in compliance with the observed
value of the so-called redshift zy, to ascribe an appropriate
frequency fy to the observed galaxy, which reflects the en-
ergy h fy. That means, the in (2) presented relation vHE,y/c
can be replaced by an appropriate frequency or wavelength
relation, and we may write

zy =
h fy
h fC

=
hc/λy

hc/λC
=
λC

λy
. (14)

It then again follows that the HE can be described by means
of an equation of light

λy fy = λC fC = c , (15)

which inter alia reflects the fact that the frequency, in local-
ized form known as the category of time, is an expression of
pure electromagnetism [3].

Here in (14) and (15), fy is the given galaxy related fre-
quency or λy wavelength, whereas fC is the Compton fre-
quency and λC the Compton wavelength. In (14), zy is, unlike
in the classic Doppler-effect model, not valued as a difference
from wavelengths, but as a direct information about the ob-
served galaxy state, given by fy or λy, respectively. Thus,
(14) and (15) determine the state of the HE-galaxies. Hence,
instead of interpreting vHE,y mechanically as an escape veloc-
ity of the galaxies, it proves to be physically acceptable, with
regard to (14) and (15), to replace the concept of the classi-
cal velocity with the frequency or wavelength relation given
by (14) and to describe the redshift as a light wave radiation,
which reflects the heat radiation laws, i.e. Wien’s displace-
ment law. That means, it is postulated that any HE-galaxy
emits radiation in the form of photon energy as a result of its
homogeneity.

5 The equation of the Hubble-Effect

Starting the analysis of this novel description of the HE, abo-
ve all it must be emphasized that the existence of the param-
eter of the HE galaxies, given by TU, attests the validity of
Kepler’s third law for the whole cosmos, i.e. the form of the
gravitational constant (5), and also the extension of L/M, pre-
sented in (10). Thus it is – from a physical point of view – le-
gitimate to use the (4), (5), and (10) as basic equations for the
further analysis of (11), at which we take the form RHE,y,1−D
in place of λG,y of (9). Furthermore, it appears absolute nec-
essary for the description of the HE to apply the model of the
differentiated structure of the space to (11). This requirement
indicates to formulate (11) in a particular form, reflecting this
spatial differentiation. It can be achieved by a completion of

(11) by the factor z2
y, hence formulating( vHE,y

c

)2
=

LU z2
y

RHE,y,1−D

MHE,y

MU
. (16)

Really, it should be considered, the experimental HE data
shows that the factor zy is causally related to the distance
RHE,y,2−D, as it was on the basis of (2) and (3) expressed by
(12). Thus, to be in accordance with the required differentia-
tion of the HE-state from the usual three-dimensionality into
the one-dimensionality and the two-dimensionality, we have
to conclude that the factor z2

y must be related to the 1-D related
distance RHE,y,1−D, to ensure the causality at the whole HE-
state. Evidently, these requirements are realized by means of
(16).

Taking into consideration all the presented experimental
data and the related conclusions, given in Sections 2 – 4, we
are able to present the solution of the whole HE state, and that
in form of a comprehensive, generally valid equation, given
by

RHE,y,1−D = zy RHE,y,2−D = z2
y LU

= zx
y MHE,y = zx+2

y MU ,
(17)

at which zx
y is given by

zx
y =

L
M

=
RHE,y,1−D

MHE,y
=

LU

MU
= 7.426 × 10−28 m kg−1 . (18)

Equation (17) shows that with respect to (2) it is possible to
formulate the relations

RHE,y,2−D = zy LU , (19)

as well as

RHE,y,1−D = zy RHE,y,2−D (20)

and

MHE,y = z2
y MU . (21)

Furthermore, on the basis of (16), it becomes evident that
the difference between the SSCBs and the state of HE-galax-
ies is simply describable by the factor zy , which is, according
to (6), for the SSCBs without exception given by zy = 1.

The numerical value of (18) results from the experimen-
tally explored gravitational constant [4] G = 6.6738 × 10−11

m3kg−1s−2, using (5). It demonstrates the value zx
y to be a nat-

ural constant. Besides, it should also be emphasized that (18)
is therefore significant for our model, as it discloses the func-
tional background of the homogeneity of the HE galaxies.

The validity of (17) and (18), and thus of (19) – (21), can
be verified using both the knowledge of the cosmic back-
ground radiation and the known experimental data of the Mil-
ky Way, since according to our model the Milky Way galaxy
is assessed to be a homogeneous galaxy.
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6 The analysis of the cosmic background radiation with
respect to the Milky Way galaxy radiation

At first, when analyzing (17) and (18), which describe the
state of all HE galaxies, it must be pointed out that in the spa-
tially differentiated state, as it is the case for the optical ob-
servation of the HE galaxies, only the electron related electro-
magnetic variability is ascertained, so that a specific proton-
neutron one-dimensional mass-effect cannot be observed at
this effect by experiment. Thus to solve this problem, the ob-
servation of the cosmic background radiation is considered.
It shows that this radiation, represented by the temperature
Tcosm = 2.73 ◦K, is the result of the interaction of hydrogen
atoms, extended over the whole cosmos, see [5] and [12].

Thus when we value the cosmic background radiation as a
heat radiation effect, given by the displacement law of Wien,
obtaining zT = λC/λcosm = Tcosm λC/(3.40× 10−3) [3, part III]
and assess this value with respect to the heat radiation factor
of the Milky Way, given by zMW = λC/λMW, evidently this zT
value has to be modified by the relation mp/me, correspond-
ing to the temperature relation TMW/Tcosm. Here mp is the
mass of the proton, me the mass of the electron and TMW has
reference to zMW. In other words, the factor of modification
mp/me represents the energetic difference between the cosmic
background radiation, being a result of the interaction of hy-
drogen atoms, and the radiation of the localized, i.e. spatially
differentiated electromagnetism of the HE galaxies.

Using the HE-related (9) and (10), as well as the (17) and
(20), and assuming that the heat radiation factor of the Milky
Way is identical with the cosmic background radiation factor
zT, then we obtain the following relationship

RHE,MW,2−D =
3.4 × 10−3

Tcosm λC

me

mp

LU

MU
MHE,MW

= 2.08 × 10−22 MHE,MW .

(22)

Here, in place of the Milky Way radiation factor zMW, the
assumed identity of zMW to zT was used, resulting in

zMW = zT =
Tcosm λC

3.4 × 10−3

mp

me
= 3.58 × 10−6 . (23)

At (23), Tcosm was replaced with the background radia-
tion value Tcosm = 2.73 ◦K, and the causal relation λmax T =

3.40 × 10−3, i.e. Wien’s displacement law, was used for λT .
When we use the Hubble time TU = 4.32 × 1017 s, reflect-
ing a Hubble constant of Ho = 71.4 km s−1Mpc−1, lastly ob-
tained from the Hubble telescope, we obtain a cosmic length
LU = c TU = 1.30 × 1026 m, and by means of (10) a cosmic
mass MU = 1.74 × 1053 kg.

Finally, by means of (19) – (23), for the Milky Way we
obtain the values

RHE,MW,2−D = zMW LU = 15.05 kpc = 4.63 × 1020 m ,

MHE,MW = z2
MW MU = 1.12 × 1012 solar masses

= 2.23 × 1042 kg .

(24)

Considering these results with respect to the experimentally
observed data of the Milky Way, given in [6] by the approx-
imate values of the radius RHE,MW,2−D = 15 kpc = 4.6 ×
1020 m and of the mass MHE,MW = 1012 solar masses = 2 ×
1042 kg, we assess for the radius a factor of inaccuracy of only
3 %, and for the mass MHE,MW of only 12%. This finding,
especially the agreement of the order of magnitude of both
RHE,MW,2−D and MHE,MW, is very important, as it convincingly
demonstrates that (17) and (18) can be assessed as a novel,
physically justified description of the Hubble-effect.

The Sections 2–6 have shown that the novel HE model is
based on the QHE-observation about the differentiated struc-
ture of the 3-dimensional space. The application of the differ-
entiated space structure on the gravitational constant G , (5),
shows that c2 is related to electromagnetism, in the case of the
HE-galaxy to the 2-D state, represented by the RHE,y,2−D dis-
tance, whereas L/M refers to the gravity of the HE-galaxies,
i.e. to the 1-D state, represented by the RHE,y,1−D distance,
which is in this situation in a causal connection to the mass
MHE,y. The HE-circumstance, described by (16) – (18) and
thus by (20), shows that the connection between the distances
RHE,y,2−D and RHE,y,1−D is given by the factor zy.

These results are confirmed by the agreement of the cal-
culated data with the experimental data of the Milky Way and
support also the conception, formulated by (10), that the re-
lation RHE,y,(1−D)/MHE,y of any HE galaxy is always identical
with the L/M-relation.

7 The description of human vision on the basis of the
differentiated structure of space

A particular confirmation of the value zMW is obtained by con-
sidering the general limitation of vision. Seen in this connec-
tion, it should be pointed out that not only that of human eyes,
but also the vision of all animals breaks off at the wavelength
λy = 6.8× 102 nm [13]. This particular observation manifests
the rightness of the identity between the limiting value of the
wavelength of visible light and the specific wavelength of the
radiation of the Milky Way λMW = 6.79 × 102 nm.

A further very interesting observation about the process of
seeing is obtainable, when we become aware of the connec-
tion between human vision and the differentiated structure of
space. As disclosed extensively in The Feynman Lectures on
Physics [13], human vision is the result of processing of two
signals, independently given on the one side by the rod cells,
and on the other side by the uvula cells. In this textbook, it is
shown that the rod cells yield signals at the twilight, i.e. sig-
nals without any colored light absorption, whereas the uvulas
show signals solely by means of colorful light.

This biological differentiation reflects in an absolute man-
ner the physical model of spatial differentiation between grav-
itation and electromagnetism, suggesting that the rod-signals
represent the 1-D related gravitational interaction, whereas
the uvula-signals the 2-D related electromagnetic interaction.
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Thus it is physicallyacceptable to suggest the biologicalstruc-
ture of human eyes to be the consequence of the effect of the
discussed existence of the differentiated structure of space,
given outside of masses. Consequently we can state that this
interesting biological differentiation between rods and uvu-
las reflects the spatial differentiation between the 1-D state
and the 2-D state, showing that the differentiated structure of
space is the particular mediator of these effects.

Considering these circumstances, it becomes evident that
due to the existence of the differentiated structure of space,
the human eyes become the main processing not only of the
perceptibility of solids and thus of the observation in gen-
eral, but also, simply by the absorption of particular quanta
of light, of the perceptibility of stars and galaxies, and attain
therefore, together with the help of telescopes, the possibility
to discover the HE and the related equations (16), (17) and
(18).

8 Concluding findings

In the cosmos, there are two forms of homogeneous struc-
tures: Solid-state celestial bodies (SSCBs) and HE-galaxies
(HE). Homogeneous solid-state celestial bodies consist of e-
lectromagnetic-gravitational interwoven structures,whichcan
be described by Kepler’s third law. This law shows that the
SSCBs can not only be characterized by mass and radius, but
also by the category time, whose lapse is dependent on the
strength of gravity of the given SSCB [3].

In contrast, the existence of HE-galaxies is solely observ-
able by means of optical signals, i.e. by eyes and/or by tech-
nical methods, using telescopes. Here, signals undisturbed
by atmospheric absorption are required, which correspond
to the state of a differentiated three-dimensional space. In-
cidentally, in this connection it should be emphasized that
the Pythagorean theorem, considered in conjunction with the
three-body problem, entirely corresponds to this differenti-
ated three-dimensional space model. Therefore, it should be
pointed out that the application of the differentiated structure
of space to the optical signals of galaxies leads, with analyz-
ing the HE, to (16) – (18). In addition, it was demonstrated
that the validity of (17) and (18) can be established by the
cosmic background radiation, and what is more, by the excel-
lent agreement of the deduced data of mass and radius of the
Milky Way with the corresponding values.

The presented new model of the Hubble-effect, which is
based on the black-body radiation, shows – according to the
experimental, generally valid disclosures of the Quantum-Ha-
ll-Effect (QHE) – that the so-called HE-velocity vHE,y is a
pure electron effect. Therefore it has been stated that, ac-
cording to the differentiated structure of space, the frequency,
i.e. the category time, should not be considered an absolute
basic magnitude, but an electromagnetic 2-D state, which be-
comes localized, i.e. observable only in connection with the
existence of masses. Therefore, as generally known – and

also being in agreement with the differentiated space model
– time can be observed only in a causal relation to the 1-D
length state [4]. This conclusion follows from (4) and (8) and
has been manifested by experimental data of the lapse of time,
in particular described in [3] by (26).

Finally, the importance of the differentiated structure of
space in nature has been further made evident by the analysis
of human vision, showing that the difference of the function
of the uvula cells and the rod cells reflects the separateness
of the 2-D and 1-D spatial state of seeing, an effect, being in
accordance with the description of the Hubble-Effect. This
observation is of extraordinary importance, as the process of
seeing is the main background of the human observation of
all being. As will be shown in a next paper, this important
conclusion can be additionally substantiated by the physical
description of the process of hearing [14, 15].
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Predictability Is Fundamental

Felix Tselnik
E-mail: tselnik@bgu.ac.il

1 General concept of trajectory

In his relationship with Nature, the person might be active if
he wants to get to some state of the world, and then he is look-
ing for a means to reach this state. Although the content of the
state is completely in his mind, he needs the prediction for his
action to reach the desired. Typically, this is difficult in real
life, and people act according to more or less uncertain hopes,
past experience, beliefs etc. However, sometimes predictions
might exist to recommend actions with the universally guar-
antied results – always and everywhere. Though infrequent,
such predictions are therefore recommended to be looked for
first of all, and our so valued technologies are based solely on
these.

The related scheme of the world states must be able to
formulate predictions in its own internal terms. If some state
in the scheme is associated with the desired, so being the final
for the person’s purpose, the initial state, from which the ac-
tion should start, must be defined in the internal terms of the
scheme as well. Since the final state is not reached as yet, it
should be set in the future with respect to the initial. If being
in the initial state the person is guaranteed to reach the final,
no prediction is needed. As the first order development, we
might include in the scheme some intermediate state such that
transitions from the initial state to this intermediate and from
the intermediate to the final are both sure. Then the problem
is reduced to finding this intermediate state. Only one such
state might be there, because the existence of even one more
would provide uncertainty as to which one to choose, so mak-
ing the prediction incomplete.

Giving the number 0 to the initial state and 1 to the final,
let us give 1

2 , say, to this intermediate (no metric is implied
– just the order). In the same way we define next 1

4 and 3
4

states and so on. This procedure involves only rational num-
bers, so some infinite sequences of the states might not con-
verge to a state with the rational number to become the initial
for the further part of the sequence. Therefore all sequences,
i.e., all real numbers are required for guaranteed predictions
(Dedekind). In so doing, only order is important, and a state
might correspond either to the rational or irrational number as
well. Again, no state not belonging to this sequence can exist
in the prediction of the steady transition from 0 to 1, other-
wise the prediction becomes incomplete. In the Lagrange’s
version of mechanics, its basic least action principle reflects
just this singleness.

Such state sequences are called trajectories, and we are
ready now to approach the Newton’s scheme, starting with

the very condition of the universal predictability. It should be
stressed that the scheme is only the necessary language for
making universal predictions; it is supported by, though not
coming from, our senses that connect us with Nature also in
great many other respects.

2 Principles of the Newtonian mechanics

In this essay, I don’t consider the post-Newton development
of his ideas; even the contribution of Maxwell and Einstein
will not be discussed here. My purpose is to understand
whether or not the very scheme of mechanics elaborated by
Newton is the only possible one. Upon working over many
decades in experimental physics, I couldn’t refrain from ask-
ing myself as to what if there is some other and more effi-
cacious way to address Nature. To this end, I’m going to
scrutinize the Newton’s scheme in every respect.

Following the method of Descartes of representing geo-
metrical figures with numbers and related equations, New-
ton has formulated his three ‘Laws of Mechanics’ in order to
apply the similar procedure to physics, i.e., to describe also
motion by means of Cartesian coordinates.

The first Newton’s law introduces rectilinear and uni-
form trajectories as free from an external influence (“force”).
However, this law is just a vicious circle. As Einstein men-
tioned in his “The Meaning of Relativity”: “The weakness
of the principle of inertia lies in this, that it involves an ar-
gument in a circle: a mass moves without acceleration if it
is sufficiently far from other bodies; we know that it is suf-
ficiently far from other bodies only by the fact that it moves
without acceleration.”

Aiming at numbering arbitrary motions, we have first of
all to match abstract geometric images with real operations.
Indeed, what does it mean “rectilinear” in Nature? How rec-
tilinear a trajectory should be for the scheme still being suit-
able? How to make it sure that a line is straight? Suffices
it to be described by linear equations in a reference frame
formed as the Cartesian structure? But then, we have to rec-
ognize first that our reference frame itself is comprised of
straight axes. The commonly accepted agreement suggests
using some standard rigid rods. How rigid? Sometimes rigid
might appear soft. This depends on the inter-atomic dis-
tances, but the concept of distance is still to be introduced
using standard rods. (Circle!) We are to transport the rod as
along the reference frame axes for marking them evenly, so
also over the whole space with parallel shifts and rotations,
being sure that it remains rigid. In so doing, we believe that
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no actions destroy these operations. The marks on the axes
define Cartesian coordinates, which will further be used to
define a scalar – squared “length” as the sum of the squared
coordinate differences. Only then can we construct the full
Cartesian structure using equal length rods to obtain the nec-
essary symmetries of reference frames. (One more circle!)
Also collimated light rays might be used, whenever diffrac-
tion (still depending on wavelength!) could be neglected, ei-
ther solely to define linearity, or together with rods for paral-
lelism and other symmetries. Being applied to measurements
of motions, we inquire the relevance of these devices, since
in fact this procedure has nothing to do with the motion in
question. It might well happen that in the study of motion
our artificial rods either add something of their own or hide
something, so being suitable within only some limited scope
of motions. We cannot refer here to great many successful
technical applications as well as to the broad experimental
support, since all these are carried out within the introduced
in advance basic conceptions, so being relevant only within
some narrow areas of the implied research.

Even more difficult questions spring up upon considering
the time intervals measurement and its universal applicability
to real motion. How do we know that the duration of one hour
now is equal to that in the future (see, e.g., H.Weyl, “Space-
Time-Matter”)? How uniform free motion is to be for the
scheme to remain suitable? Beginning with Zeno, Aristotle
etc., philosophers were burdened by the mystery of time, and
Newton himself attempted, in vain, to develop the concept
of “genuine” time, that runs uniformly and is free from any
influence, our astronomic time being only an approximation
of. The summary of his meditations might be found in his
“Mathematical Principles of Natural Philosophy”: “I do not
define time, space, place, and motion, as being well-known to
all.”

Not belonging to these “all”, I want to examine the very
necessity of the conventional definitions. Intrinsic to our
mind (i.e., being a priory, as in Kant’s works) ideas of “space”
and “time” suggest only some freedom of motion. How-
ever in the Newtonian scheme, the space is already supplied
with the three-dimensional Euclidean geometry, that is, it is
a somehow defined set of elements – positions – that form
the non-compact metric space with all the related properties.
The time is not merely “past-now-future” but also a one-di-
mensional metric space with the countable base of open sets
(neighborhoods), and its metrics is monotonous. Why all
these?

Imagine a body placed into empty space. How can we
tell between its being at rest and moving? The question is
quite senseless provided nothing else is there. A reference
frame is this “else” in the Newtonian mechanics. Only then
can we define the trajectory of this body using readings on
the reference frame axes. Still, this frame is only an auxiliary
means in the problem. But why do we need to know this tra-
jectory? This becomes meaningful only if some other bodies

may come into contact with this one, and it is this contact that
is in question of any real problem in mechanics and generally
– in physics.

The purpose actually consists in predictions of the con-
tacts, implying the further action to influence the reaching of
this contact. Then, why do we need an intermediary like an
external reference frame, rather than to directly consider only
the motion of the bodies of interest in our problem? If the
event of contact in question does occur, the coordinates of the
bodies coincide at some time moment. Hence, the trajecto-
ries must (in the Newtonian mechanics) be written in numbers
as time-functions of the coordinates taken from the reference
frame. Only if times for different trajectories are appropri-
ately coordinated, the predictions of contacts become possi-
ble. The accepted solution is one time for all trajectories in
the problem, and the synchronized clocks are needed at each
position in the reference frame.

All this rather complex measurement system is feasible,
provided:

(i) Synchronizing signals connect all positions of the ref-
erence frame instantly. Believing that “for any fast motion
a faster one might be found”, an overcoming signal must al-
ways be used, so that observation of the body that could come
into contact of interest would never have been lost.

(ii) Suitable clocks are to be made somehow. In daily life
rough astronomical timing: years, months, days, hours, might
be inappropriate. However, the design of mechanical clocks
is based on the previously established principles of mechan-
ics that are still under examination in our essay (One more
circle!).

(iii) Identity of the clocks periods is perfect.
The second Newton’s law describes some external influ-

ence on the trajectory – a force. The idea consists in inte-
grating the series of free trajectories’ segments to approxi-
mate the actual trajectory as altered from the free motion by
this (smooth) force. The end points of each segment con-
tact those of its neighbors. With the reference frame read-
ings their lengths can be used to obtain the measure for inte-
gration. The transitions between the segments normalized to
the related time intervals define the proportional to the force
‘acceleration’ as the measure for the transitions between the
segments. Leaving aside the mathematical details of these ap-
proximations and their limits to the Calculus, I want to focus
on the very measurement of a force in Newtonian mechan-
ics. Indeed, where to find the vector of the force? Tradition-
ally, some particular kind of forces is suggested for the prob-
lem of interest like the gradient of an external potential (as,
e.g., in oscillations, gravity), friction, electromagnetic field
etc. There is no general concept of force in the geometrical
terms of the scheme itself. Provided the force is given in ad-
vance all over space-time, the whole trajectory can be found
step by step. However, this approach cannot produce a gen-
uine prediction as yet, being dependent on the knowledge of
force up to the final state where no prediction is already in-
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teresting. In the Newtonian mechanics, inertia determining
acceleration makes the scheme really predictable: Given the
force, a sufficiently big mass of the body will send this force
to the second order perturbation in the trajectory determining
equation. It is just the demand of predictability that is re-
sponsible for second order terms in the equations to be suffi-
cient: Force collected over the first order linear segment pro-
vides the next inter-segment transition, and no higher order
terms are needed to determine them. So, the specification of
only the initial free segment suffices to predict the final con-
tact. This fact is not always understood, especially by mathe-
maticians, believing in the known from experiment harmony
of Nature. For instance, V. Arnold in his famous textbook
“Mathematical Methods of Classical Mechanics” declared:
“It is possible to fancy a world, in which for the determina-
tion of the future of a system one has to know in the initial
moment also acceleration. Experiment shows that our world
is not such.”

However, any statement and result of experiment is for-
mulated in terms of the already accepted theoretical models
(Einstein: “In order to measure the velocity of light, the theo-
retical concept of velocity is necessary.”). All these concepts
originate in predictability. As a matter of fact, there is no har-
mony in our world, but the demand for predictability bounds
us to develop a scheme ready for advising the person, looking
obliviously around for the solution of his problem, to try first
of all physics for the reaching of his wanted state.

The third Newton’s law introduces the concept of inter-
action between bodies as a sole source of force, so providing
some certainty to the second Newton’s law. Then, an isolated
from external influences collection of either or not interacting
bodies taken as a whole must move freely according to the
first Newtonian law. In particular, a solid body, considered
as comprised of two parts separated with an infinitesimally
thin gap, moves freely while, according to the second New-
ton’s law, an additional force would be needed to keep each
part moving free in spite of their reciprocal attraction. Hence
we have to admit that the action of one part on the other is
compensated by the opposite action.

3 Alternative numbering of motion

Newton considered velocities of bodies extendable in their
values up to infinity, and then the using of located in advance
clocks and rods became indispensible. Success in geometry
tempted the using of the trajectory as the basic entity to start
a theory with. On the contrary, the existence of the top-speed
signal makes it possible to suggest a different numbering of
motion. In so doing, we need no metric – no rods, no clocks,
no material points, no reference frames. Our main concept
is “contact”, defined solely by its existence – “yes/no”. The
concept of body will be used just as a picturesque representa-
tion of contacts. It is the prediction of a contact using some
auxiliary contacts – the Contact Problem (CP), that is the only

issue of physics as a method to make universal predictions
whenever relevant.

Attempts to define the space-time geometry with trajecto-
ries of limited velocities have been carried out in the middle
of the past century [1-6]. In the interior of the light cone,
trajectories were used to define neighborhoods generating the
space-time topology as sets of points (events) such that any
trajectory reaching a point of the neighborhood starting from
outside passes also some other points of it, and there is some
open interval in the order of the 1-dimensional continuum of
this trajectory contained in this neighborhood (see Ref. 7 for
details).

Consider two bodies A and B moving, each one along
its (ordered) trajectory, toward their possible contact denoted
(A,B). Let a set of auxiliary bodies be simultaneously emitted
from A so that some of them reach B. Find the first of them
to come into contact with B in the own B-order (One might
imagine this first to put a mark on B, so that others meet B al-
ready marked.). Such a body will be taken for the top-speed
signal, provided the emitted set is rich enough to cover all
possible applications. A top speed must exist in the scheme
for B not to be lost from observation upon its accelerations, so
making predictions impossible. In so doing, we don’t provide
this top speed with a numerical value (no cm/sec, just topmost
as defined!). Let further B emit instantly in response a sim-
ilar set to reach A; it might be regarded as ‘reflected’ from
B. This procedure being multiple repeated will be called the
oscillation of the top-speed signal between A and B.

Our scheme of numbering motion consists solely in
counting the numbers of these oscillations nAB. Let us start
this counting at some state of A. If (A,B) exists, the number
of the oscillations is infinite, since were it finite some last os-
cillation before (A,B) will be there, in contradiction with the
top-speed property of the signal, since either A or B would
then reach (A,B) sooner. It is tempting to take the infinity
of nAB for the prediction of the contact, but in the absence
of (A,B) this number is still infinite though in the Newtonian
scheme it would take infinite time; but we claim to use no
measure for time, only the order.

In order to obtain the prediction, we can use an auxil-
iary body X with (A,X) known in advance and measure the
ratio nAB/nAC for the triple (A,B,X), beginning at arbitrary
point. (Both numbers being infinite, the ratio doesn’t de-
pend on this point.) The prediction of (A,B) follows from
that of (A,B,X) provided such X can be found that this ratio
is finite. Again, this is not a genuine prediction as yet, be-
cause we are counting the ratio up to the (A,B,X), and then
nothing is left to predict. Hence, a scheme is to be devel-
oped to predict (A,B) already at the beginning of the oscil-
lation numbers (ON) counting. Although we dispensed with
all Newtonian intermediaries and turned to measure a motion
solely by means of some auxiliary motions, we have yet to
develop a scheme similar to the Newtonian to obtain genuine
predictability.
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For this to be possible, we ought now to consider suit-
able for our numbering scheme intersections of trajectories
that allow for using the related concept of force. To this end,
we define first the class Q of trajectories, the contacts be-
tween which are not too dense, so that with ON counting it
be always possible to distinguish contacts however multiple.
For instance, two trajectories, which in the Newtonian version
have contacts only in all points with rational values of even
one of coordinates, don’t belong to Q. Hence, if trajecto-
ries from Q have two or more mutual contacts, ON counting,
wherever started, might become infinite for only one of these.
Only trajectories from Q are suitable for CP.

If the top-speed body signal S emitted from A at some of
its point to contact B at some of its point, then no body emit-
ted from A simultaneously with S can contact B in all points
earlier than (S,B) in the B-order. So, we have now points
in A and B that cannot be connected with trajectories unlike
that in the Newtonian scheme. The set of all points, no pair
of which can be so connected is called “spacelike hypersur-
face” W, and its elements will be called positions; therefore
the trajectory of A, say, can contact W only at a single posi-
tion. In particular, all top-speed signals connecting a point of
A apart from W define some boundary in W: Only positions
of W within this boundary can be connected with the part of
A bounded by this point. An open in its order interval of A,
crossing W at some of its points can be projected on W inside
this boundary. This can be done using a series of mutually
“parallel” trajectories (The notion of parallelism might be de-
fined using a system of four ratios of ON’s, and so defined
parallel trajectories are not necessarily straight lines.) as fol-
lows. Take r points on A such that the finite ON’s between
neighboring pairs of parallel trajectories, connecting them to
W, differ by only one oscillation. Increase r keeping this con-
dition. In the limit r going to infinity we obtain a path of posi-
tions in W, which are in one-to-one correspondence with the
set of r points in A trajectory to form (again being completed
with irrational limits) the one-dimensional continuum. Un-
like trajectories, paths might have self-intersections, though
“rarefied” in accord with the trajectories they are projections
of.

The whole W is an “envelope” for various combinations
of possibly intersecting paths. If paths intersect, then the
contact of their trajectories either exists or not. However, if
paths don’t intersect no contact can be there. It is only this
purely topological property that is important for CP. W must
have enough freedom to allow all the variety of combinations
of passes. Since paths and their allowed combinations are
one-dimensional, they might be topologically embedded in
the 3-dimensional Euclidean space (Remember traffic inter-
changes. In general, a wide class of n-dimensional spaces,
including our paths, might be so embedded in the Euclidean
space of the dimension 2n+1, according to the Noebeling-
Pontryagin theorem. Hence the geometry of space, taken in
the Newtonian scheme as fallen from heaven, merely results

from the union of all paths, and more dimensions for W would
be redundant, because already some 3-dimensional subspace
of it can include all cases for CP. Importantly, W cannot be
considered as a sub-space of the 4-dimentional Lorentz space-
time, otherwise its meaningless topology with non-countable
neighborhoods would be only1-dimensional in both Lebesgue
and Poincare senses.

A top-speed signal cannot have more than one contact
with any other trajectory in our scheme. Some other trajecto-
ries might have single contacts too, and these will be useful to
define a force. Let us therefore select a special class of trajec-
tories – the measurement X-kit with the following properties:

(i) Two trajectories from X either have no contacts or have
only one;

(ii) Any point of a trajectory from Q has contacts with
some trajectories from X.

(iii) Any two points of a trajectory from Q can be con-
nected by a trajectory from X. Free trajectories of the first
Newton’s law are such, and just these properties of them, per-
haps only locally, are actually needed in our scheme too.

In the second Newton’s law acceleration is determined by
force. Let us now inverse this law so as to determine force via
acceleration, though not of the body of interest in the CP but
of a body from the specially prepared auxiliary test P-kit with
the same scheme of contacts as the X-kit, however comprised
of bodies with some fixed constants to be specified for the par-
ticular kind of forces. Provided such standard constants exist
over the whole Q, one is able to determine the acceleration of
the body A that is of interest in CP comparing its acceleration
at each point to that of the test body from the P-kit here, given
the related constants of both. If the bodies participating in this
comparison differ from each other only by the values of their
constants, the trajectory of A can be defined, and therefore it
is worthwhile to represent a force as the product of a constant
and an entity defined by the ON counting – field. With the
definition of our two kits, the said comparison might always
be achieved with the counting of ON’s and their ratios. The
mentioned properties of the kits are specified just to allow for
this comparison, so defining situations, in which we claim to
make reliable predictions.

In the chain of links approximating a trajectory with a bro-
ken line, it is sufficient to specify only the first link. Then the
force defining inter-link transitions (given the required con-
stants) provide the prediction.

It remains now to define the required constants in terms
of ON. We specify first a regular P-star, comprised of trajec-
tories of some P’s from the P-kit with the common contact,
in which the ON ratios are distributed regularly:

(i) Each trajectory of P has the neighbors, that is, a num-
ber of trajectories, the ratios of the ON between P and any its
neighbor to that between P and any other trajectory from the
star exceeds 1; it follows that the ratios of the ON between P
and any pair of its neighbors equals 1.

(ii) This feature is the same for all trajectories of the star.

F. Tselnik. Predictability Is Fundamental 13
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In 3-dimensional Q these conditions can be exact only for a
star with the configuration of a Platonic solid (If a star com-
prises great many trajectories, this inexactness might be ig-
nored in the definition of a measure as the numbers of trajec-
tories in subsets of the star; this is used, e.g., in the problems
of field propagation, however not referred to further on in this
essay restricted to mechanics.).

Consider a Platonic solid star with the bodies from the
P-kit moving from its vertices toward the center solely un-
der their interactions (Remember the third Newton law.). It is
convenient to describe the gauge procedure for the constants
in Newtonian terms (translation into the ON counting will be
evident). These bodies are assumed to have some masses m
and charges q. The completely identical bodies can reach the
center only being mutually attracted as for gravity; otherwise
some charge compensation is needed. Then only two of the
Platonic solids might be relevant: the cube and the icosa-
hedron. Indeed, in both it is possible to distribute opposite
charges so as to obtain a regular star for bodies from P-kit.

The cube might be arranged out of two interwoven tetra-
hedrons – one with +q, another with −q; hence the star is
neutral as a whole. All 8 initial velocities are radial and equal,
and 8 equal initial radii are also the same for all bodies of the
cube. All these bodies are being equally accelerated propor-
tionally to q2/m toward the center along rays, whatever radial
dependence of their (isotropic) interaction force. We ascribe
the cube star to electromagnetic (EM) interaction, the mag-
netic component of which is then equal 0 on the rays, and the
electric field is purely radial.

Starting ON counting from the initial radii, we find their
ratios for each ray with its neighbors to be 1 for any n. Re-
versing argument, the value 1 of these ratios can be taken as
the criterion for the cube star to be perfect. After passing the
star center the bodies decelerate to reach initial velocity at
the same radii as the initial ones. Here some of them can be
used, with an appropriate order of the vertices, to form the
descendant star from this seed, adding more similar bodies.
A triple of the neighboring seed star bodies completely deter-
mines all other members of the descending star with ON ra-
tios counting. In the progress of this descending step by step
in all directions, the charge and mass are transported over the
whole network in Q, so determining the same pair of standard
constants everywhere. Importantly, both m and q must be the
same in the cube: Varying any of them in a part of cube, even
keeping the value q2/m unchanged, destroys the star symme-
try. Hence, the network transports both standards unchanged.

In a more general case of CP, e.g., with an arbitrary exter-
nal EM field, the source of which is not known in advance,
unlike that in the Newtonian approach, the acceleration of
charged bodies is proportional to the q/m rather than to q2/m.
However, the value of q/m is also determined by the cube
star gauge, since both q and m are preserved upon the de-
scent transportation. So, predictions based on ON counting
are available in CP even beyond the Newtonian scheme.

The icosahedron regular star of oppositely charged bod-
ies (also neutral as a whole) exists only if, in the Newtonian
sense, the interaction force increases with radius. Whereas
the cube is a sub-star of the full dodecahedron, the icosahe-
dron stands alone; hence its charge and mass have nothing in
common with EM q and m. With the distance increasing of
its force, allowing for confinement and asymptotic freedom,
the icosahedron star symmetry might be suggested to explain
the Dark Cold Matter and the Dark Energy in cosmology.

4 Postscript

The origin of the “Laws of Nature” for any method of num-
bering motion as well as of the concept of motion itself results
merely from the very problem statement by the person-user
to find, whenever possible, a universally predictable course
of action. To this end, physics suggests CP. Nature has no
harmony of its own; only living creatures are looking for re-
liable schemes to make predictions. In particular, it is clear
now why quantum mechanics had not developed its own vari-
ables instead of classical position and momentum. However
modified, these variables still present information in terms re-
quired by the user.

Received on November 19, 2019
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It is shown that the experimental data of sound, obtained by the investigation of
H. Fletcher and W. A. Munson [4], can be physically described on the basis of the differ-
entiated structure of three-dimensional space (DSS), showing an analogy to the physi-
cal interpretation of the process of human vision. The analysis of the experimental data
indicates that the process of hearing at frequencies below 800 Hz depends on the dif-
ferentiated structure of the space related to air. Furthermore, it has been shown that the
existence of sound at frequencies higher than 800 Hz is the result of quantization phe-
nomena of the differentiated space-related state of the air, revealing to be an analogy to
the quantum effects of the differentiated structure of space of the quantum-Hall-effect
(QHE). The presented results about sound, considered with respect to the findings of
the QHE, the Hubble-effect galaxies and the process of seeing, result in the fundamen-
tal statement that the human ability of the observation of being refers exclusively to the
existence of the differentiated structure of three-dimensional space.

1 Introduction

The discovery of a macroscopic quantization in the field of
solid state physics, called quantum-Hall-effect (QHE) or
Klitzing-effect [1], which was first experimentally observed
by K. von Klitzing in 1980, opened the door to a new inter-
pretation of various physical phenomena, such as the origin
of the category time or dynamics in the field of mechanics,
or thermodynamics and theory of heat [2], but also to some
human-related biological processes [3]. The experimental
findings of the QHE provided basic indications of the possi-
bility of the existence of a specific space state, characterized
by a division of three-dimensional space into a clearly sep-
arated, independent 2-D and 1-D dimensional space, called
Differentiated Structure of Space (DSS) [2, 3]. This sepa-
ration is recognizable e.g. by the simultaneous existence of
two different forms of electromagnetism, effective not only
in the context of MOS transistors, but also in the observation
of the Hubble-effect (HE) galaxies, a process that is even re-
flected in the process of human vision, among other things.
As shown in [3], the fundamental investigations into the ex-
istence of HE galaxies lead to the physical realization that
the vision of humans, and to some extent also of animals,
depends on the given DSS-state of space. The fundamental
importance of the DSS-space state for humans becomes addi-
tionally apparent when we discuss the sound process phys-
ically. The experimental data of the investigations of hu-
man hearing carried out by H. Fletcher & W. A. Munson in
1933 [4], which show the relationships found between the
sound pressure, the sound intensity and the loudness level
on the one hand and the sound frequency on the other hand,
presented here in Fig. 1, have so far been interpreted as bi-
ologically caused effects [5–7]. In contrast, the presented
work shows that all the dependencies measured by Fletcher

& Munson [4] (except for the conditions at the initial and
final frequencies of human sound sensitivity are almost ex-
clusively of physical origin, since, as is shown, they are due
solely to the existence of the DSS-state of the air atmosphere.

Based on the data in Fig. 1, it must first be pointed out
that for the investigation of sound intensity and sound pres-
sure at the boundary condition of approximately 20◦ C and a
sound velocity of vs = 343 m/s, the frequency of f0 = 800 Hz
proves to be a suitable boundary condition, since the physi-
cal processes involved in the realization of sound, arising at
frequencies fx < f0, differ considerably from the processes at
frequencies fx > f0. Therefore, we divide the physical analy-
sis of the sound process into Part I and Part II.

2 The analysis of the Part I area of sound

Sound generation and its transmission are based on the prop-
erties of air. The air molecules as components of the air,
which we may evaluate as an ideal gas in the closest approx-
imation, are mainly subject to the influence of earth gravity.
Since these forces can be regarded as constant in wide ar-
eas above the earth’s surface, there is the special possibil-
ity of not paying attention to the gravitational forces when
analysing the origin of sound. Following this idea, we can
therefore assume that in our case the kinetic energy of the air
molecules and their variability can be considered as purely
electromagnetic in nature, which, however, as the experimen-
tal data show, is causally related to the temperature of the en-
vironment, i.e. more precisely, the fundamental electromag-
netic energy of the air molecules is indirectly proportional to
the ambient temperature, observable especially in the variable
value of the speed of sound. This in turn means that the air
can be considered a so-called Boltzmann gas, i.e. the electro-
magnetic energy of the air molecules can be put into a causal
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Volume 16 (2020) PROGRESS IN PHYSICS Issue 1 (April)

120 

100 

80 

:c 
:gOO 
...J 

40 

20 

-;: :::--.. 
S ~ 
~ ~ ~ ~ 

Limit of P . , 

--100. 

;:: ~~"" ~ 
...... 

~~ ~ r-~r-. -
~~~ ~ 

r--.. ....... 
~ 

I--

~o/. " 
~ 

~Iooo. 

~~~ f' ....... ~ ... 
~ ~ ~ ... ''',9 

~ 

"""'" 
..... ...... ~ 

" '" ~~ 

L 

120'" L 
1;--- r---.... ~"" 

./ 

~ 
-

~ .... /. r---.... 
907ii r---.... If .... 

E:I l-

ll"" 
80tt 

r-.... r- I 
70t 
~ 

V~ /. 
oomt l- II . 

r-

~,- t/ 50P 

40Pp l) 

30PPp r- ~"" ~ - ~ 

20 r- ~,-
........ - I,.,; ,- V -l2-.... I ...... ~ 0 r- ,--.... ...... ~ 

o 
20 100 500 

r-

1000 5000 10,000 

Frequencv (Hz) 
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relation to the Boltzmann energy kT . Based on these consid-
erations and on the experimental data of the sound investiga-
tions of Fletcher & Munson, the following basic equation is
formulated for the analysis of sound:

kT
h fx

= nB,x vs
px

Ix
= nB,x

Ep,x

EI,x
. (1)

Here, k is the Boltzmann constant, T the temperature of the
environment, h the Planck constant, fx the given frequency,
vs the speed of sound, px the sound pressure, Ix the sound
intensity, and nB,x the number of air molecules corresponding
to the given frequency in order to reach the so-called hearing
threshold, as shown in Fig. 1 [4]. The index x in (1) refers to
the given frequency fx for all quantities. The sound intensity
energy EI,x occurring in (1) is given by EI,x = Ix/ fx, and the
corresponding sound pressure energy by Ep,x = pxlx, taking
into account the sound velocity of lx fx = vs = 343 m/s, lx

represents the so-called sound length.
As can be seen from the definition of a so-called Boltz-

mann relation of sound presented in (1), this relation at the
frequency fx is given by the relation of the corresponding en-
ergies, which in turn can be determined by the indirect pro-
portionality between the sound pressure px and the sound in-
tensity Ix. In order to be in accordance with the experimental
findings, the energy relation was, as shown in (1), additionally
modified by the number of molecules nB,x considered at the
given frequency fx in order to be able to causally represent the

variation of the energy relation. The fundamental importance
and necessity of the introduction of the number nB,x will be
presented in the following analysis, because this number nB,x
is not only of decisive importance in the description of the
course of the (human) hearing threshold at the frequencies of
approximately 20 Hz < fx < 800 Hz, but it is the essential
factor that helps to physically fathom the process of sound
realization in nature.

In the following it is shown that the special form of the
Boltzmann relation equation formulated in (1) can and must
be used as a starting point for sound analysis.

3 The relationship between sound and the air-related
DSS-condition

The experimental results of Fletcher & Munson [4] are not
only fundamental for the description of human hearing, but,
as is shown, are generally valid and therefore fundamental [5–
7]. In the analysis to interpret the realization and propagation
of sound, the following experimentally observed facts must
be considered:

1) The sound intensity Ix and the sound pressure px are
in a mutually causal relationship at any volume (indicated in
phon∗) and at any observed frequency. Special attention must
be paid to the finding which reveals that a constant connection

∗The phon is a unit of perceived loudness of pure tones, indicated in
Fig. 1 as “Loudness Level”.
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is given between the square of the sound pressure, i.e. p2
x, and

the sound intensity Ix. This physically conditioned circum-
stance, which is valid for each sound intensity Ix and for each
corresponding sound pressure px, namely at each frequency
fx [4], see Fig. 1, can be described by

p2
x

Ix
= const. . (2)

This means that with an increase in sound intensity Ix (phon
strength), the increase in sound pressure px must always be
smaller than the increase in the associated sound intensity Ix

2) It should also be noted that the curves of equal loud-
ness dependent on fx, shown in Fig. 1 in phon, do not touch
each other, i.e. the intensity distances, independent of the fre-
quency(!), have almost the same values, i.e. the increase of
the Ix-phon distances is almost always constant at a given fre-
quency fx. This important experimental finding indicates that
the so-called loudness of the sound refers solely to the sound
intensity Ix.

These two experimental findings show that the energy val-
ues characteristic of the air molecules, expressed in purely
electromagnetic form using EI,x = Ix/Fx and Ep,x = pxlx, can
be recorded and expressed in two different ways when sound
is observed.

Here are a few remarks: The specific type of the DSS-
air-state (Differentiated Space Structure state of air), seen in
terms of the boundary conditions of the existence of the Hub-
ble-effect (HE) galaxies [3], is to be sought in the theoret-
ically possible cancellation of the gravitational effect of the
Earth as a boundary condition for the emergence of the spe-
cific type of the DSS-air-state, described in the beginning of
Part I.

The essential consequence of this cancellation is that the
variability of the sound-related energies of the air molecules
is limited to changes of electromagnetic nature alone. This
means that, in contrast to the states observed in the HE galax-
ies, the molecules of air in the given DSS-state in this case
show only purely electromagnetic variable effects, and that
within the framework of our common three-dimensional un-
derstanding of space, they are separated into a so-called 2-D
and a 1-D “space”.

The special feature of this insight is that it clearly reveals
for the first time that, “spatially” considered, air molecules
as energy carriers can be observed in two different forms,
i.e. “spatially” differentiated, whereas inour common, i.e. cla-
ssical understanding of space, on the one hand the EI,x-energy
refers to the two-dimensionality of this energy, i.e. to the 2-D
“space”, which is interpreted as intensity energy, and on the
other hand the Ep,x-energy refers to the one-dimensionality,
i.e. to the 1-D “space”, which is interpreted as pressure en-
ergy. However, the possibility of the existence of such a spe-
cial state is only given if we may consider nature, evaluating
in spatial categories, as differentiated, recorded as DSS-state.

This specific spatial state was first discussed in 2017 in [2,
pp. 33–34, 45, and 49–50], based on the analysis of the ex-
perimental findings of the quantum-Hall-effect published in
1980 by K. von Klitzing et al. [1], and its unusual existence
was again proven by the analysis of HE galaxies [3]. Seen
in this context, the analysis of the Fletcher & Munson data
shown in Fig. 1 and its conclusion are of extraordinary im-
portance, because they show that the possibility of sound for-
mation is only given when this specific “differentiated space
state”, unusual to our daily understanding of space, is given
in the air and thus the boundary condition for the formation
of sound is real. The correctness of such an unusual model,
which was presented on the basis of the specific electromag-
netic DSS-state of the air, can be confirmed impressively and
convincingly by a further detailed analysis of the experimen-
tal data of Fletcher & Munson.

The essential functional significance of the number of mo-
lecules nB,x given in (1) at the given intensity Ix is to guaran-
tee the DSS-state of the air in the form of (1) and (2), which
physically reflect the limit value of the hearing threshold as
equations. This in turn means that, for the experimentally
given values of sound intensity Ix and sound pressure px,
we can use (1) to write the specific magnitude of the value
nB,x as a function of the frequency fx, where we have to de-
fine the frequency fx, normalized in relation to the reference
frequency f0, as the relation n f ,x = fx/ f0. And in order to
be able to mathematically record the homogeneity of the air
in the DSS-state, it is also necessary to define the relation
np,x = px/p0, i.e. to set the sound pressure px in relation to the
standard value of the air pressure p0 by means of the number
np,x. Starting from the limit values I0 = 1 × 10−12 W/m2 and
p0 = 2 × 10−5 N/m2 given in Fig. 1, for every frequency we
then obtain the constant value (nB,x/n f ,x np,x) = 1.122. The
constancy of this value, which captures the homogeneity of
the air condition, and above all the small size of this dimen-
sionless value 1.122 suggests the possibility of replacing this
value by the number 1, followed by the associated necessity
to modify the experimentally given values Ix and px accord-
ingly. In order to minimize the change of the value p2

x/Ix, the
validity of which must be maintained, it is sufficient to reduce
the value from I0 = 1×10−12 W/m2 to I0 = 0.9×10−12 W/m2,
while keeping the value p0 = 2 × 10−5 N/m2. The smallness
of the correction of the I0 value is fully acceptable, as it is
within the given measuring accuracy.

If we now try to represent a causal connection of the val-
ues nB,x/n f ,x to the experimental values nexp,x = Ix/I0 , which
are given by the known data of [4], by means of an equa-
tion, an extraordinarily meaningful connection, valid for all
frequencies fx < f0 emerges, which can be described by

nexp,x =

(
nB,x

n f ,x

)2

. (3)

Using a simple calculation, it can be shown that (3) is a com-
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pellingly necessary causal consequence of the hearing pro-
cess (1) and (2).

Since in the framework of the DSS-model, the values of
nexp,x readable in Fig. 1 can be unambiguously related to the
specific energies of the 2-D space, i.e. to the sound-intensity
radiations Ix, but the relation values nB,x/n f ,x within the fra-
mework of (nB,x/n f ,x np,x) = 1 can be related to the specific
energies of the 1-D space, i.e. with the sound-pressure val-
ues px, the simple and clear form of (3) proves that every fre-
quency x < 800 Hz must be the condition of the differentiated
state of space. Furthermore, (3) testifies that this DSS-state is
necessary as a boundary condition in order to reach the sound
limit by means of the Ix and px limit values, i.e. to generate
and transmit sound in our environment of the earth’s surface.

The number nB,x in (1) is also of great importance for non-
physical reasons: As shown, it is necessary for the realization
of the DSS-state and thus brings the mental development of
man to fruition. The analysis of the sound indirectly shows
clearly that the acoustic communication between humans is
solely caused by the existence of this DSS-state of the air.
In fact, an interesting analogy to the process of seeing and
thus to the human perception process in general can be seen,
because the process of seeing, as shown in [3] and explained
by the existence of specifically suitable uvula and rod cells,
is also based on the existence of the DSS-state, as it were, in
the field of optics, i.e. light.

4 The analysis of the Part II region of sound and the
analogies to the integral and fractional quantum-Hall-
effect

On the basis of the sound interpretation model presented in
Part I, it is clear that sound mediation at frequencies fx above
the limit value f0, i.e. at fx > f0 , must be fundamentally
different from the process presented in Part I, because once
the sound intensity value I0 is reached, there should be no
further normal possibility of reaching the DSS-state for the
production of sound. In fact, however, it is observed that ini-
tially, with increasing values from f0 to approximately fx =

1300 Hz, the hearing threshold limit value of I0, given by ap-
proximately 1×10−12 W/m2, remains quasi-constant in order
toreach anew minimum in Ix of approximately2×10−13W/m2

at fx = 3200 Hz. Afterwards, starting at fx = 3200 Hz, an in-
crease in the hearing threshold limit values Ix is observed with
increasing fx values, followed – which is particularly impor-
tant – by an indication of a small decrease in the Ix limit val-
ues at fx = 1.28 × 104 Hz. After that, a strong increase of the
curves of equal loudness is measured further on with increas-
ing frequency, and to stop at fx = 1.6 × 104 Hz, at all phon
levels. In order to be able to interpret these experimentally
observed complex Ix- fx-dependencies, we have to assume the
existence of two different processes which, as we will show,
relate to the 2-D space component on the one hand and to the
1-D space component on the other.

One process concerns the interpretation of the minima of
Ix at fx = 3.2x103 Hz and at fx = 1.28 × 104 Hz: They can be
interpreted as the consequence of an area quantization given
in the two-dimensional space part, describable with the quan-
tum number 4 and 16. With this, it is postulated here that – de-
spite the sound limit value of I0 = 1×10−12 W, as explained in
Part I – also at higher frequencies, i.e. at fx = 3.2×103 Hz and
fx = 1.28 × 104 Hz – which is due to this experimentally ob-
servable macroscopic 2-D quantization – an air-related DSS-
state can be present, which means that in nature it is possible
to also generate sound at fx > 8 × 102 Hz.

An analogous macroscopic quantization related to two-
dimensional space, namely the quantization discovered by
K. von Klitzing, was renamed in later years to Integral quan-
tum-Hall-effect (IQHE), observed at the quantum numbers 2,
4, (6), 8, 12 and 16 [2, 8, 9]. In order to be able to consider
the assumed two-dimensional surface quantization for sound
as physically acceptable in comparison with IQHE quantiza-
tion, some additional remarks are necessary: In the IQHE,
the magnetic field B is in causal interaction with the elec-
tron density Ne, i.e. in the DSS-space model with the 2-D
space state. In the so-called Fractional quantum-Hall-effect
(FQHE), discovered for the first time by D. C. Tsui et al. at
GaAs–AlxGa(1−x)As heterostructures [10], the magnetic field
Bx corresponds to a frequency fx. This model of the different
functioning of the magnetic field, given on the one hand by
the IQHE and on the other hand by the FQHE, could actu-
ally be indirectly confirmed by targeted measurements within
the QHE, as shown in [11, pp. 34–42]. This means that the
magnitude of the magnetic field, which is expressed in Tesla
units in the MKSA unit system, can also be expressed simply
by the quantity “frequency” in the MKS unit system, which
makes a possible analogy of the process between the sound
effect and the QHE appear possible.

As already mentioned in [3], the QHE state is always
present in the DSS-space state. As a consequence, IQHE
quantization is to be interpreted as a 2-D space quantization,
in contrast to FQHE quantization, which can be interpreted
as a 1-D space quantization. This insight leads us to the addi-
tional conclusion that the discovery of the length-related har-
mony theory, which stems from Pythagoras, actually reflects
a 1-D space quantization, which is today presented in every
musical harmony theory as a consequence of the existence of
overtones that always belong to the fundamental tones. But
this important insight must be further expanded by the discov-
ery of the existence of deep harmony tones associated with
each fundamental tone, recognizable by the existence of the
so-called deep combination tones, see [6, p. 38]. It is evi-
dent that the existence of these deep harmony tones can be
understood as an analogy to the existence of FQHE quantiza-
tion. This leads to the conclusion, which is important for our
analysis, that the unexpected sound generation at frequencies
fx > 8 × 102 Hz according to our model must be a conse-
quence of the existence of 2-D space and 1-D space quanti-
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zations associated with the given fundamental tones, a model
which is fully consistent with the extensive experimental find-
ings of both the IQHE and the FQHE. In addition, an inter-
esting fact can be seen that the QHE, where the observation
of the FQHE was initially completely unexpected, fully re-
flects this “unexpectedness” when listening to deep harmony
tones [6]. The relatively small probability of low combina-
tion tones therefore means that a strong increase in the hear-
ing threshold limit values Ix is to be expected with increasing
frequency, which, as Fig. 1 shows, was actually observed.

The found sudden stop of sound generation at fx = 1.6 ×
104 Hz at all phon values can only be interpreted in such a
way that in humans in the cochlea there are no stereocilia for
these high frequencies that would process such electromag-
netic signals. This means that we can only speak of a phys-
iological effect in this case of the general cessation of sound
sensitivity at extremely high frequencies. The same reason-
ing can be applied to the description of the sudden occurrence
of hearing ability observed at all phon levels, which occurs in
humans at about 20 Hz. This means that the onset of hear-
ing must be physiological and therefore cannot be attributed
to a physical effect. Otherwise, as explained, the sound data
of Fig. 1 observed by Fletcher & Munson can be attributed to
physical processes, which all, without exception, indicate the
existence of an air-related DSS-condition.

5 Summary and conclusion

Based on the analysis of experimental data of the quantum-
Hall-effect [1], it was found that in nature, spatially speak-
ing, a specific state can exist, called differentiated structure
of three-dimensional space (DSS-state) [2, 3]. Based on this
discovery not only a novel description of the category “time”
as a consequence of localized, i.e. 1-D related electromag-
netism could be presented [2, page 45], but also the back-
ground of the existence of the Hubble-effect galaxies as well
as the process of human vision based on the DSS-state could
be physically described [3]. This visual model, which asso-
ciates the rod cells with the specific 1-D space state and the
uvula cells with the specific 2-D space state, does not dif-
fer in any essential point from the process of human hearing
based on the process of the DSS-state, as the analysis of the
Fletcher & Munson data reveal, revealing also the analogy
between the processes of sound generation and those of the
quantum Hall effect. Thus, within the DSS-model, the air
molecules are the “carriers” of both the 1-D space structures
in terms of sound pressure px, and the 2-D space structures
in terms of sound intensity Ix. The detailed analysis of the
Fletcher & Munson data also clearly indicated that the limit
of the hearing threshold is determined by the existence of the
DSS-air-state. This experimental discovery is a fundamen-
tally important discovery from a physical point of view be-
cause it proves that the process of hearing is conditioned by
the existence of the DSS-state of the air molecules. Conse-

quently, it can be concluded that the DSS-state as the basis of
hearing, but also of seeing, as shown in [3], is the fundamen-
tal state that enables human kind to mentally recognize what
is happening in nature, i.e. all being. But this also means that
the DSS-state is the fundamental physical background which
is the starting point for all human evaluations and interpreta-
tions of both static and dynamic, i.e. time-related processes
in nature [2, 3, 11] and should therefore always be taken into
consideration additionally.
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der Wärme. Cuvillier Verlag, Goettingen, ISBN 978-3-7369-9388-4,
eISBN 978-3-7369-8388-5, 2016.

3. Dorda G. The Interpretation of the Hubble-Effect and of Human Vi-
sion Based on the Differentiated Structure of Space. Prog. Phys., 2020,
v. 16 (1), 3–9.

4. Fletcher H. and Munson W. A. Loudness, its definition, measurement
and calculation. J. Acoust. Soc. Am., 1933, v. 5, 82.

5. Mende D. and Simon G. Physik. Gleichungen und Tabellen. Carl
Hanser Verlag, Fachbuchverlag Leipzig, Muenchen, 2013.

6. Roederer J. G. Introduction to the Physics and Phsychophysics of Mu-
sic. Heidelberg Science Library, Springer-Verlag, New York, 1973. In
german: Physikalische und psychoakustische Grundlagen der Musik.
Springer-Verlag, Berlin, Heidelberg, 1977.

7. Breuer H. and Breuer R. Atlas zur Physik. Deutscher Taschenbuch
Verlag GmbH & Co., Muenchen, 1987/1988.

8. Wittmann F. Magnetotransport am zweidimensionalen Elektronensys-
tem von Silizium-MOS-Inversionsschichten. Dissertation, University
of Armed Forces, Muenchen, Institute of Physics, 1992.

9. Suen Y. W., Jo J., Santos M. B., Engel L. W., Hwang S. W. and
Shayegan M. Missing integral quantum Hall effect in a wide single
quantum well. Phys. Rev. B, 1991, v. 44, 5947–5950.

10. Tsui W. A., Störmer H. L. and Gossard A. C. Two-Dimensional Mag-
netotransport in the Extreme Quantum Limit. Phys. Rev. Lett., 1982,
v. 48, 1559–1561.

11. Dorda G. Quantisierte Zeit und die Vereinheitlichung von Gravitation
und Elektromagnetismus. Cuvillier Verlag, Goettingen, ISBN 978-
3-86955-240-8, 2010. In particular: pp. 34–42, Fig. 2.1 and 2.2, and
Eq. (2.14).

Gerhard Dorda. The Interpretation of Sound on the Basis of the Differentiated Structure of Three-Dimensional Space 19



Volume 16 (2020) PROGRESS IN PHYSICS Issue 1 (April)

A Pedestrian Derivation of
Heisenberg’s Uncertainty Principle on

Stochastic Phase-Space

G. G. Nyambuya

National University of Science and Technology, Faculty of Applied Sciences – Department of Applied Physics,
Fundamental Theoretical and Astrophysics Group, P. O. Box 939, Ascot, Bulawayo, Republic of Zimbabwe.

E-mail: physicist.ggn@gmail.com

Without using the common methodologies of quantum mechanics – albeit, methodolo-
gies that always involve some demanding mathematical concepts, we herein demon-
strate that one can derive in a very natural, logical and trivial manner, Heisenberg’s
quantum mechanical uncertainty principle on the new phase-space whose name we have
herein coined Stochastic Phase-Space. This stochastic phase-space – is a mathemati-
cal space upon which we previously demonstrated [2] the naturally implied existence
of the First Law of Thermodynamics from Liouville’s theorem. In addition to Heisen-
berg’s uncertainty principle, we derive an upper limiting uncertainty principle and it is
seen that this upper limiting uncertainty principle describes non-ponderable tachyonic
particles.

It must have been one evening after midnight when I suddenly

remembered my conversation with Einstein and particularly

his statement, ‘It is the theory which decides what we can

observe.’ I was immediately convinced that the key to the

gate that had been closed for so long must be sought right

here. I decided to go on a nocturnal walk through Faelled

Park and to think further about the matter . . . Werner Karl

Heisenberg (1901-1976). Adapted from [3, p. 6].

1 Introduction

The present paper is the third in a five part series where we
make the endeavour to understand the meaning and origins
of what drives the unidirectional forward arrow of thermo-
dynamic entropy. In our first instalment [4, hereafter Paper
I], we demonstrated that the Second Law of Thermodynamics
(SLT) can possibly be understood if there exists a new kind
of probability measure, pr, which drives thermodynamic pro-
cesses and this thermodynamic probability evolves in such a
manner that, whenever this thermodynamic probability chan-
ges its value when a system moves from one state to the next,
it always takes higher values than the value it previously held
– i.e. dpr ≥ 0, at all physical and material times. In a nutshell,
thermodynamic events will at the very least, progressively
evolve from a probabilistically less likely state – to a prob-
abilistically more likely state. Such an evolution sequence is
what is naturally expected from probability calculus anchored
on common binary logic where natural systems are expected
to steadily progress into their most likely state.

In the construction of our new ideas, naturally, we ex-
pected that this thermodynamic probability pr, would turn out
to be the usual Boltzmann probability, i.e.

pr = Z−1 exp (−Er/kBT ) ,

where pr is the probability that for a system at temperature
T , the microstate with energy Er, will be occupied and Z is
the partition function. As will be demonstrated in the sequel
paper [5, hereafter Paper IV], this probability pr, cannot be
the usual Boltzmann probability, but a new kind of probability
associated not with the occupation of the given microstate,
but its evolution; where by evolution, it is understood to mean
– moving or progression from its present state to a new state
altogether.

Further on, in the paper [2, hereafter Paper II], we demon-
strated that Liouville’s theorem [6] can actually be viewed
as a subtle statement of the First Law of Thermodynamics
(FLT). This we did by defining the Liouville density function,
δ%, in-terms of some new physical quantity, δSTD, that we
called the thermodynamic phase (or the thermodynamic ac-
tion), i.e. δ% = exp(δSTD/~), where ~ is Planck’s normalized
constant. Furthermore, in Paper IV, we shall identify δ% as
the appropriate thermodynamic probability of evolution, that
is, the thermodynamic probability responsible for the SLT.

In the present paper, we shall demonstrate that when cast
as a probability measure, δ% naturally yields the universally
celebrated quantum mechanical uncertainty principle of Hei-
senberg [1]. In addition to Heisenberg’s lower limiting (i.e.
δE δt ≥ ~/2 and δp δx ≥ ~/2) uncertainty principle, we de-
rive an upper limiting uncertainty principle – i.e. δE δt ≤ ~/2
and δp δx ≤ ~/2. As initially pointed out in [7], this up-
per limiting uncertainty principle strongly appears to describe
non-ponderable tachyonic particles.

Without a doubt, Heisenberg’s quantum mechanical un-
certainty principle is certainly one of the most famous aspects
of quantum mechanics and this very aspect of the theory is
universally regarded as the most distinctive feature of the the-
ory. It is a unique characteristic feature which makes quan-
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tum mechanics differ radically from all classical theories of
the physical world. For example, the uncertainty principle for
position and momentum δp δx ≤ ~/2 states that one cannot
simultaneously assign exact values to the position and mo-
mentum of a physical system. Rather, these quantities can
only be determined with some intrinsic, inherent and charac-
teristic uncertainties that cannot – simultaneously – become
arbitrarily small.

In its popular understanding, the Heisenberg uncertainty
principle is assumed to be a principle to do with the accuracy
in the results of measurements of physical variables such as
momentum, position, energy, etc. Strictly speaking, this is not
true. For example Millette [8] argues that the Heisenberg un-
certainty principle arises from the dependency of momentum
on wave number (p = ~k) that exists at the quantum level, and
that ultimately the uncertainty principle is purely a relation-
ship between the effective widths of Fourier transform pairs
of conjugate variables. Our ideas propagated herein do sup-
port these views and as an addition, these quantum mechani-
cal uncertainties associated with physical variables are seen to
arise from pure stochastic processes occurring on some new
phase-space that we have coined the stochastic phase space.

Now, in closing this introductory section, we shall give a
synopsis of the present paper – i.e. this paper is organised as
follows: in §2, we derive the uncertainty relations that govern
ordinary ponderable matter and thereafter in §3, we derive
the uncertainty relations that govern exotic non-ponderable
matter. Lastly, in §4, we give a general discussion.

2 Derivation of the uncertainly principle

As stated in the introductory section, we are going to demon-
strate in this section (i.e. in §2.2) that one can derive in a ve-
ry natural and logical manner, the position-momentum and
energy-time quantum mechanical Heisenberg uncertainty pri-
nciple on the newly proposed Stochastic Phase-Space (here-
after δΓ-space) upon which we demonstrated [2] the naturally
implied existence of the FLT from Liouville’s theorem. In
addition to Heisenberg’s uncertainty principle, we will also
derive in §3, upper limiting position-momentum and energy-
time uncertainty principles and these upper limiting uncer-
tainty principles describe non-ponderable tachyonic particles.

Before we proceed, we need to explain what it is we mean
by upper limiting uncertainty principle. If there is an upper
limiting uncertainty principle, from the viewpoint of common
logic, there also must be a lower limiting uncertainty princi-
ple. Indeed, the uncertainty principle of Heisenberg is a lower
limiting uncertainty principle because it gives the lowest pos-
sible value that the product of the energy (δE) & time (δt),
and momentum (δp) & position (δr) uncertainties would ever
take. That is to say, the products δE δt and δp δr, can take
whatever value they can or may take for so long as this value
does not exceed the minimum threshold value of ~/2, hence,
in this way, it becomes pristine clear that the Heisenberg un-

certainty principle (δE δt ≥ ~/2 and δp δr ≥ ~/2) is indeed a
lower limiting uncertainty principle.

Now, if – by the sleight of hand, we are to flip the sign
in the Heisenberg lower limiting uncertainty principle so that
we now have δE δt ≤ ~/2 and δp δr ≤ ~/2, the resulting
uncertainty principle is an upper limiting uncertainty prin-
ciple since it now gives an upper limit in the value that the
products (δE δt and δp δr) of the uncertainties can ever take.
Whence, we must hasten at this point and say we already
have discussed the implications of a upper limiting uncer-
tainty principle in our earlier works (i.e. in [7]) where we ar-
gued that if such particle exist to being with, not only will
they travel at superluminal speeds – they also will have to be
non-ponderable as-well; that is to say, they must be invisible
and absolutely permeable. In simpler colloquial terms, such
particles must be capable of passing through solid walls with
no hindrance at all whatsoever.

2.1 Preliminaries

Now, before we can go on to present our derivation of Heisen-
berg’s uncertainty principle in §2.2, we will need to set-up
the stage for that event. First, in order for that, we shall give
in §2.1.1, a description of the particle system that we shall
consider, and, in §2.1.2, we shall describe the normalization
across all spacetime for the thermodynamic probability func-
tion δ% and in §2.1.3, we shall describe the normalization
across a given space-and-momentum axis for the thermody-
namic probability function, δ%. Lastly, in §2.1.4, we present
some useful mathematical equations that we will need in our
endeavours to derive the Heisenberg uncertainty principle.

2.1.1 Description of particle system

As initially suggested in Paper II, we envisage the existence
of two mutually exclusive spacetimes and these we have term-
ed – the Classical Canonical Spacetime (hereafter, CC-Spa-
cetime), and, the non-Canonical Spacetime (hereafter, NC-
Spacetime). The NC-Spacetime can also be called the Sto-
chastic Spacetime. On the deterministic CC-Spacetime, a
particle has its usual deterministic classical four position (x, y,
z, c0t) that we are used to know, while on the non-determinis-
tic NC-Spacetime, the non-deterministic jittery quantum ran-
domness and fuzziness associated with the usual determinis-
tic classical canonical position (δx, δy, δz, c0δt) are defined on
this non-deterministic NC-Spacetime.

For example, considering only the x-axis, a particle will
have x as its canonical position and δx as its associated non-
canonical position as defined on the NC-Spacetime. It is δx
that should give this particle the quantum fuzziness leading to
the weird quantum probabilistic nature of physical systems.
For the human observer – assuming zero human-induced er-
ror in measuring the position of the particle – the effective po-
sition x̂ of the particle at any given time is x̂ = x ± δx. So, in
general, xµ is the canonical four position of the particle and
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δxµ is the associated quantum randomness that leads to the
mysterious, strange and bizarre fuzzy quantum probabilistic
nature of natural systems.

In our description above, when we say particle, we mean a
point-particle – i.e. particles of zero spatial dimension, hence
zero volume. Obviously, there will be some trouble in accept-
ing this – as point-particles, are – in physics – no more than
idealization of real finite-sized particles that are smeared-out
in a finite region of space. That is, a point-particle is in gen-
eral an appropriate or convenient representation of any object
whatever its size, shape, and structure – all these details of
size, shape, and structure, etc, are irrelevant under the general
particle model.

To further complicate this issue of the particle description
of matter, we all know pretty well that the existence of point-
particles is strictly forbade by Heisenberg’s uncertainty prin-
ciple. With this in mind, of these particles, what we envisage
is them having all their charge such as their gravitational mass
and electrical charge being concentrated on that very single
point with this point being trapped in the finite sized spher-
ical region of radius: δr =

√
(δx)2 + (δy)2 + (δz)2, with the

the centre of this finite spherical region fixed in space about
the canonical position (x, y, z). Because of the fields that the
trapped charged point-particle carries – i.e. fields with which
this particle interacts with other particles; the fuzzy, random
wandering and dotting back-and-forth, up-and-about of this
particle inside this finite region should create the impression
of a solid billiard-like ball of radius δr with oft cause the
bulk of its charge (gravitational, electrical, etc) expected to
be trapped in this spherical region. Surely, such a particle-
system will be localized and it will have the property of pon-
derability that we experience with electrons, protons, etc. Let
us call such a particle-system, a Ponderable Material Parti-
cle.

Now, for a minute, let us assume that the above described
point-particle is not trapped. If that were the case, then, what
is it that we are going to have for such a particle-system?
Clearly, it must be an unbounded point-particle that is free to
roam all of the Universe’s length, breath and depth – from
one end of the Universe, to the other in an instant! Such
a particle-system should have its charge (gravitational, elec-
trical, etc) spread-out evenly throughout the entire Universe.
Not only this, while such a particle-system will have a defi-
nite fixed canonical position, the entire particle-system must
be invisible as it will not have the property of ponderability
(localization). Likewise, let us call such a particle-system, a
non-Ponderable Material Particle.

Now, as shall soon become clear in our derivation of Hei-
senberg’s uncertainty principle, two classes of particles will
emerge and the first is that class whose random quantum fuz-
ziness as described on the NC-Spacetime obeys the usual qua-
ntum mechanical uncertainty principle of Heisenberg, i.e. δE
δt ≥ ~/2 and δp δr ≥ ~/2; and these particles travel at speeds

less than, or equal to the speed of light in vacuo. The sec-
ond class is that of particles whose quantum fuzziness as de-
scribed on the NC-Spacetime obeys not the usual quantum
mechanical uncertainty principle Heisenberg, but obey the
converse of Heisenberg’s uncertainty principle, namely δE δt
≤ ~ and δp δr ≤ ~ and these particles travel at speeds that are
at the very least, greater than the speed of light in vacuo.

At this juncture, we feel very strongly that we have pre-
pared our reader to meet the strange new proposal of invisible
particles that travel at superluminal speeds, thus – assuming
the reader somewhat accepts or at the very least, finds some
modicum of sense in what we have had to say above – we
shall quietly proceed to the main business of this paper – that
of demonstrating the natural existence of Heisenberg’s un-
certainty principle on the proposed NC-Spacetime where the
jittery, fuzzy quantum randomness has here been defined.

2.1.2 Normalization across all space

If δ% is assumed to be some probability function, then it must
be normalizable. Normalization is oft cause one of the most
fundamental and most basic properties that a probability func-
tion must satisfy. As is the norm: normalization of this func-
tion, δ%, across all of the six dimensions of δΓ-space requires
that:

1
~3

δpmax︷    ︸︸    ︷∫ ∫ ∫
︸    ︷︷    ︸

δpmin

δrmax︷    ︸︸    ︷∫ ∫ ∫
︸    ︷︷    ︸

δrmin

(δ%+) d3xd3 p = 1, (1)

where: δ%+ = δ%+
x δ%

+
y δ%

+
z δ%

+
0 . In writing δ% in (1), we have

appended a subscript + and this is not a mistake, it is deliber-
ate. This + appendage has been instituted – for latter purposes
– so that a distinction can be made between a thermodynamic
system with a positive δSTD thermodynamic phase (action)
and that with a negative −δSTD thermodynamic phase (ac-
tion), i.e.: δ%+ = δ%+(δSTD), while: δ%− = δ%−(−δSTD). The
two functions describe two different kinds of phenomenon,
namely δ%+ describes ponderable matter as we know it, while
δ%− describes some (exotic) non-ponderable (invisible) tachy-
onic matter. This shall be made clear as we go, hence the need
to make a distinction of δ%+ and δ%−.

Now, the normalization in (1) is the probability of finding
the particle in the spatial (r̂) and momentum ( p̂) region:

δrmin ≤ r̂ ≤ δrmax

δpmin ≤ p̂ ≤ δpmax ,
(2)

where r̂ and p̂ are the actual measured radial coordinate and
magnitude of the momentum of the particle as measured from
the spatial canonical point of origin of the particle (system) in
question.
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2.1.3 Normalization across a given axis

Now, given that δ%+ = exp(δSTD/~), where:

δSTD = δp · δr − δEδt = δpµδxµ , (3)

it follows that the quantities δ%+
x , δ%+

y , δ%+
z , δ%+

0 are such that:

δ%+
x = exp

(
δSx

~

)
= exp

(
δpxδx
~

)
. . . (a)

δ%+
y = exp

(
δSy
~

)
= exp

(
δpyδy
~

)
. . . (b)

δ%+
z = exp

(
δSz

~

)
= exp

(
δpzδz
~

)
. . . (c)

δ%+
0 = exp

(
−
δS0

~

)
= exp

(
−
δEδt
~

)
. . . (d)

(4)

where oft cause δSx = δpxδx, δSy = δpyδy, δSz = δpzδz,
and, δS0 = δp0δx0 = δEδt. Clearly, written in this manner,
these functions δ%+

x , δ%+
y , δ%+

z , δ%+
0 are the thermodynamic

probability evolution functions describing the particle across
the δx-δpx axis, δy-δpy axis, δz-δpz axis, and the δt-δE axis
respectively.

The probability of finding the particle along the x-px, y-
py, z-pz and t-E axis respectively, in the region of its bounds
is unity and this is expressed:

1
~

∫ δpmax

δpmin

∫ δrmax

δrmin

(
δ%+

x
)

dxdpx = 1 , (5)

1
~

∫ δpmax

δpmin

∫ δrmax

δrmin

(
δ%+

y

)
dydpy = 1 , (6)

1
~

∫ δpmax

δpmin

∫ δrmax

δrmin

(
δ%+

z

)
dzdpz = 1 , (7)

1
~

∫ δEmax

δEmin

∫ δtmax

δtmin

(
δ%+

0

)
dtdE = 1 . (8)

Before we can deduce the Heisenberg uncertainty principle
from the above equations (5)-(8), we shall lay down some
necessary mathematical formulae.

2.1.4 Necessary mathematical equations

In our derivation of Heisenberg’s uncertainty principle in §2.2
and §2.3, we are going to encounter the function eax/x, where
x is the variable and a is some constant. Of this function, we
will need to know its integral and limit as x 7→ 0. It is not
difficult to show that:∫ (

eax

x

)
dx =

eax

ax
+ k , (9)

where k is some integration constant and:

lim
x 7→0

(
eax

x

)
= a . (10)

Now, we are ready to derive Heisenberg’s uncertainty princi-
ple (and more).

2.2 Position-momentum uncertainty

In this section, we are now going to derive a lower and up-
per bound uncertainty principle for momentum and position.
Taking (5) and substituting δ%+

x = exp (δpxδx/~), we will
have:

1
~

∫ δpmax

δpmin

∫ δrmax

δrmin

exp
(
δpxδx
~

)
dxdpx = 1 . (11)

Now, using the result of (9) to integrate (11) with respect to
x, and evaluating the resulting integral, we will have:∫ δpmax

δpmin

(
eδpxδrmax/~ − eδpxδrmin/~

δpx

)
dpx = 1 . (12)

Further, we need to integrate (12) with respect to px. In doing
so, we will encounter again an integral of the form given in
(9). The result of this integration is therefore:

~

[
eδpxδrmax/~

δpxδrmax
−

eδpxδrmin/~

δpxδrmin

]δpmax

δpmin

= 1 . (13)

Evaluating this, we will have:

Term I︷         ︸︸         ︷
~eδpmaxδrmax/~

δpmaxδrmax
−

Term II︷         ︸︸         ︷
~eδpminδrmax/~

δpminδrmax

−
~eδpmaxδrmin/~

δpmaxδrmin︸         ︷︷         ︸
Term III

+
~eδpminδrmin/~

δpminδrmin︸         ︷︷         ︸
Term IV

= 1 . (14)

Furthermore, for ponderable material particles, as discussed
in §2.1.1, we wantour particle system to be bounded (trapped)
between the regions 0 ≤ r̂ ≤ δrmax and 0 ≤ p̂x ≤ δpmax. This
means that we must evaluate (14) in the limits δrmin 7→ 0 and
δpmin 7→ 0.

Now, making use of the limit given (10), it follows that
as:

δrmin 7→ 0 ,

δpmin 7→ 0 ,
(15)

for the Terms I, II, III and IV in (14), we will have:

Term I =
~e
δpmaxδrmax

~

δpmaxδrmax
,

Term II 7→ 1 ,

Term III 7→ 1 ,

Term IV 7→ 1 ,

(16)

hence from (16), it follows from this that (14) will reduce to:

~eδpmaxδrmax/~/δpmaxδrmax − 1 = 1 ,

G. G. Nyambuya. A Pedestrian Derivation of Heisenberg’s Uncertainty Principle on Stochastic Phase-Space 23



Volume 16 (2020) PROGRESS IN PHYSICS Issue 1 (April)

where, after some re-arrangement, we will have:

1
2
~

δpmaxδrmax
= e−δpmaxδrmax/~ . (17)

From a meticulous inspection of (17), it is clear and goes
without saying that in order for this equation to hold true
δpmaxδrmax > 0, hence:

1
2
~

δpmaxδrmax
= e−δpmaxδrmax/~ < 1 , (18)

thus, we will have:

δpmaxδrmax >
1
2
~ . (19)

With the subscript “max” removed from pmax and rmax, this
(19) is without any doubt whatsoever the famous 1927 positi-
on-momentum quantum mechanical uncertainty principle of
Heisenberg. One can work this out for the other three cases –
i.e. for the (δy, δpy) dimension as given in (6) and the (δz, δpz)
dimension as given in (7) and they would arrive at the same
result.

It is important to note that the exact Heisenberg upper
uncertainty principle involves a greater than or equal to sign,
that is “≥”, yet in (19), the equal sign “=” is missing. This
issue shall be addressed in Paper IV where it shall be seen
that this case represents only those particles that travel at the
speed of light. Next, we consider the energy-time uncertainty
relation.

2.3 Time-energy

Now, in §2.3.1 and §2.3.2, we are going to derive a lower and
an upper bound uncertainty principle for energy and time and
as we do this, we must have at the back of our mind that sta-
ble ponderable particles ought to have no upper bound in their
temporal fluctuations. Yes, they can only have a lower bound
in their temporal fluctuations and this lower bound must co-
incide with the moment of their creation. On the contrary, un-
stable ponderable particles ought to have a finite upper bound
in their temporal fluctuation.

2.3.1 Lower bound energy-time uncertainty

We are now going to derive the energy-time uncertainty prin-
ciple. The derivation is similar to the one given in §2.2 above.
To that end, from (4d) and (8), we know that:

1
~

∫ δEmax

δEmin

∫ δtmax

δtmin

exp
(
−
δEδt
~

)
dtdE = 1 . (20)

Now, using (9) to evaluate (20), we obtain the following:

Term I︷           ︸︸           ︷
~e−δEmaxδtmax/~

δEmaxδtmax
−

Term II︷          ︸︸          ︷
~e−δEminδtmax/~

δEminδtmax

−
~e−δEmaxδtmin/~

δEmaxδtmin︸          ︷︷          ︸
Term III

+
~e−δEminδtmin/~

δEminδtmin︸          ︷︷          ︸
Term IV

= 1 . (21)

In the limit as:
δtmin 7→ 0 ,

δEmin 7→ 0 ,
(22)

for Terms I, II, III and IV in (21), according to (10), we will
have:

Term I =
~e
δEmaxδtmax

~

δEmaxδtmax
,

Term II 7→ 1 ,

Term III 7→ 1 ,

Term IV 7→ 1 ,

(23)

hence, it follows from this – that (21) will reduce to:

~eδEmaxδtmax/~/δEmaxδtmax − 1 = 1 ,

where, after some algebraic re-arrangement, we can rewrite
this equation as:

1
2
~

δEmaxδtmax
= e−δEmaxδtmax/~ . (24)

Similarly, from an inspection of (24), one will clearly obtain
that for this equation holds true δEmaxδtmax > 0, hence:

1
2
~

δEmaxδtmax
= e−δEmaxδtmax/~ < 1 , (25)

thus:

δEmaxδtmax >
1
2
~ . (26)

Once again, this is the famous 1927 energy-time quantum me-
chanical uncertainty principle of Heisenberg. Just as in (19),
the reason for having the greater than sign and not the greater
than or equal to sign are the same as those given in the case
of (19). This uncertainty relation (i.e. (26)) describes a pon-
derable (spatially bound) material particle that is unstable and
has a lifetime τ that is such that τ < δtmax.
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2.3.2 Upper bound energy-time uncertainty

Now, for the same reason given in §2.3.1, we are going to
proceed further and consider the case of a ponderable mate-
rial particle system that has no upper bound in its temporal
fluctuations – i.e. a stable ponderable material particle system
that can live forever (e.g. like an electron or a proton). Such a
particle will have δtmax and δEmax being such that:

δtmax 7→ ∞ ,

δEmax 7→ ∞ .
(27)

According to (10) under the given conditions (i.e. (27)), for
the Terms I, II, III and IV in (21), we will have:

Term I 7→ 0 ,

Term II 7→ 0 ,

Term III 7→ 0 ,

Term IV =
~e
−
δEminδtmin

~

δEminδtmin
,

(28)

hence, it follows from this that (21) will reduce to:

~e−δEminδtmin/~/δEminδtmin = 1 ,

where, after some basic algebraic re-arrangement, we can
rewrite this equation as:

~

δEminδtmin
= eδEminδtmin/~ . (29)

As before, it is not difficult to see that for (29) to hold true, this
requires that δEminδtmin > 0, hence, and from this, it clearly
follows that:

~

δEminδtmin
= eδEminδtmin/~ < 1 , (30)

thus:
δEminδtmin < ~ . (31)

Insofar as its interpretation is concerned, by no stitch of the
imagination is this (31) related to the famous 1927 energy-
time quantum mechanical uncertainty principle of Heisenberg
and this is so because of the less-than-sign “<” appearing in
it. What this equation is “telling” us is that the energy and
time fluctuations are not bound above, but below. When it
comes to the lifetime of the particle in question, this translates
to the reality that the particle can live forever – i.e. τ = ∞.
Therefore, this uncertainty relation describes stable ponder-
able particle systems – i.e. ordinary electrons and protons,
which by-and-large strongly appear to be stable particle sys-
tems.

3 Non-ponderable matter

From a symmetry and bona fide mathematical standpoint, if
we have the physics of particles described by the thermody-
namic phase +δSTD, there surely is nothing wrong, but ev-
erything natural and logical for one to consider the physics
of particle systems described by the opposite thermodynamic
phase – i.e.−δSTD. Such necessary and beautiful symme-
try considerations is what lead the great English theoretical
physicist – Paul Adrian Maurice Dirac (1902-1984) to fore-
tell the existence of antimatter [9–11]. We here consider the
said particle systems whose thermodynamic phase is −δSTD.

Before even going into investigating the said particle sys-
tems, natural questions will begin to flood the mind, questions
such as: Will such particles violate the FLT? The answer is:
No, they will not. To see this, one simply substitutes −δSTD
into the equations of Paper II, where-from they certainly will
come to the inescapable conclusion that these particles will
indeed obey the FLT. Further – a question such as: Will these
particle systems violate the SLT? may also visit the curious
and searching mind. An answer to this will be provided in
Paper IV.

Furthermore – in the extreme and zenith of one’s state of
wonderment, they might excogitate: Will such particles be
visible and ponderable? By visible it is understood to mean:
will these particle systems emit or reflect electromagnetic ra-
diation that we are able to sense? And by ponderable, we
mean will such particle systems be able to clump-up and form
touchable materials like rocks, etc? This is the question we
are going to answer. To preempt our findings, such particle
systems will be invisible and non-ponderable.

To commence our expedition, we shall start by writing
down the functions δ%−x , δ%−y , δ%−z , δ%−0 and these are such that:

δ%−x = exp
(
−
δSx

~

)
= exp

(
−
δpxδx
~

)
. . . (a)

δ%−y = exp
(
−
δSy
~

)
= exp

(
−
δpyδy
~

)
. . . (b)

δ%−z = exp
(
−
δSz

~

)
= exp

(
−
δpzδz
~

)
. . . (c)

δ%−0 = exp
(
δS0

~

)
= exp

(
δEδt
~

)
. . . (d)

(32)

Now, just as in the case of ponderable matter in the previous
section, in order for us to derive the implied uncertainty rela-
tions from (32), we are going to consider (in §3.1, §3.2 and
§3.3, respectively) the normalization of δ%−x and δ%−0 .

3.1 Lower bound position-momentum uncertainty

As before, normalization of δ%−x requires that:

1
~

∫ δpmax

δpmin

∫ δrmax

δrmin

exp
(
−
δpxδx
~

)
dxdpx = 1 . (33)
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Just as we have already done with (11) and (20); integrating
and evaluating (33), we obtain:

Term I︷           ︸︸           ︷
~e−δpmaxδrmax/~

δpmaxδrmax
−

Term II︷          ︸︸          ︷
~e−δpminδrmax/~

δpminδrmax

−
~e−δpmaxδrmin/~

δpmaxδrmin︸          ︷︷          ︸
Term III

+
~e−δpminδrmin/~

δpminδrmin︸          ︷︷          ︸
Term IV

= 1. (34)

Likewise, with (34) in place, one may try to bound the particle
in space and momentum, in much the same way as it has been
done in §2.2 by instituting the asymptotic conditions δrmin 7→

0 and δpmin 7→ 0. So doing, they surely would obtain the
unpleasant result:

~e−δpmaxδrmax/~/δpmaxδrmax = 0 .

This result is surely unpleasant because it means that we must
have δpmaxδrmax = ∞. Overall, this means that this particle
system has no upper bounds in quantum of action δpmaxδrmax;
this surely is uncomfortable as the quantum of action must be
bound either above or below. Given this uncomfortable result
δpmaxδrmax = ∞, a much better way to approach this particle
system is to start off by setting no upper bounds in space and
momentum and in the end obtain finite lower bounds in the
quantum of action δE δt, that is to say, start off by setting:

δrmax 7→ ∞ ,

δpmax 7→ ∞ .
(35)

Instituting the above (35) limits into (34), for the Terms: (I),
(II), (III) and (IV), one obtains:

Term I 7→ 0 ,

Term II 7→ 0 ,

Term III 7→ 0 ,

Term IV =
~e
−
δpminδrmin

~

δpminδrmin
,

(36)

hence:

~e
−
δpminδrmin

~

δpminδrmin
= 1 . (37)

In much the same fashion as in the preceding sections, re-
arranging this (37), we will have:

~

δpminδrmin
= e

δpminδrmin

~ > 1 , (38)

hence:
δpminδrmin < ~ . (39)

This means the fuzziness in the momentum and spatial lo-
cation of the particle about its canonical centre is bounded
above and not below.

3.2 Lower bound energy-time uncertainty

Further, for the energy-time uncertainty relation, normaliza-
tion of δ%−0 requires that:

1
~

∫ δEmax

δEmin

∫ δtmax

δtmin

exp
(
δEδt
~

)
dtdE = 1 . (40)

As before, integrating and evaluating this (40), we obtain:

Term I︷           ︸︸           ︷
~e−δEmaxδtmax/~

δEmaxδtmax
−

Term II︷          ︸︸          ︷
~e−δEminδtmax/~

δEminδtmax

−
~e−δEmaxδtmin/~

δEmaxδtmin︸          ︷︷          ︸
Term III

+
~e−δEminδtmin/~

δEminδtmin︸          ︷︷          ︸
Term IV

= 1 . (41)

In the limit as:
δtmax 7→ ∞ ,

δEmax 7→ ∞ ,
(42)

for the Terms I, II, III and IV in (41), we will have:

Term I 7→ 0 ,

Term II 7→ 0 ,

Term III 7→ 0 ,

Term IV =
~e
−
δEminδtmin

~

δEminδtmin
,

(43)

hence, it follows from this that (41) will reduce to:

~e−δEminδtmin/~/δEminδtmin = 1 ,

where, after some re-arrangement, we can rewrite:

~

δEminδtmin
= eδEminδtmin/~ . (44)

As before, from a meticulous inspection of (44), it is abun-
dantly clear that δEminδtmin > 0, hence:

~

δEminδtmin
= eδEminδtmin/~ < 1 , (45)

thus:
δEminδtmin < ~ . (46)

Just as with (39), (46) means that the fuzziness in the energy
and temporal fluctuations of the particle are bounded above
and not below.
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3.3 Upper bound energy-time uncertainty

Lastly, we now consider the case of a non-ponderable ma-
terial particle system that has no upper bound in its tempo-
ral fluctuation – i.e. a stable non-ponderable material particle
system that can live forever. Such a particle will have δtmax
and δEmax such that:

δtmax 7→ ∞ ,

δEmax 7→ ∞ .
(47)

Under the given conditions (i.e. (47)), for the Terms I, II, III
and IV in (41), we will have:

Term I 7→ 0 ,

Term II 7→ 0 ,

Term III 7→ 0 ,

Term IV =
~e
−
δEminδtmin

~

δEminδtmin
,

(48)

hence, it follows from this that (21), will reduce to:

~e−δEminδtmin/~/δEminδtmin = 1 ,

where, after some re-arrangement, we can rewrite:

~

δEminδtmin
= eδEminδtmin/~. (49)

Likewise, for it to hold true always, (49) requires that δEmin
δtmin < 0, hence:

~

δEminδtmin
= eδEminδtmin/~ < 1 , (50)

thus:
δEminδtmin < ~ . (51)

Again, we here have an upper bounded uncertainty relation.

4 General discussion

Since the inception of Heisenberg’s uncertainty principle in
1927, severalattempts see e.g. [8,12–15, and references there-
in] have been made to derive this mysterious mathematical re-
lationship from much more fundamental soils of physics than
those on which Heisenberg [1] derived this relation. In his
original paper, Heisenberg began by deriving the uncertainty
relation for position and momentum on the basis of a sup-
posed experiment in which an electron is observed using a
γ-ray microscope and second, by consideration of the theory
of the Compton effect, he proceeded to argue that the pre-
cision of the determination of position and momentum are
connected by the uncertainty relation.

In 1929, using the usual definition of expectation values
(inner product) of Hermitian Hilbert-space operators (observ-
ables) and the mathematical property of the Cauchy–Bunya-
kovsky–Schwarz inequality, Robertson [12] proceeded in a
rigorous manner, to demonstrate a more general and funda-
mental origin of the quantum mechanical uncertainty princi-
ple. The present attempt is just but one such derivation – al-
beit – on the soils of a new kind of phase space – the Stochas-
tic Phase Space.

However, unlike all previous attempts on the derivation
of the uncertainty principle, what makes the present attempt
different is that we have not only derived the lower limit un-
certainty principle, but an upper bound uncertainty principle
that seems to describe invisible non-ponderable particles that
travel at superlumical speeds. This unique prediction seem
to suggest not only the existence of darkmatter, but darken-
ergy as well. Dark matter is already required by physicists
in order to explain the flat rotation curves of spiral galaxies,
while dark energy is required to explain the supposed accel-
erated expansion of the Universe. This subject of invisible
non-ponderable particles, dark matter and dark energy would
require a separate and lengthy paper in order to cover it in a
just manner.

Another important point to note about the present deriva-
tion is that the enigmatic jittery quantum randomness leading
to the uncertainty principle is here an intrinsic and inherent
property of all quantum mechanical systems, it (i.e. the jittery
quantum randomness) is not induced by the act of measure-
ment as is the case of Heisenberg’s uncertainty principle and
its latter versions or attempts at a derivation of this relation.
Yes, human measure will introduce statistical errors that are
statistically predictable. The stochastic quantum randomness
is not predictable at all – not even by the most rigours known
(or unknown, or yet to be unknown) statistical methods.

In closing, allow us to say that we have always held cen-
tral to our philosophy of Physics the strong and seemingly
unshakeable belief system similar to that of Albert Einstein
– namely, that the fundamental laws of Nature are exact, and
as such, one day it will be shown that this is the case. That
is to say, in the character of Einstein’s philosophy, we have
held fast to his influential and deep philosophy that indeed
God does not play dice with the World, and that The moon
exists whether or not one is looking at it or not. Contrary
to this, we must admit and say that as we continue to peer
deeper into the fabric and labyrinth of physical and natural
reality as it lies bare for us to marvel at, this dream or be-
lief system now stands shattered into minuscule pieces – for
it now seems clearer to us that the enigmatic jittery quantum
randomness must be real.

Received on February 23, 2020
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Magnetism due to the translational, possibly oscillatory, motion of charge, as opposed
to the ordering of dipoles, is not well understood, but is well described by the Dar-
win Lagrangian. The Coulomb interaction is used universally in atomic, molecular and
solid state physics, but its natural extension when going to higher accuracy, the mag-
netic Darwin-Breit interaction, is not. This interaction is a velocity dependent long
range interaction and as such unfamiliar to the majority of theoreticians. The (v/c)2

dependence makes it at most a perturbation in few-body systems, but does not stop it
from becoming potentially important as the number of particles increase. For systems
where particle velocities are correlated (or coherent) over larger distances this interac-
tion is shown to have major consequences. Based on these findings I suggest that this
interaction should be investigated as the interaction responsible for superconductivity.
I also speculate that, on an interstellar scale, it is responsible for the missing dark mat-
ter. Some numerical estimates and intuitive arguments are presented in support, but no
proofs. Instead it is my hope that the ideas presented will deserve further serious study.

A man hears what he wants to hear and disregards the rest.

Paul Simon in The Boxer

1 Introduction

We first introduce the Darwin Lagrangian which describes
the magnetic interaction energy between moving charged par-
ticles. This is a velocity dependent long range interaction
which is very small for few-body systems but which can be-
come dominating in macroscopic systems. In particular the
Lagrangian predicts that the effective mass, or equivalently
inductive inertia, can grow with the square of the number of
particles.

The Darwin Lagrangian makes simple predictions for par-
ticles that are assumed to have the same velocity. Here we use
this constraint to study the effect of the magnetic interaction
energy for collectively moving charges. The crucial fact that
emerges from these studies is that the effective mass of many
collectively moving particles far exceeds the sum of their rest
masses. In the case of superconductivity this means that the
zero-point energy of coherent oscillators decreases with the
number of oscillators, and this presumably leads to the super-
conducting phase transition. In the case of cosmic plasma fil-
aments it leads to the conclusion that their gravitational mass
can far exceed the rest mass content of the participating parti-
cles. Could this be the missing dark matter? Some numerical
estimates indicate that this is a possibility.

2 The Darwin Lagrangian

The Darwin Lagrangian [1] describes the majority of electro-
magnetic phenomena correctly. The exception is radiation,
which is neglected. The theory behind this Lagrangian is pre-
sented in a few textbooks such as Landau and Lifshitz [2,
§65] and Jackson [3, Sec. 12.6]. More extensive discussions

can be found in Page and Adams [4, Sec. 96], Podolsky and
Kunz [5, Sec. 27], Szasz [6, Appendix], Schwinger et al. [7,
Eq. (33.23)], or Stefanovich [8]. Basic articles of interest are
Breitenberger [9], Kennedy [10], Essén [11–13]. Various ap-
plications of the Darwin Lagrangian illustrating its usefulness
can be found in Kaufman [14], Stettner [15], Boyer [16, 17],
Krause et al. [18], Essén et al. [19–25].

Vector potentials are not always mentioned in connection
with the Darwin Lagrangian, but it can be derived by approx-
imating the Liénard-Wiechert potentials. Landau and Lif-
shitz [2, §65] make a gauge transformation to the Coulomb
gauge after truncating series expansions of these. Jackson [3,
Sec. 12.6] solves the vector Poisson equation obtained by ne-
glecting the time derivative in the wave equation. Page and
Adams derive it by approximating the forces [4, Sec. 96]. It
can also be motivated as the best approximately relativistic
action-at-a-distance Lagrangian [10, 26] and it can be shown
to take retardation into account to order (v/c)2.

The Darwin Lagrangian for N charged particles, of mass
ma and charge ea, can be written

LD =

N∑
a=1

[ma

2
u2a −

ea

2
φa(ra) +

ea

2c
ua · Aa(ra)

]
(1)

where

φa(ra) =

N∑
b(,a)

eb

|ra − rb|
(2)

and

Aa(ra) =

N∑
b(,a)

eb

2c
[ub + (ub · êab)êab]

|ra − rb|
. (3)

Here êab = (ra − rb)/|ra − rb|, and relativistic corrections
to the kinetic energy are neglected. In many circumstances
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one can neglect the magnetic interaction energies since the
Coulomb electric interaction dominates strongly, especially
in few-body systems. As will be seen below, however, when
there are macroscopic numbers of correlated charged parti-
cles this is no longer permissible. It is noteworthy that macro-
scopic numbers of correlated charged particles is the rule ra-
ther than an exception in plasmas, conductors, and supercon-
ductors.

3 Plasma oscillations

One can use (1) to calculate how a charge density of electrons
oscillates relative to a fixed background of positive charge.
For collective motion of N electrons with velocity u = ẋêx the
kinetic energy is simply T = Nme ẋ2/2. If one further assumes
that the particles have fixed distributions in space apart form
the relative translational motion one can get (nearly) analyti-
cal results for the remaining two terms, for simple geometries
in the continuum limit. If we denote the displacement of the
negative charges by x the total Coulomb potential energy is
well approximated by,

Φ(x) =

Ntot∑
a=1

ea

2
φa(ra) = Φ(0) +

1
2

(
d2Φ

dx2

)
x=0

x2 , (4)

in the limit of small x. Here Φ(0) is a large negative constant
that does not contribute to the dynamics; the positive back-
ground only provides the restoring force in the oscillation.
The assumption that the electrons (ma = me, ea = −e) move
collectively along the x-direction simplifies the magnetic con-
tribution, the third term in (1). One finds

UD =

N∑
a=1

e
2c
ua · Aa(ra)

=

 e2

2c2

N−1∑
a=1

N∑
b=a+1

1 + cos2 θab

|ra − rb|

 ẋ2 ,

(5)

where cos θab = êx · êab. For a charge density of electrons
with fixed geometry this is simply a constant times ẋ2. We
thus find that the Darwin Lagrangian for the system becomes

LD = N
(

1
2

meff ẋ2 −
1
2
κx2

)
. (6)

Here meff is me plus a contribution from (5).
Calculations of the constants meff and κ can be done by el-

ementary methods. The result will be a formula for the square
of the oscillation frequency ω2 = κ/meff . This was done for a
sphere of radius R in [19] with the result

ω2 =

Ne2

R3

me

(
1 + 4

5
reN
R

) . (7)

Here re = e2/(mec2) is the classical electron radius. ω(R)
is plotted in Fig. 1. In the limit of few particles, or negli-
gible Nre/R, this gives the plasma oscillation frequency as

Fig. 1: The frequency ω of (7) as a function of radius R. Atomic
units are used (e = me = ~ = 1, c = 137) and the density is assumed
to be one electron per sphere of one Bohr radius a0. The formula

plotted is ω(R) =

√
4π/3

(
1 + 16π

15(137)2 R2
)

and R is in atomic units
(Bohr radii). The frequency is reduced by one order of magnitude at
R = 750 a0.

normally given in the literature,

ω2
p =

4π
3

e2n0

me
(8)

where n0 = N/V is the number density inside the sphere. In
the opposite limit of macroscopic numbers of electrons N one
obtains

ω2
∞ =

5c2

4R2 . (9)

This seems to be the frequency of a longitudinal electromag-
netic wave in the sphere. A similar calculation for a (two-
dimensional) square of side length L gives a similar result,

ω2 =

2e2N
L3 Ks

me

(
1 + 3

4
Nre
L Cs

) , (10)

where Cs = (4/3)
[
1 −
√

2 − 3 ln
(√

2 − 1
)]

and Ks = 16 (2 −
√

2) [27].

4 Superconductivity

In the early history of superconductivity it was conjectured
that a transition of the electrons at the Fermi surface to a
Wigner crystal [28] was responsible for the phase transition.
Since no new interaction comes into play this did not seem
correct, even if the Wigner crystal idea is still investigated
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[29,30]. When one takes the magnetic interaction energy into
account, however, the zero point energy E0 = ~ω/2 and os-
cillation frequency of the (pairs of) electrons go down con-
siderably if they oscillate coherently with coherence length
R, as indicated in Fig. 1. It is interesting to note that Vasiliev
[31, 32] finds that superconductivity is caused by ordering of
the zero point oscillations. Frenkel [33] advanced the theory
that the increased inductive inertia of correlated conduction
electrons explains superconductivity, and the present author
presented estimates indicating that the Darwin energy is im-
portant in superconductors [34]. In Fig. 1 it is seen that the
zero point energy goes down by one order of magnitude in
750 Bohr-radii, assuming one electron per cubic Bohr-radius.
In general coherence lengths in superconductors is one or two
orders of magnitude larger [35], so the numbers are quite rea-
sonable. The isotope effect agrees well with the assumption
that lattice oscillations destroy the coherence.

5 Dark matter?

The decay time of currents is τ ∼ L/R where L is induc-
tance and R resistance. As emphasized by Kulsrud [36] these
times are enormous in astrophysical plasmas. The currents
producing astrophysical magnetic fields will only decay on a
time scale comparable to the age of the universe. These plas-
mas are thus effectively superconducting. The effective mass
meff of (6) is a measure of the inductance, or inductive iner-
tia. Simple estimates show that this mass is in general much
larger than the rest mass. That this is the case for conduction
electrons in a metal was noted already in 1936 by Darwin [37]
and several times later [23, 38].

It is tempting to speculate that dark matter is in fact due
to magnetic energy in interstellar plasmas. Here we make
some simple estimates. The Darwin magnetic energy, the first
term of (6), UD = Nmeff ẋ2/2, will contribute MD = UD/c2 to
gravitational mass in the universe. Consider a cube of side
length L. If we assume that the number of protons in this
cube is N and that L also is a typical distance between them
we find from (5) that

UD

c2 = MD ∼
1
4

e2

c2

N
L

2

β2 (11)

where β = |ẋ|/c. This magnetic mass should be compared to
the total proton mass Mp = Nmp. The ratio is

MD

Mp
∼

(e2/c2) (N/L)
4mp

β2 . (12)

Putting in the numerical values gives

MD

Mp
∼ (3.83 × 10−19 m)

N
L
β2 . (13)

The number of protons is N = npL3 where np is the proton
number density. This gives

MD

Mp
∼ (3.83 × 10−19 m) np L2β2 . (14)

To get some numbers we assume that np = 4.0 m−3 and that
the ratio MD/Mp is 10 (magnetic mass is 10 times proton
mass). This gives

10 ∼ 3.83 × 10−19 × 4.0 L2 β2 m−2 . (15)

The side length of the cube over which velocity must be cor-
related is then

L ∼ 2.5 × 109 β−1 m . (16)

assuming that the speed is c/100, so that β = 10−2, we find
that L ∼ 2.5 × 1011 m. This is somewhat more that one astro-
nomical unit (AU ≈ 1.5×1011 m), a tiny distance in the inter-
stellar perspective. So, with a density of 4 protons per cubic
meter and a correlated speed of 1% of the speed of light over
a distance of order of magnitude one AU one finds that the
gravitational mass MD of the magnetic energy is ten times the
total proton rest mass. This suggests to me that dark matter
may, in fact, reside in magnetic energy and the effective mass
of the cosmic magnetic fields.

6 Conclusions

Since Darwin’s 1936 paper [37] it should have been clear that
investigations of conduction electrons in metals that do not
take into account the magnetic interaction energy are mean-
ingless. No amount of mathematical wizardry will make this
interaction go away. It is also a natural candidate for emer-
gent properties in larger systems, such as superconductivity,
while remaining a perturbation in few body systems.

The insight that large plasmas with coherent velocities
have energies that are many orders of magnitude larger than
that corresponding to the rest mass of the constituent particles
should be investigated as a possible candidate for dark mat-
ter. Recently Nicastro et al. [39] found that missing baryons
are believed to reside in large-scale filaments in the warm-hot
intergalactic medium. Perhaps the rest of the missing dark
matter is also there in the form of magnetic energy?
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In this article we propose a dynamic quantum state tomography model for qutrits sub-
ject to laser cooling. We prove that one can reduce the number of distinct measurement
setups required for state reconstruction by employing the stroboscopic approach. The
results are in line with current advances in quantum tomography where there is a strong
tendency to investigate the optimal criteria for state reconstruction. We believe that the
stroboscopic approach can be considered an efficient tool for density matrix identifica-
tion since it allows to determine the minimal number of distinct observables needed for
quantum state tomography.

1 Introduction

The term quantum tomography is used in reference to a wide
variety of methods which aim to reconstruct the accurate rep-
resentation of a quantum system by performing a series of
measurements. Mathematically, the complete knowledge ab-
out the state of a quantum system can be encoded in, for ex-
ample, the density operator, the wavefunction or the Wigner
function. In this article we discuss the problem of the density
matrix reconstruction.

One of the most fundamental approaches to quantum state
tomography, the so-called static tomography model, enables
to reconstruct the density matrix of a quantum system pro-
vided one can measure N2 − 1 distinct observables (where
N = dimH). Any density matrix can be decomposed in the
basis of SU(N) generators in such a way that the coefficients
correspond to the mean values of the operators [1]. This
approach has been excessively studied in many papers and
books, such as [2, 3]. However, there is a significant disad-
vantage connected with this method. In a laboratory one usu-
ally is not able to define N2 − 1 distinct physical quantities
that could be measured.

The most important property that all tomography mod-
els should possess is practicability, which means that a the-
oretical model should have a potential to be implemented in
an experiment in the future. Therefore, when dealing with
quantum state tomography we should bear in mind the lim-
itations related to laboratory reality. For this reason, in this
article we employ the stroboscopic approach to quantum to-
mography, which for the first time was proposed by Andrzej
Jamiolkowski in [4]. Later it was developed in other research
papers such as [5] and [6]. In order to get a broad perspective
one may also refer to a very well-written review paper [7].
Recently some new results concerning the stroboscopic ap-
proach has been presented in [8, 9].

The stroboscopic tomography concentrates on determin-
ing the optimal criteria for quantum tomography of open sys-
tems. The main goal of this method is to reduce the number
of distinct observables required for quantum tomography by

utilizing knowledge about time evolution of the system. The
data for the density matrix reconstruction is provided by mean
values of some hermitian operators {Q1, . . . ,Qr}, where nat-
urally Qi = Q∗i . The set of observables is not informationally
complete, which means that a single measurement of each
operator does not provide sufficient information for quantum
state reconstruction.

The underlying principle behind the stroboscopic appro-
ach claims that if one has the knowledge about the evolution
of the system, each observable can be measured repeatedly
at a certain number of time instants. Naturally, each indi-
vidual measurement is performed over a distinct copy of the
system since we do not consider the collapse of the quantum
state caused by measurements. Therefore, we assume that our
source can prepare a large sample of systems in the identical
(but unknown) quantum state.

In the stroboscopic approach to quantum tomography the
fundamental question that we are interested in concerns the
minimal number of distinct observables required for quantum
state reconstruction. One can recall the theorem concerning
the minimal number of observables [5].

Theorem 1. For a quantum system with dynamics given by a
master equation of the form [10, 11]:

ρ̇(t) = L[ρ(t)] , (1)

one can calculate the minimal number of distinct observables
for quantum tomography from the formula:

η := max
λ∈σ(L)

{dim Ker(L − λI)} , (2)

where by σ(L) one should understand the spectrum of the
operator L.

The linear operator L that appears in (1) shall be called
the generator of evolution. The number η is usually referred
to as the index of cyclicity of a quantum system.

The theorem 1 means that for any linear generator L there
exists a set of observables {Q1, . . . ,Qη} such that their ex-
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pectation values determine the initial density matrix. Con-
sequently, they also determine the complete trajectory of the
state (one can compute the density matrix at any time instant).

If we denote the number of required measurements of
each observable from the set {Q1, ...,Qη} by Mi for i = 1, . . . ,
η, then one can also recall the theorem on the upper limit of
moments of measurement [6].

Theorem 2. In order to provide sufficient data for the density
matrix reconstruction the number of times that each observ-
able from the set {Q1, ...,Qη} should be measured satisfies the
inequality:

Mi ≤ deg µ(L) , (3)

where by µ(L) we denote the minimal polynomial of L.

The theorem 2 gives the upper boundary concerning the
number of measurements of each single observable. One can
notice that the ability to compute the minimal polynomial of
the generator L is crucial in order to determine the upper limit
for the number of measurements. Naturally, another problem
relates to the choice of the time instants. Some considerations
about this issue can be found in [6].

In the next section the theorems concerning the strobo-
scopic tomography shall be applied to three-level quantum
systems with the evolution known as laser cooling. This ar-
ticle brings substantial advancement to the field of quantum
state tomography. In [8] the author introduced optimal crite-
ria for quantum tomography of qubits. In the current work we
proceed towards higher dimensional Hilbert space. We prove
that the stroboscopic tomography can be an effective method
of state reconstruction for qutrits provided one knows how the
system evolves.

2 Quantum tomography schemes for three-level systems
subject to laser cooling

2.1 Static approach to quantum tomography of qutrits

In case of three-level quantum systems one would naturally
employ the Gell-Mann matrices in order to decompose any
density matrix. We follow the original notation from [12]
and therefore, the Gell-Mann matrices shall be denoted by
{λ1, λ2, . . . , λ8}. They have the following forms:

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,
λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1
√

3

1 0 0
0 1 0
0 0 −2

 .

The Gell-Mann matrices are the generators of the SU(3)
group. They are the generalization of the Pauli operators
for three-level systems. They have some algebraic properties
which are useful for quantum state tomography, i.e.:

λi = λ∗i , Tr λi = 0 and Tr λiλ j = 2δi j . (4)

For three-level quantum systems the initial density matrix
ρ(0) ∈ S(H) can be decomposed in the basis of the Gell-
Mann matrices [1]:

ρ(0) =
1
3
I3 +

1
2

8∑
i=1

〈λi〉λi , (5)

where 〈λi〉 is the expectation value of the observable λi. Math-
ematically, it can be computed as 〈λi〉 = Tr{λiρ(0)}.

If one would like to directly apply this decomposition in
order to reconstruct the density matrix, one would have to
know the mean values of eight distinct observables {λ1, λ2,
. . . , λ8}. Such data would be necessary to complete the for-
mula for ρ(0). This approach to quantum tomography, which
does not take advantage of the knowledge about evolution,
shall be referred to as the static approach. This scheme ap-
pears impractical since one is not able to define eight distinct
physical quantities. This observation justifies the need for
more economic approach which aims to decrease the number
of distinct observables.

2.2 Dynamic approach to quantum state tomography of
qutrits

Laser cooling is a very widely investigated topic in modern
Physics, e.g. [13, 14]. A lot of attention has been paid to dif-
ferent aspects of this problem. In particular, one may refer
to applications of atoms subject to laser cooling in quantum
information encoding [15]. In this paper we search for a link
between laser cooling and quantum state tomography.

An example often studied in the area of laser spectroscopy
is a quantum system subject to laser cooling with three energy
levels (dimH = 3) [16]. The evolution of the density matrix
of such a three-level system is given by a master equation of
the form:

dρ(t)
dt

= −i[H(t), ρ(t)]+

+ γ1

(
E1ρ(t)E∗1 −

1
2
{E∗1E1, ρ(t)}

)
+

+ γ2

(
E2ρ(t)E∗2 −

1
2
{E∗2E2, ρ(t)}

)
,

(6)

where E1 = |1〉 〈2| and E2 = |3〉 〈2|. The vectors {|1〉 , |2〉 , |3〉}
denote the standard basis inH .

This kind of dynamics appears when the excited state |2〉
decays spontaneously into two ground states |1〉 and |3〉 with
corresponding decoherence rates γ1 and γ3.
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Moreover in this analysis we take H(t) = [0], where [0]
denotes a 3−dimensional matrix with all entries equal 0. This
assumption means that we shall analyze only the Lindbladian
part of the evolution equation.

In case of a three-level open quantum system with dynam-
ics given by the master equation from (6) we can formulate
and prove a theorem which provides the minimal number of
distinct observables required for quantum tomography.

Theorem 3. For a quantum system subject to laser cooling
according to (6) there exists four distinct observables such
that their average values (measured at selected time instants
over different copies of the system) suffice to determine the
initial density matrix ρ(0).

Proof. Based on the method of matrix vectorization [8, 17],
the dissipative part of the generator of evolution (6) can be
explicitly expressed as a matrix:

L = γ1

(
E1 ⊗ E1 −

1
2

(
I9 ⊗ ET

1 E1 + ET
1 E1 ⊗ I9

))
+

+ γ2

(
E2 ⊗ E2 −

1
2

(
I9 ⊗ ET

2 E2 + ET
2 E2 ⊗ I9

))
.

(7)

Taking into account the fact that the vectors {|1〉 , |2〉 , |3〉}
constitute the standard basis, the matrix form of the quantum
generator L can be obtained:

L =



0 0 0 0 γ1 0 0 0 0
0 −Γ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −Γ 0 0 0 0 0
0 0 0 0 −2Γ 0 0 0 0
0 0 0 0 0 −Γ 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −Γ 0
0 0 0 0 γ2 0 0 0 0


, (8)

where Γ = 1
2 (γ1 + γ2).

Having the matrix form of the generator of evolution L,
one can calculate its eigenvalues:

σ(L) = {0, 0, 0, 0,−2Γ,−Γ,−Γ,−Γ,−Γ} . (9)

Since in this case the operator L is not self-adjoint, the
algebraic multiplicity of an eigenvalue does not have to be
equal to its geometric multiplicity. But one can quickly de-
termine that there are four linearly independent eigenvectors
that correspond to the eigenvalue 0. Therefore, we can find
the index of cyclicity for the operator in question:

η = max
λ∈σ(L)

{dim Ker(L − λI9)} = 4 , (10)

which means that we need exactly four distinct observables
to perform quantum tomography of the analyzed system. �

One can instantly notice that if the static approach was
applied to three-level laser cooling, one would have to mea-
sure 8 distinct observables whereas in the dynamic approach
4 observables suffice to perform quantum tomography. If one
thinks of potential applications in experiments, then our result
means that one would have to prepare 4 different experimen-
tal setups instead of 8. This observation demonstrates that
the stroboscopic approach has an advantage over the static
approach because it is more economic when it comes to the
number of distinct kinds of measurement.

The next issue that we are interested in is the minimal
polynomial for the operator L. Assuming that this polynomial
has the monic form, i.e.:

d3L
3 + d2L

2 + d1L + d0I = 0 , (11)

one can get :

d3 = 1, d2 =
3
2

(γ1 + γ2), d1 =
1
2

(γ1 + γ2)2, d0 = 0 . (12)

Thus, we see that deg µ(L) = 3. This means that each ob-
servable should be measured at most at three different time
instants. One can conclude that, since we need 8 independent
pieces of information to reconstruct the initial density matrix,
not every observable will be measured the maximum number
of times. To provide a precise answer to the question concern-
ing the algebraic structure of the observables and the choice
of time instants, we shall accept additional assumptions con-
cerning the generator of evolution.

Let us consider a special case of the generator of evolu-
tion defined in (8) such that γ1 = 1/4 and γ2 = 3/4. For this
specific generator, we can formulate a theorem.

Theorem 4. The initial density matrix ρ(0) of a three-level
system subject to laser cooling can be reconstructed from the
mean values of four observables of the form:

Q1 =

1 0 0
0 −1 1 + i
0 1 − i 0

 , Q2 =

 0 0 1 + i
0 0 0

1 − i 0 0

 ,
Q3 =


0 1 0
1 1

√
3

0
0 0 − 2

√
3

 , Q4 =

 0 i 0
−i 0 0
0 0 0

 ,
(13)

where the mean values of Q1 and Q2 are measured at 3 dis-
tinct time instants and the observables Q3 and Q4 once at
t = 0.

Proof. According to the assumptions of the stroboscopic to-
mography, the information that one can obtain from an ex-
periment is encoded in the mean values of some observables,
which mathematically can be written as:

mi(t j) = Tr{Qiρ(t j)} , (14)

where ρ(t j) = exp(Lt j)[ρ(0)].
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One is aware that exp(Lt j) can be decomposed as:

exp(Lt) = α0(t)I9 + α1(t)L + α2(t)L2 , (15)

where the functions {α0(t), α1(t), α2(t)} are linearly indepen-
dent. In order to determine these functions, we need to em-
ploy the minimal polynomial of L and then solve a system of
differential equations [6, 8]. Having done the necessary com-
putations, one gets:

α0(t) = 1
α1(t) = e−t − 4e−

1
2 t + 3

α2(t) = 2e−t − 4e−
1
2 t + 2 .

(16)

Since one is able to decompose exp(Lt j) in the basis of
three operators {I9,L,L2} due to linearity of the matrix trace
we get:

mi(t j) = α0(t j)Tr{Qiρ(0)} + α1(t j)Tr{QiL[ρ(0)]}+

+ α2(t j)Tr{QiL
2[ρ(0)]} .

(17)

If by L∗ we shall denote the dual operator to L, then by
changing the perspective from the Schrödinger picture to the
Heisenberg representation we can obtain:

mi(t j) = α0(t j)Tr{Qiρ(0)} + α1(t j)Tr{L∗[Qi]ρ(0)}+

+ α2(t j)Tr{(L∗)2[Qi]ρ(0)} .
(18)

This means that if the mean value of the observable Q1
is measured at three distinct time instants, one gets a matrix
equation:m1(t1)
m1(t2)
m1(t3)

 =

α0(t1) α1(t1) α2(t1)
α0(t2) α1(t2) α2(t2)
α0(t3) α1(t3) α2(t3)


 Tr{Q1ρ(0)}

Tr{L∗[Q1]ρ(0)}
Tr{(L∗)2[Q1]ρ(0)}

 (19)

Since the functions {α0(t), α1(t), α2(t)} are linearly inde-
pendent one can agree that if we select three different non-
zero time instants such that t1 , t2 , t3, then the matrix
[αk(t j)] must be invertible. It implies that the measurement
results {m1(t1),m1(t2),m1(t3)} can be translated into a set of
scalar products:{

Tr{Q1ρ(0)},Tr{L∗[Q1]ρ(0)},Tr{(L∗)2[Q1]ρ(0)
}
.

The very same measurement procedure, which must re-
sult in a matrix equation analogous to (19), can be performed
for the observable Q2. Triple measurement of Q2 at distinct
time instants yields a set of the scalar products:{

Tr{Q2ρ(0)},Tr{L∗[Q2]ρ(0)},Tr{(L∗)2[Q2]ρ(0)
}
.

Finally, a single measurement of the average value of Q3
and Q4 at time instant t = 0 provides another two scalar prod-
ucts: {Tr{Q3ρ(0)},Tr{Q4ρ(0)}.

One can check numerically that the operators:{
I3,Q1,L

∗[Q1], (L∗)2[Q1],Q2,L
∗[Q2], (L∗)2[Q2],Q3,Q4

}
constitute a spanning set (they are all linearly independent),
which means that they span the space B∗(H).

The spanning criterion is the necessary and sufficient con-
dition for the ability to reconstruct the initial density matrix
of a qutrit subject to laser cooling. This condition is satisfied
for the observables defined in the theorem 4, which can be
observed numerically by using the software Mathematica 11.

In other words, the operators:{
I3,Q1,L

∗[Q1], (L∗)2[Q1],Q2,L
∗[Q2], (L∗)2[Q2],Q3,Q4

}
constitute a quorum, i.e. they span the space to which ρ(0)
belongs. Therefore, the scalar products that one can calculate
from the measurement results can be considered a complete
set of information. Thus, the measurement procedure, which
utilizes only 4 distinct kinds of measurement, provides 8 in-
dependent pieces of information which are sufficient for the
density matrix reconstruction. �

The theorems 3 and 4 provide a complete description of
the quantum tomography scheme. One knows exactly what
steps should be taken in order to compute the unknown den-
sity matrix.

The results are in accord with current trends in quantum
state tomography where a lot of attention is paid to the meth-
ods which aim to reduce the experimental effort, e.g. [18,19].
If one can access the knowledge about dynamics of the sys-
tem encoded in the generator of evolution, it seems more con-
venient to perform repeatedly the same kind of measurement
(over distinct copies of the system) rather than develop a large
number of different experimental setups.

3 Summary

In this paper we presented a complete quantum tomography
model for qutrits subject to laser cooling. The stroboscopic
approach was applied to determine the optimal criteria for
density matrix reconstruction. It was demonstrated that one
can reduce the number of distinct observables by 50% pro-
vided the knowledge about evolution is applied. The alge-
braic structure of the observables was presented along with a
detailed description of the scheme. Dynamic methods of state
reconstruction appear to be very practical since they allow to
retrieve the initial density matrix in the most economical way,
by minimizing the number of distinct measurement setups.

The article indicates a link between quantum state tomog-
raphy and laser cooling. Both topics play a substantial role in
the field of quantum communication. The ability to recon-
struct the quantum state from measurements is crucial to de-
termine the efficiency of quantum communication protocols.
Whereas atoms subject to laser cooling are often utilized to
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encode quantum information. The dynamic quantum tomog-
raphy scheme presented in this article combines these two
lines of research.

The current work can be extended in the future research
by studying the problem of quantum state tomography for
systems subject to laser cooling with more than three en-
ergy levels. This task requires advanced algebraic methods
to study the spectrum of the generator of evolution as well as
to determine its minimal polynomial.

Received on March 4, 2020
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To be part of a nucleus, the constituent nucleons lose part of the original area they have.
This can be measured by subtracting this area from the surface area of the nucleus.
This was measured and plotted against the respective nuclear binding energy. A straight
linear relationship was found for all elements, light or heavy. For a given element,
the nuclear binding energy is inversely proportional to the lost original area. Thus
meaning, that more area lost corresponded to a larger binding energy. β− decay occurred
to produce a nucleus with less loss of the nucleons’ original area. β+ decay occurred
to produce a nucleus with less Coulomb repulsion. The nucleus stability just follows a
trade-off between these two trends.

1 Introduction

Even though there is a very complete understanding of nu-
clear forces, they are so complicated that this knowledge can
not be used to construct a complete theory of the nucleus. In
other words, it is not possible to explain all nuclei proper-
ties based on the nuclear force acting between protons and
neutrons. However, there is a number of models, or rudimen-
tary theories with certain validity, which can explain a limited
number of certain properties. In between those theories, the
liquid drop model has been used with success and it has not
changed for more than sixty years [1]. Theoretically, the nu-
clear liquid drop model calculates the nuclear binding energy
by taking into account a number of interactions [2], i.e.

Eb = aV A−aS A2/3−aC
Z(Z − 1)

A1/3 −aA
(A − 2Z)2

A
±δ(A,Z) (1)

where the coefficients aV , aS , aC , aA and δ(A,Z) are determi-
ned empirically. The volume of the nucleus is proportional
to A, thus the term aV A. Nucleons on the surface of the nu-
cleus have fewer nearest neighbors. This can also be thought
of as a surface tension term. If the volume term is propor-
tional to A, the surface term should be proportional to A1/3.
The Coulomb term is due to the electric repulsion between
protons in the nucleus. The asymmetry term aA is due to the
Pauli exclusion principle and the pairing term which capture
the effect of spin-coupling. This formula gives the nuclear
binding energy with a positive sign for exothermic reactions.

Besides its original success and continuous efforts, this
model has not progressed more and still does not perform well
with light nuclei [1]. There could be a number of reasons
for that. Forcing a correlation between the nuclear binding
energy against the number of nucleons, A; or putting several
parameters to be fit against powers of A could be some of the
reasons.

Nowadays, there is plenty of data about the radiuses of
all isotopes for all elements, which are reported in [3]. Thus,
a better correlation between the nuclear binding energy and
the nucleons’ surface term could be achieved. In this paper,
a straight linear correlation was found between a geometrical

construct that measures how much surface area has been lost
by a given isotope’s nucleons (Ω) and its nuclear binding en-
ergy. Changes between parent and daughter nucleus’ Ω and
the Coulomb repulsion are sufficient to explain β decay, emis-
sion of protons, α particles and neutrons, as well as electron
capture. The nucleus stability appears as a consequence of a
trade-off between these two trends.

2 Experimental

All isotope radiuses were reported in [3]. The radiuses of the
proton and neutron used were: rp = 0.8783 fm [3] and rn =

1.21 fm [4], respectively. Assuming they are all spheres∗, the
formula created to compute how much of the nucleons spher-
ical surface area has been lost or gained to form the nucleus
was

Ω =
4π(r2

i − Zr2
p − Nr2

n)

Z + N
. (2)

Ω is the surface area difference between the isotope and its
components per number of nucleons, A = Z + N, in fm2, ri

is the radius of the isotope, Z is the number of protons and N
is the number of neutrons. The nuclear binding energy (mass
defect) was calculated by the following formula [5]

Eb = (Zme + Zmp + Nmn − mi)c2 (3)

where me, mp and mn are the masses of the electron, proton
and the neutron respectively and mi is the mass of the isotope.
The masses of the isotopes were reported in [6], the decay
mode, energy and yields were reported in [7]. The following
figures present the graphs of Ω versus the nuclear binding
energy for different elements. In the case of nuclear decays,
∆Ω is the difference between daughter and parent nucleus’ Ω.

3 Results

Fig. 1 shows that Ω for a given group of isotopes is inversely
proportional to its nuclear binding energy. It is also observed
that the rate of its change diminished as the number of protons
increase. In this way, helium presents the largest changes in

∗It is known the nucleus has different shapes. A sphere is one of them.
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Ω within smaller changes in nuclear binding energy, whereas
radon showed very small changes in Ω corresponding to lar-
ger changes in binding energy.

Fig. 2 presents Ω versus nuclear binding energy for He,
Li, Be and B isotopes. The isotope with a red circle are the
stable ones. It is clearly observed that as the binding energy
increases, the nucleons of a given isotope presents a more
negative Ω and requires more binding energy to form.

Beginning with two stable isotopes, 3He’s Ω is positive
because the addition of the area of two protons and one neu-
tron is not larger than the area of the isotope. Whereas 4He’s
Ω is negative because the addition of the areas of two protons
and two neutrons is larger than the area of that isotope. Once
6He formed, the stability is lost. Given that 6Li has a lower
mass than 6He, β− decays occur, liberating 3.51 MeV. This
process follows an Ω increase and therefore ∆Ω was 6.48 fm2

for this reaction.
In the same manner, 8He suffers β− decay and neutron

emission to 7Li, with 16% reaction yield. It liberates 8.63
MeV. This is also accompanied by the emission of one neu-
tron. Again, the daughter nucleus presents a more positive Ω

and therefore ∆Ω = 6.41 fm2 for this reaction.
8He also suffers β− decay to 8Li, with 83% yield. It liber-

ates 10.66 MeV and ∆Ω = 3.86 fm2.
7Be suffers 100% β+ decay into 7Li. Contrary to the previ-

ous trend, in this process the daughter presented a more neg-
ative Ω than the parent nucleus. But also, β+ diminished the
number of protons in the daughter nucleus, thus diminishing
the Coulomb repulsion. Contrary to previous β− decay, in this
case ∆Ω = -3.13 fm2.

9Li repeats 6He’s behavior. 11Li presents neutron emis-
sion to 10Be with 86.3% yield and β− decay to 11Be with 6%
yield∗. This is very similar to 8He transmutation. Finally,
10Be repeats 6He’s behavior. Table 1 summarizes the nuclear
processes observed in Fig. 2. It is clearly observed that β−

and neutron emission presents a positive ∆Ω, whereas β+ de-
cay shows a negative ∆Ω.

Fig. 3 presents Ω versus nuclear binding energy for O, F,
Ne, Na and Mg isotopes. A 100% of 17Ne transmutes to 16O
after β+ decay and a proton emission, producing 11.63 MeV.
∆Ω in this case was -1.88 fm2. A 100% of 19Ne transmutes
to 19F after β+ decay, producing 2.20 MeV and ∆Ω = -0.88
fm2. 20Na goes to 20Ne with 75% yield, producing 12.87
MeV and ∆Ω = -0.26 fm2. It also emits an alpha particle and a
positron to produce 16O with 25% yield, generating 8.14 MeV
and ∆Ω = -0.26 fm2. Table 2 presents the transitions observed
in Fig. 3. It is clearly observed that β+, proton and alpha par-
ticle emissions present a negative ∆Ω, whereas β− and 2β−

decays show a positive ∆Ω.
Fig. 4 presents Ω versus nuclear binding energy for Ar,

K, Ca, Sc and Ti isotopes. A 100% of 38K transmutes to 38Ar

∗This nucleus also experiences double and triple neutron emission, α
emission and fission in lower yields.

Fig. 1: Ω vs. binding energy for Noble gases. The red circles are the
stable isotopes.

Fig. 2: Ω vs. mass defect for He, Li, Be and B isotopes. The red
circles are the stable isotopes. The energy of the transitions (MeV)
were reported in [7].

after β+ decay, producing 4.89 MeV and ∆Ω in this case was
-0.28 fm2.

A 100% of 39Ca transmutes to 39K after β+ decay, pro-
ducing 6.52 MeV and ∆Ω = -0.28 fm2. 40K goes to 40Ca with
89.28% yield, producing 1.31 MeV and ∆Ω = 0.30 fm2. 40K
also suffers electron capture to 40Ar with 10.72% yield, pro-
ducing 0.48 MeV and ∆Ω = -0.24 fm2. A 100% of 41Ca trans-
mutes to 41K after β+ decay, producing 0.42 MeV and ∆Ω

= -0.32 fm2. Also, 41Ar suffers β− decay to 41Ca producing
2.49 MeV and ∆Ω = 0.21 fm2. Table 3 depicts the transitions
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Fig. 3: Ω vs. mass defect for O, F, Ne, Na and Mg isotopes. The red
circles are the stable isotopes. The energy of the transitions (MeV)
were reported in [7].

observed in Fig. 4. It is clearly observed that electron capture
presents a negative ∆Ω.

4 Discussion

4.1 Meaning of Ω and the Nuclear Liquid Drop Model

Ω was computed by using one dimension (the radius) and the
three dimensions (the volume). All elements kept a good lin-
ear relationship between Ω and the nuclear binding energy.
However, in the case of helium, either the linear relationship
was lost or the isotopes did not occur proportionally. For ex-
ample: 6He occurred between 3He and 4He. This relationship
is also very sensitive to the neutron radius. Overall, to keep
4He to land between 3He and 6He, rn needs to be at least 0.05

Fig. 4: Ω vs. mass defect for Ar, K, Ca, Sc and Ti isotopes. The red
circles are the stable isotopes. The energy of the transitions (MeV)
were reported in [7].

fm larger than rp. This may be an indication that the spherical
model is only partly applicable to helium. According to the
results presented in Fig. 1, it seems that a surface-based Ω is
a fundamental property of the isotopes of any element. Given
the nature of Ω, it is obvious that larger changes per nucleon
would occur in the lowest mass element, helium. This is be-
cause the number of nucleons is the lowest. As the number
of protons increase, Ω changes less because it is divided by a
progressively larger number of nucleons. In a given element,
Ω becomes more negative because the addition of the area
of the components of the nucleus is progressively larger than
its isotope’s area. This corresponds to an increasing nuclear
binging energy. Which can be interpreted as more energy is
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needed to compress the nucleons’ area into the nucleus. This
means that all nucleons share the nucleus surface.

This proportionality between the nuclear binding energy
and the surface lost to create the nucleus contrasts with the
semi-empirical mass formula (1). This is because Fig. 1 pres-
ents explicitly that the nuclear binding energy is just propor-
tional to the normalized nucleons’ surface area lost to form
the isotope. As will be discussed, the other important term
is the Coulomb repulsion. This makes (1) to have too many
terms to fit. This is because the underlying model for (1) is a
sphere-like structure with the neutrons and protons gathered
together but still separated as individual spherical particles.
The underlying model that Fig. 1 suggests is one where all
nucleons share the surface of the nucleus. Which means that
protons and neutrons are blended, fused.

4.2 Calculation of 8Be’s radius

Not shown in Fig. 2, 8Li transmutes to 8Be and this decays
into two 4He. 8Be is not shown in Fig. 2 because its radius
was not reported in [3]. An estimation of 8Be’s radius can be
accomplished by using the inverse proportion between Ω and
the other Be isotopes. Fig. 5 shows the result. 8Be nuclear
binding energy is 56.50 MeV. Thus, its Ω = -5.65 fm2 and the
calculated 8Be radius was 2.31 fm. This puts 8Be and 9Be at
the same Ω as shown in Fig. 5.

4.3 Why a decay occurs

Fig. 2 depicts the helium isotopes in more detail. Given that
2He is unstable, it seems that helium needs at least one neu-
tron for stability, which occurs in 3He. This suggests the neu-
tron is acting as a Coulomb repulsion insulator. This effect
continues in 4He. However, 5He and heavier isotopes become
unstable again. It seems that there is a limit to how much
area can be lost from the nucleons to form the nucleus, after
which a decay is needed to resolve the instability. The first
beta decay occurs between the more massive parent 6He and

Fig. 5: Ω vs. mass defect for B isotopes. The red circle is the stable
isotope.

the lighter daughter 6Li producing 3.51 MeV. As observed,
β− decay involves: to go from a heavier and lower Coulomb
repulsion, which has more nucleons’ surface area lost (NSL),
to a lighter and higher Coulomb repulsion, which has less
NSL. Therefore, the driving force for β− decay is to reduce
the NSL. This is why the ∆Ω for this reaction is positive.
This is a feature of β− decay and several examples where ∆Ω

is positive are shown in Tables 1, 2 and 3. In a more com-
plicated process with 16% reaction yield , 8He suffered neu-
tron emission and β− decay to transmute to 7Li. This process,
nevertheless, has the same features already described for β−

decay, i.e. in neutron emission ∆Ω is also positive. Another
example of a positive Ω is 11Li going to 10Be.

7Be is the first example of β+ decay to 7Li. As observed,
this process involves: to go from a heavier and higher Cou-
lomb repulsion nucleus, which has less NSL, to a lighter and
lower Coulomb repulsion nucleus, which has more NSL. This
is why the ∆Ω for this reaction is negative. Hence, the driving
force for β+ decay is to reduce the Coulomb repulsion. Other
examples can be observed in Tables 2 and 3.

Fig. 3 shows that: a) 17Ne transmutes to 16O with 100%
yield suffering β+ decay and proton emission and b) 20Na
transforms into 16O by the emission of an α particle and a
positron. In both cases, ∆Ω is negative. Therefore, these pro-
cesses are driven by the reduction of Coulomb repulsion.

Fig. 4 presents 40K suffering β−decay to 40Ca with 89.28%
yield. This overwhelms the β+ decay to 40Ar with 10.72%
yield. This reaction suggests that, in this case, to reduce the
nucleons’ surface area lost is more favorable than to reduce
its Coulomb repulsion.
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4.4 Nucleus stability

It seems that there is a trade-off between the NSL and Cou-
lomb repulsion for nucleus stability. In Fig. 2, 3He increases
the NSL until it reaches 6He. Then, β decay increases the
number of protons to produce 6Li. But also to reduce the
original NSL in 6He.

At the same Coulomb repulsion,6Li increases the NSL un-
til it reaches 9Li. Again, β decay diminished the NSL trans-
muting to 9Be. This element starts again to increase NSL up
to 10Be, which again β decayed to 10B to diminish NSL and so
on. Hence, every time the surface area per nucleon increases
to the unstable limit, β decay occurs to resolve the instability.
This produces continuous step decreases all through stable
nuclei. The process just described pass through different ele-
ments. For example, in Fig. 3 there is an increase in the NSL
in the series 16O:17O:18O. Then, there is a small NSL decrease
through continuous elements, creating the row 18O:19F:20Ne.
This is occurring even though the Coulomb repulsion is in-
creasing. The NSL increases in Ne again, following the series
20Ne:21Ne:22Ne.

Then, another small NSL decrease occurs through ele-
ments, forming the row 22Ne:23Na:24Mg with progressive in-
crements in Coulomb repulsion. This is followed by another
increase in the NSL in the series 24Mg:25Mg:26Mg. In Fig. 4,
the first small decrease in NSL is observed in the row 38Ar:
39K:40Ca. If we follow this row, the next element would
be 41Sc. This isotope is unstable because it has too much
Coulomb repulsion for the small NSL decrease trade-off. As
a consequence, the next stable nucleus occurs in an increase
of the NSL, producing 40Ar, which also is accompanied by a
significant decrease in Coulomb repulsion. From 40Ar a new
row of small decrease of the NSL but progressive increase
in Coulomb repulsion starts again, 40Ar:41K:42Ca. This will
end at 43Sc, which is unstable for the same reasons discussed
above.

Once 42Ca is reached, a new trend of increasing NSL
started, 42Ca:43Ca:44Ca. This makes a hole in stability for
41Ca. This isotope is not stable because 41K presented a more
favorable trade-off between the NSL and Coulomb repulsion.
The next row would be 44Ca:45Sc:46Ti. And the next series
46Ti: 47Ti:48Ti and so on.

46Ca however, appeared as an outlier in this trend. It could
be argue that it makes a row with 46Sc but it does not decay
to it. It looks like it is an island of NSL stability.

The evidence presented calls to build a model where all
nucleons share the surface of the nucleus.

5 Conclusions

The nuclear binding energy is directly related to the nucle-
ons’ surface area lost (NSL). A trade-off between the NSL
and the Coulomb repulsion is related to the nucleus stability.
The progressive increase of the mass in an element will pro-
duce different isotopes until its NSL reaches an upper limit

for its Coulomb repulsion. Then, β− decay or neutron emis-
sion occur to diminish the NSL and resolve the instability. If
there is not enough neutrons (electric insulation) for a given
Coulomb repulsion, β+ decay, proton or α emission occur to
diminish it.

Received on March 7, 2020
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The nuclear superdeformed bands in A∼ 190, A∼ 130 mass regions have been system-
atically analyzed by using the perturbed SU(3) limit of the interacting boson model. The
g-bosons have been taken into consideration and the SU(3) symmetry is perturbed by in-
troducing an interaction holding the SO(5) symmetry. A four parameters simple analytic
formula for the eigenvalue equation has been derived. The spin determines of the stud-
ied superdeformed (SD) bands are considered from our previous works. The improved
model parameters for each nucleus have been determined by operating a computer sim-
ulated search program so as to obtain a minimum root mean square divergence of the
evaluating gamma ray transition energies and the observed ones. With these adopted
model parameters the transition energies Eγ, the rotational frequencies ~ω, the kine-
matic J(1) and dynamic J(2) moments of inertia have calculated and are in accordance
with experimental data. The behavior of J(1) and J(2) as a function of ~ω have been
studied. The calculated Eγ have been used to investigate the anomalous ∆I = 2 stag-
gering by considering the five point formula of Cederwall staggering parameter which
represent the finite deviation calculation to the fourth order derivative of the transition
energies at a determined spin.

1 Introduction

It was known that the interacting boson model (IBM) [1] with
s and d bosons (sdIBM) is successful in studying the spectro-
scopic properties of low-lying collective states in heavy and
medium nuclei. This simple sdIBM allows the utilization of
the algebraic symmetries for approaching different type of nu-
clear spectra, known as dunamical symmetries U(5), SU(3)
and O(6) which geometrically describe vibrational, axially
deformed and gamma soft nuclei respectively. These three
symmetry limits form a Casten triangle [2], that represent the
nuclear phase diagram [3]. Transitions of shape phase be-
tween these vertices of Casten triangle were widely calcu-
lated along several isotopic chains [4–10]. Extended version
of IBM where one includes the g-bosons in addition to s and
d bosons to account for hexadecapole deformation of the nu-
cleus is receiving a considerable attension of several research
groups [11,12]. This hexadecapole deformation is the second
most important mulitipolarity in the description of nuclear
properties in addition to the quadrupole deformation. An in-
terest in this multipolarity is increased by the observation of
the ∆I = 2 energy staggering of superdeformed rotational
bands (SDRB’s) in some nuclei [13, 14], where nuclear spins
with rotational sequences splitting by two may divide into
two branches. Several theoretical attempts were made for the
possible explanation of this ∆I = 2 staggering phenomenon
[15–25]. To describe the dynamical symmetries of nuclear
states consisting of spdf bosons, it was found [26, 27] that
one must begin with a supersymmetric group chain U(15,10)

and ending at O(3) due to conservation of angular momen-
tum passing through SU(3) limit of the sdg IBM which is a
reasonable starting point to describe SD states in IBM [28].
The sdg IBM is well adopted for study of starting deformed
and SD nuclei [15, 16, 26] there is seven different limits of
SU(15) [29]. These limits can be splitted into two sets, the
first set consists of the three limits which include only partial
mixing between the bosons, however the second set consists
of four limits which include a mixing of all bosons. If we con-
sider the case of two s, d or g bosons, then the possible angu-
lar momenta are L = 03, 24, 3, 44, 5, 62, 8 where the exponent
indicates the multiplicity. The L = 3, 5 states are pure dg con-
figurations while the L = 8 states is pure g2. All other states
however are mixtures of s, d and g bosons. The difficulty with
performing sdg IBM computations for normal deformed and
superdeformed nuclei that have boson numbers N = 12 − 16
is that the core is too large, and the numerical methods (diag-
onalization) of the Hamiltonian is not possible. It was proved
that the mathematical properties of the SU(5)sdg can be de-
scribe the deformed nuclei [30] because by using the intrin-
sic coherent states [11] the potential energy surface (PES)
of the SU(5)sdg limit displays two minima. Since SDRB’s
are known in the second minimum of the potential well, this
property was used [31] to justify an applications of SU(5)sdg

limit in SD states. The group SU(3) which relates to the rep-
resentations [ f1, f2, f3] through λ = f1 − f2 and µ = f1 − f3 is
very important in studying the axial symmetric SDRB’s. The
one boson state belongs to the (λ, µ) = (4, 0) representation
while the two bosons states belongs to (7,0), (4,2), (0,4) rep-
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resentation. To appear the ∆I = 2 staggering, the SU(3) must
be broken down by adding the SO(5)sdg symmetry as a pertur-
bation. The aim of this work is to use this perturbed SU(3) of
sdgIBM to investigate the main properties of superdeformed
rotational bands in different nuclei and especially exhibit the
∆I = 2 staggering in their transition energies.

2 Outline of the model

The states of SD bands can be classified in framework of su-
persymmetric group chain as:

U(m, n) ⊃ UB(m) ⊗ UF(n) ⊃ ... ⊃ S OB+F(3) ⊗ S UF(ǹ) ⊃ O(3)
↓ ↓ ↓ ↓ ↓ ↓

[N] [NB]m [NF]n L S I

The notation under those of groups are the corresponding
irreducible (irrep) representation. The particles total number
N = NF + NB with NF and NB the fermion and boson num-
bers respectively. L is the effective core angular momentum
and S is the total pseuduspin and I is the total spin of the nu-
cleus. m is determined by the constituent of bosons, while
n is determined by the single particle configuration of the
fermions and ǹ is the total pseudospin. Since the bosons to
describe positive parity SD states should be s, d, g bosons
[17, 20, 22] and p,f bosons are essential to show negative par-
ity states [27], the space spanned by the single boson states is∑
`(2` + 1) = 1 + 3 + 5 + 7 + 9 = 25 dimensions. So that, we

have the group chain for the boson part
Usdgp f (25) ⊃ Usdg(15) ⊗ Up f (10) ⊃ S Usdg(3) ⊗ S Up f (3) ⊃ S U(3) ⊃ O(3)

↓ ↓ ↓ ↓ ↓ ↓ ↓

[NB] [Nsdg] [Np f ] (λ, µ)sdg (λ, µ)p f (λ, µ) I

The law-lying positive parity states are from the Nsdg bosons
only, while negative parity states are one pf boson coupled
states with Nsdg = N − 1 sdg bosons. There are also negative
parity states formed by coupling odd number of pf bosons
with residual sdg bosons and states of positive parity formed
by even number of pf bosons with the sdg bosons. Here
NB = Nsdg + Np f with Nsdg = 0, 1, 2, ....,N physically N is
the number of positive parity bosons. All the irres can be
determined with the branching rules [14] of the irres reduc-
tion. The reductionS U(3)sdg⊗S U(3)p f ⊃ S U(3) can be done
in standard Young diagram method [10] and the reduction
S U(3) ⊃ O(3) is the Elliott rule [11]. We notice that for the
positive parity states the results of the sdgIBM are still valid.
The interaction Hamiltonian of the nucleus corresponding to
the above chain takes the form

H = εC1[U(15)] + kC2[S U(3)] + cC2[O(3)] (1)

in which Ck[G] is the k-order Casimir operator of the group
G. The energy of the states can be formulated as

E(I) = E0 + εN + k[λ2 + µ2 + λµ + 3λ + 3µ]
+CI(I + 1) (2)

the C2 [O(3)] operator gives the rotational structure. In
varaible moment of inertia model [32], the moment of iner-
tia is spin dependent, such that as I increases, the moment
of inertia increase due to the antipairing effect. Therefore,
Hamiltonian equation (1) can be written as

H = εC1[U(15)] + kC2[S U(3)]

+C0
C2[O(3)]

1 + f1C2[O(3)] + f2(C2[O(3)])2
(3)

where the terms with f1 and f2 take into account many-body
interactions which induce antipairing driving and pairing
damping effects on the moment of inertia. The energy of the
state I in a band considering only the relative excitation of the
states in a rotational band is given by

E(I) = C0
I(I + 1)

1 + f1[(I + 1)I] + f2[(I + 1)I]2 (4)

To describe the superdeformed rotational bands, we break
SU(3) symmetry by adding the symmetry S Osdg(5) as a per-
turbation to the Hamiltonian. Therefore, the excited energy
of the state of positive parity with spin I in SD band is thus
given by

E(I) = B[τ1(τ1 + 3) + τ2(τ2 + 1)]

+
C0

1 + f1[(I + 1)I] + f2[(I + 1)I]2 I(I + 1) (5)

The (τ1, τ2) is the irrep of SO(5) group. In practical τ1, τ2
being fixed with the branching rules of the irrep reduction
as [21–24]

(τ1, τ2) = ( I
2 , 0) if I = 4k, 4k + 1 (k = 0, 1, 2, ...)

(τ1, τ2) = ( I
2 − 1, 2) if I = 4k + 2, 4k + 3 (k = 0, 1, 2, ..)

3 Analysis of ∆I = 2 staggering in transition energies in
SD bands

In framework of collective model [33], the rotational
frequency ~ω, the kinematic moment of inertia (J(1)) and the
dynamic moment of inertia (J(2)) calculated from γ-ray tran-
sition energies for SDRB’s are given from the following def-
initions

~ω =
1
4

[
Eγ(I + 2→ I) + Eγ(I → I − 2)

]
(MeV) (6)

J(2) =
4

Eγ(I + 2→ I) − Eγ(I → I − 2)
(~2MeV−1)

(7)

J(1) =
2I − 1

Eγ(I → I − 2)
(~2MeV (−1))

(8)
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Table 1: The adopted best model parameters C0, B, f1, f2 obtained from the fitting procedure for the studied SD bands. The bandhead spin
I0 and the experimental lowest transition energy Eγ(I0 + 2→ I0) for each SD is also given.

SD band I0 C0 B f1 f2 Eγ

(~) ~−2 keV keV ~−2 ~−4 (keV)
194Tl(SD1) 14 0.503298E+01 0.18912E-02 0.326365E-03 -0.34134E-03 268.00
194Tl(SD3) 12 0.522016E0+1 0.37473E-01 0.401374E-04 -0.39907E-08 240.50
194Tl(SD5) 10 0.492810E+01 0.36833E-01 0.307779E-04 -0.42746E-08 187.90
130Ce(SD2) 24 0.909181E+01 -0.34824E-02 0.171564E-04 -0.50224E-08 841.00
132Ce(SD1) 30 0.647195E+01 -0.13947E-01 -0.299066E-04 0.34647E-10 808.55
132Nd(SD1) 40 0.419310E+01 0.16107E-01 -0.547523E-04 -0.11468E-10 797.00
136Sm(SD1) 30 0.640396E+01 0.51834E-03 -0.111011E-03 0.17709E-07 888.00

Fig. 1: The calculated results of the kinematic J(1) (open circles) and
dynamic J(2) (solid curves) moments of inertia plotted as a function
of rotational frequency ~ω for the studied SD bands and the compar-
ison with experimental data for J(2) (closed circles with error bars)

Fig. 2: The calculated ∆I = 2 staggering quantity ∆4Eγ obtained by
the five point formula as a function of spin for the studied SD bands.
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The anomalous ∆I = 2 staggering phenomenon was
found in several SD bands [17,18]. Sequences of states which
are differing by four units of angular momentum displace rel-
ative to each other was shown in superdeformed rotational
bands. That is, the SD band can be seen as two sequences of
cases with values of spin I + 4n and I + 4n + 2(n = 1, 2, 3, ...),
respectively. This is commonly called ∆I = 4 bifurcation, be-
cause the bands divide into two branches with levels differing
in spin by 4~. To explore this ∆I = 2 staggering, the devia-
tion of the γ−ray energies from a smooth reference ∆4Eγ(I)
was determined by Cederwall [12], by calculating the finite
difference approximation of the fourth order derivation of the
γ−ray energies Eγ at a given spin I by

∆4Ere f
γ (I) = 1

16

[
Eγ(I − 4) − 4Eγ(I − 2)

+6Eγ(I) − 4Eγ(I + 2) + Eγ(I + 4)
] (9)

with Eγ(I) = Eγ(I)− Eγ(I − 2). The formula (9) contains five
energies of consecutive transition and is denoted by the five
point formula.

4 Numerical calculations and discussion

For each band of our studied SDRB’s, the spin of the band-
head I0 is taken from our previous works [19–25]. The model
parameters C0, B, f1, f2 are determined by using a computer
simulated search program in order to obtain a minimum root-
mean square (rms) deviation of the calculated transition ener-
gies Ecal

γ (I) from the experimental one Eexp
γ (I), we employed

the common definition of χ

χ =
1
N

√√√ N∑
i=1

∣∣∣∣∣∣Eexp
γ (Ii) − Ecal

γ (Ii)

δEexp
γ (Ii)

∣∣∣∣∣∣
2

(10)

where N is the number of the data points entering into the
fitting procedure and δEexp

γ (Ii) are the experimental errors in
γ−ray energies. Table(1) shows the predicted bandhead spins
and the best values of the model parameters C0, B, f1, f2 for
each band. Also indicated in Table(1) are the lowest γ−ray
transition energies Eγ(I + 2 → I0). Using the adopted model
parameters, the transition energies Eγ, rotational frequencies
~ω, the kinematic J(1) and dynamic J(2) moments of inertia
of our selected SD bands are obtained. A very good agree-
ment between the calculated and the experimental values is
obtained which gives good support to the model. The kine-
matic J(1) and dynamic J(2) moments of inertia are plotted as
a function of rotational frequency ~ω in Figure(1) compared
to the experimental ones. In A∼190 mass region, J(1) val-
ues are found to be smaller than J(2) and J(2) exhibits a grad-
ual increases with increasing ~ω, while in A∼130 the values
of J(2) are smaller than that the corresponding values of J(1)

for all ranges of frequencies and J(2) mostly decrease with
a great deal of variation from nucleus to nucleus. Another
result in the present work is the observation of a ∆I = 2 stag-
gering effect in γ−ray energies Eγ(I + 2 → I) in the studied

SDRB’s. The the staggering pattern is illustrated in Figure(2)
where the staggering parameters ∆4Eγ(I) introduced by Ced-
erwall et al [14] defined as the fourth derivative of Eγ are
presented as a function of rotational frequency ~ω. A signifi-
cant zigzag has been observed the resulting numerical values
for each band are listed in Tables(2 and 3).

5 Conclusion

The SDRB’s namely 194Tl(SD1, SD3, SD5), 130Ce(SD1),
132Nd and 136Sm(SD1) are studied in the version of the per-
turbed SU(3) limit of sdgIBM with supersymmetry scheme
including many body interaction. The bandhead spins are
taken from our previous works while the model parameters
are adjusted by fitting procedure in order to minimize the rel-
ative root mean square deviation between experimental tran-
sition energies Eexp

γ and the calculated ones Ecal
γ . Excellent

agreement are given which gives good support to the pro-
posed model. Rotational frequencies, kinematic J(1) and dy-
namic J(2) moments of inertia are calculated and the evolu-
tion of J(1) and J(2) with ~ω are studied. The calculated Eγ

are used to investigate the occurrence of a ∆I = 2 stagger-
ing effect in the studied SDRB’s by using the fourth order
derivative of the γ−ray transition energies. A large amplitude
staggering pattern is found in all the studied SDRB’s.
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The Flyby Anomaly is one of the unsolved problems of current physics in that the
Doppler-shift determined speeds are inconsistent with expected values assuming the
validity of Newtonian gravity. We postulate that the Flyby Anomaly is a consequence
of the assumption that the speed of light is isotropic in all frames, and invariant in the
method used to measure the velocity of the space probes by means of the Doppler Effect.
The inconsistent anomalous values measured: positive, null or negative are simply ex-
plained relaxing this assumption. During space probe energy assistance maneuvers the
velocity components of the probe in the direction of the observer Vo are derived from the
relative displacement ∆ f of the radiofrequency f transmitted by the probe, multiplied
by the local speed of the light c′ by the Doppler effect: Vo = (∆ f / f ) c′. According to the
Céspedes-Curé hypothesis, the movement through variable gravitational energy density
fields produces slight variations of the refractive index n′ of space and therefore of the
speed of light c′ which leads to unaccounted corrections of the Doppler data that are
based on an invariant c. This leads to incorrect estimates of the speed or energy change
in the flyby maneuver in the Earth’s frame of reference. The simple theory presented is
applied to hyperbolic flyby trajectories of Galileo I and the spacecraft NEAR accurately
reproducing the NASA measured values and thereby providing additional experimental
evidence for a variable speed of light dependence on the gravitational energy density of
space with fundamental consequences in astrophysics and cosmology.

1 Introduction

The Flyby Anomaly is an unexpected energy increase or de-
crease of spacecraft during flybys maneuvers of Earth and
other planets employed as gravitational assist techniques for
Solar system exploration. The anomalous measurements have
been observed as shifts in the S-band and X-band Doppler
and ranging telemetry. It has been observed in a number of
spacecraft: NEAR, Galileo I and II, Cassini, Rosetta I, II and
III, Messenger, Juno, Hayabusa, and EPOXI I and II [1–3].
The Flyby Anomaly has been included in a list of “unsolved
problems in physics”. We find very significant a comment of
Anderson et al. [2], that the same inconsistency in the Doppler
residuals which lead to the velocity anomaly are found in the
ranging data, as we believe both can be explained by the the-
ory developed here.

A large number of papers have been advanced in attempts
to explain the anomalous, and at times inconsistent, measure-
ment results of the very small, but significant, unaccounted
speed and energy change experienced by spacecraft during
maneuvers to increase or decrease its relative energy.

A comprehensive review of anomalous phenomena ob-
served in the solar system was published by Lämmerzahl et al.
(2006) [4] which includes prominently the Flyby Anomaly.
It lists numerous possible causes of the anomaly. It reaches
the conclusion, in this respect, that none of them can ex-
plain the observed measurements. “New physics” has been
attempted by postulating variants of gravitational theories [5–
9], or modification of inertia [10], and also the possible influ-

ence of halos of dark matter [11].
More conventional causes that have been considered in-

clude: The effect of Earth oblateness which is known to pro-
duce perturbations of orbiting spacecraft. Hence a possible
cause of the Flyby Anomaly might be the non spherical mass
distribution of the oblate Earth. An unsuccessful attempt has
been made by K. Wilhelm and B.N. Dwivedi (2015) [12] to
explain the anomalous Earth flybys of several spacecraft on
the basis of asymmetry of the mass distribution of the Earth
causing an offset of the effective gravitational centre from the
geometric centre.

The possibility of electromagnetic forces acting between
a charged probe and the Earth’s magnetic fields has been exa-
mined [13], also the influence of the Earth high atmosphe-
re [14] or the emission of thermal energy from the space-
craft [15]. However, to this date none of the above adequately
explains the cause of the anomaly.

A light speed anisotropy hypothesis is used by R.T. Cahill
to argue that the Doppler-shift determined speeds are incon-
sistent with expected speeds, and hence affect the measure-
ment of the probe during flyby [16]. Cahill revisits the Mi-
chelson-Morley experiment controversy citing numerous new
interferometer results which take into account the effect if the
medium that light transverses in these experiments (e. g. gas,
coaxial cable or optical fiber). He points out that speed ano-
malies are not real and are actually the result of using an
incorrect isotropic light speed relationship between the ob-
served Doppler shift and the speed of the spacecraft.
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An empirical formula that adequately predicts the flybys
measured up to 2005 was published by Anderson et al. [1, 2]
using all likely variables in the problem. The empirical for-
mula developed by Anderson et al. did not fit later anomalous
flybys. However, a modification by Jouannic et al. (2015) [3]
was able to predict the new data. From the conclusions of this
work we read that “This could signify that it (the anomaly) is
caused by a force related either to mass, altitude, or both”. In
this paper we show that indeed, planet mass and distance from
the planet, which are some of the important variables in de-
termining the gravitational energy density of space and hence
of the local index of refraction of quasi-empty space [17, 18]
produces minute variations in the local speed of light c′ due to
the Céspedes-Curé hypothesis [19], explained below. These
unaccounted variations of the local index of refraction lead
to small erroneous measurements of spacecraft velocity and
derived energy, based on a constant c, and is shown here to
be the cause of the Flyby Anomaly. Hence we coincide with
Cahill in that speed anomalies are not real but rather an ar-
tifact of how the speeds are measured with the Doppler ef-
fect. In this paper the fundamentals of the proposed Flyby
Anomaly explanation are presented with analytical relations
showing how the anomalous behavior can be accurately pre-
dicted. Numerical calculations are presented for the Galileo I
(December, 1990) Earth flyby and NEAR (January, 1998)
Earth flyby. We also show how the anomaly can be simply
predicted for any other spacecraft provided detailed informa-
tion of the measurement of entry and exit points are available.
Additionally we briefly discuss some of the fundamental con-
sequences of the Céspedes-Curé hypothesis for astrophysics
and cosmology.

2 Speed and energy measurement of spacecraft and the
Doppler effect

All remote velocity estimations of astronomical bodies use
the first order Doppler effect of light [20]. In spacecraft the
procedure employs a locally produced radio or light frequen-
cy f of accurately known value, or it could be a retransmitted
signal such as the case of Pioneer spacecraft [21]. The speed
component in the direction of the observer Vo is deduced from
the shift ∆ f of the radio or light frequency f , times the lo-
cal speed of light c′ by means of Vo = (∆ f / f ) c′. At the
present time (year 2020) it is conventionally assumed that the
local speed of light c′ at any point in the universe is isotropic
and identical to the speed of light c = 299792458 ms−1 mea-
sured in vacuum to high accuracy on the surface of the Earth.
Clearly, if there are small variations of c′ as a result of chang-
ing locations with differing gravitational energy density ρ,
as occurs during flyby maneuvers, the measured speed com-
ponent in the direction of the observer Vo, calculated with
the Doppler effect, assuming a constant c, will lead to erro-
neous estimations of the spacecraft speed and resulting en-
ergy change during the maneuver. Presently the speed of light

c is considered a fundamental constant being the base of the
definition of the meter, the length unit in the SI system of
units. However, a variable speed of light has been consid-
ered by a number of authors, notably including A. Einstein in
1907 [22] and in 1911 [23] and also by R. Dicke in 1957 [24].
In Einstein’s early work the speed of light was influenced by
the gravitational potential and a constant speed could not be
conceived in a gravitational field with variable strength. In
Dicke’s work he assumes a refractive index n of empty space,
different from 1, given by an expression where the value in-
creases with the gravitational field:

n = 1 +
GM
r c2 .

This proposal provides an alternative to the lensing pheno-
menon predicted by General Relativity Theory (GRT). There
are other more modern variable speed of light theories as re-
viewed by Magueijo J. in 2003 [25]. The Céspedes-Curé hy-
pothesis [19] is reminiscent of the early proposals of Einstein
and Dicke. It predicts that the speed of light is a function of
the local total energy density of space ρ according to (1), so
that if this hypothesis is correct, it could explain the space-
craft anomalous behavior derived by the Doppler effect.

c =
k
√
ρ
, (1)

where k is a proportionality constant and ρ is the sum of all the
sources of energy density including gravitational, ρG, electric,
ρE , magnetic, ρM , and any other that may be acting at the site.
Calculations [26] show that gravitational energy density is
much larger than electric or magnetic. And that the most im-
portant source of energy density by several orders of magni-
tude is the “Cosmic energy density” due to the far away stars
and galaxies which has a value of ρ∗ = 1.094291 × 1015 Jm−3

deduced by Céspedes-Curé [19], see Appendix A, and by
Greaves E.D. [18, 26, 27], see Appendix B. Compared to ρ∗,
the Sun’s ρS , the planet about which the flyby maneuver is
being done, ρp, and all other massive bodies in the vicinity
contribute in a very minor amount to the variable total energy
density at points along the trajectory of the spacecraft. Hence,
this is the cause of the minute amount found for the anoma-
lous values of velocity and energy of spacecraft performing
the flyby maneuver. The gravitational energy density ρ due to
a mass M at a distance r from its center is given by [19, see
page 163],

ρ =
1
2

GM2

4πr4 =
GM2

8πr4 , (2)

where G is the universal constant of gravitation. Using this
relation the gravitational energy density of any astronomical
mass can be calculated at any point in space located a distance
r from the mass center. The energy density of space ρB and ρE

associated with the presence of static magnetic B and electric
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E fields are given by [28]:

ρB =
1

2µ0
B2 , (2a)

and

ρE =
1
2
ε0 E2 , (2b)

where µ0 is the magnetic permeability and ε0 is the electric
permittivity of free space. With the usual definition of the in-
dex of refraction at a point in space, n′, as the ratio of the
speed of light of vacuum c on the surface of Earth to the
speed of light c′ at the point considered (conventionally in-
side a transparent material) n′ = c/c′ it is possible with the
use of (1) to obtain a relation for n′ which is only dependent
on values of the energy density of space at the point in ques-
tion and at the surface of the Earth:

n′ =
c
c′

=

√
ρ′
√
ρ

=

√
ρ′

√
ρ∗ + ρS + ρE

. (3)

Here ρ∗ + ρS + ρE is the gravitational energy density at the
surface of the Earth. The terms in the sum are: the energy
density due to the far away stars and galaxies ρ∗, the Sun, ρS

and Earth, ρE . The values shown in Table 1 and Fig. 1 in-
dicate that the contributions to the local gravitational energy
density due to nearby planets is small and negligible com-
pared to the all-pervading energy density ρ∗ due to the far
away stars and galaxies. Hence for a spacecraft in a flyby
maneuver the local value of the index of refraction n′ and the
local value of the speed of light c′ is very nearly equal to the
values on the surface of Earth. This leads to the fact that the
observed anomalous variations of the speed of spacecraft de-
duced by the Doppler effect are very small indeed. It also
shows that the anomalies are dependent on the mass of the
planet and on the distance to the planet as mentioned in the
conclusions of the work of Jouannic et al. in [3].

3 Calculation of the anomaly

In order to predict quantitatively the measured energy change
that shows an anomalous value it is necessary to have very
detailed information of the particular flyby event considered.
The information required is data that refers to the spacecraft
such as the radio frequencies used for transmission which
are used for determining the relative radial velocity via the
Doppler effect. The information related to the planet, about
which the maneuver takes place, is information that defines
the orbit of the spacecraft: the hyperbolic orbit parameters
of the flyby: a (semi-mayor axis) and e (eccentricity) and
the entry and exit velocity of the probe: V−∞ and V+

∞, the
measured anomalous velocity Vanom and, most important, the
points of entry and exit where the velocities were measured.
NASA determines the Flyby Anomaly with the Orbit Deter-
mination Program (ODP) of the Jet Propulsion Laboratory

Fig. 1: Gravitational energy density (Jm−3) as a function of distance
from the center of the Sun in AU (0 to 2.5 AU) due to the far away
stars and galaxies (top line ρ∗ = 1.094291×1015 Jm−3), ρS due to the
Sun (middle line) and ρE due to Earth (Line centered at 1 AU) [26].

(JPL) as well as other software at the Goddard Space Flight
Center and at the University of Texas [2]. These programs
incorporate all the physics mentioned above and the informa-
tion gathered by the Deep Space Network (DSN) during the
flyby. According to the hypothesis presented in this paper the
anomaly is due to errors committed due to sub-estimation or
over-estimation of the velocity calculated by the use of the
Doppler effect formula as explained previously. Below we
show how the anomaly can be calculated in reference to Earth
flybys. The same considerations apply to flybys about other
planets. From (3) we derive

c′ = c
√
ρ
√
ρ′
. (4)

The radial velocity of the spacecraft during the flyby is ob-
tained by the use of Vr = ∆ f / f c′ which with (4) gives

Vr = c′
∆ f
f

= c
∆ f
f

√
ρ
√
ρ′
, (5)

where the gravitational energy density ρ′ is a function of the
position of the spacecraft in its orbit and ρ is the gravitational
energy density on the surface of the Earth whose value is
ρ = ρ∗ + ρS + ρE with ρS and ρE calculated on the surface
of Earth. As the spacecraft nears the planet it moves into
varying values of ρ′ which according to (5) results in a sub-
estimation or over-estimation of the velocity. Likewise, as the
spacecraft leaves the vicinity of Earth and gets further away,
it travels into different values of the gravitational energy den-
sity ρ′ which according to (5) results in differing values of the
velocity. Important factors determining the value of ρ′ are the
radial distance to the center of the planet producing the energy

Eduardo D. Greaves, Carlos Bracho, and Imre Mikoss. A Solution to the Flyby Anomaly Riddle 51



Volume 16 (2020) PROGRESS IN PHYSICS Issue 1 (April)

Table 1: Values of the energy density of space at the surface of Earth produced by: the far away stars and galaxies, the mass of the Sun,
Earth, the Moon and other planets.

Source of energy
density

Symbol Energy density
due to source at

Magnitude
(Joules/m3)‡

Reference

Far away Stars
and Galaxies

ρ∗ Earth 1.094291 × 1015 Céspedes-Curé [19, p. 279]

Sun ρS Earth 1 AU 2.097 × 104 Greaves [17, 18]

Sun ρS @AU− 1 AU−ESI
† 2.150250 × 104 This work

Sun ρS @AU+ 1 AU+ESI
† 2.046034 × 104 This work

Earth ρE Earth surface 5.726 × 1010 Greaves [18]

Moon ρMoon Earth 6.57 × 10−1 Greaves [18]

Jupiter ρJup Earth 1.91 × 10−2 Greaves [18]

Venus ρVen Earth 2.14 × 10−5 Greaves [18]

Mars ρMar Earth 2.91 × 10−8 Greaves [18]

† ESI is the radius of Earth’s Gravitational Sphere of Influence: (929000 km) [29, 30].
‡ These values are deceptive due to the 1/r4 dependence of the gravitational energy density (2). The energy density of the Earth at its surface is 6 orders of
magnitude greater than the Sun’s. However, it decreases abruptly so that at a distance greater than 41 earth radii the energy density due to the Sun is higher.

assistance and the radial distance to the Sun. Hence, in order
to calculate exactly the anomalous energy change reported, it
is necessary to know the exact position of the spacecraft at the
point or points where its velocity was calculated in order to
establish the initial spacecraft energy and the point or points
where the velocity was finally calculated to establish the final
spacecraft energy. Also needed are the methods used for the
speed measurements such as the frequency used by the space-
craft in its transmission to the Earth tracking stations, and
whether it is a spacecraft transmission or an Earth sent-signal
retransmitted by the spacecraft. Such detailed information is
ordinarily not included in papers publicly available.

Examination of (5) shows that the anomaly is caused by
the square root term (SQR)

SQR =

√
ρ

ρ′
=

√
ρ

ρ∗ + ρS + ρE
. (6)

Here ρ and ρ∗ are constants while ρS and ρE are functions of
position, ρS is dependent on the radial distance to the center
of the Sun and ρE is dependent on the radial distance to the
center of Earth.

Let us consider ρS first, which is given by

ρS =
GM2

S

8πr4
S

. (7)

Here MS is the mass of the Sun and rS the radial distance
from the center of the Sun. In order to estimate the influence
of this term we calculate the value of ρS over the Earth’s grav-
itational Sphere of Influence, ESI, that is at a distance of one

AU from the Sun in the range of 1 AU ±ESI (plus or minus
the radius of the Earth’s Sphere of Influence). The values ob-
tained range from ρS = 2.150250×104 to 2.046034×104 Jm−3

as shown in Table 1. The variation over the Earth’s sphere of
influence is of the order of 5%. However, the values of the
variation of the gravitational energy density due to the Sun
are 5 orders of magnitude less than the energy density due to
Earth at its surface. But, as shown by calculations, they be-
come more important than the Earth’s energy density due to
the 1/r4 term in (2) as discussed below.

In (6), the value of ρE is given by

ρE =
GM2

E

8πr4
E

(8)

with ME the mass of the Earth and rE the radial distance from
the center of Earth.

Taking these considerations into account in (5) we can
write an expression for the corrected speed of the spacecraft
which takes into account the change of the index of refraction
of space due to the variation of the space gravitational energy
density along the spacecraft trajectory:

Vr = c
∆ f
f

√
ρ

ρ∗ + ρS + ρE

= c
∆ f
f

√√ ρ

ρ∗ +
GM2

S

8πr4
S

+
GM2

E

8πr4
E

.

(9)

Numerical calculations show that the influence of the third
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term of the denominator, namely the variation of the Earth’s
gravitational energy density is important only at small dis-
tances above the surface of the Earth and it becomes very
small at distances where a spacecraft is beginning its appro-
ach to the surface of the planet during a flyby.

4 Calculation of the Flyby Anomaly in three cases

To calculate the anomaly, we suppose that the speed of the
spacecraft is measured at two points: a point of entry into the
Earth’s sphere of influence where the speed is V−∞ and a point
of exit from the Earth’s sphere of influence where the speed
is V+

∞. If we ignore the change of c, the measured velocities
are given by:

V+
∞ = c

∆ f +

f
and V−∞ = c

∆ f −

f
.

Hence the anomaly measured by NASA is given by

An = V+
∞ − V−∞ =

c
f
(
∆ f + − ∆ f −

)
. (10)

At each of these points a correct measurement, one that takes
into account the change of the index of refraction, as we pro-
pose in this paper, must be done with (9), with V−∞ the ob-
served Doppler shift at the point of entry, and with V+

∞ the
observed Doppler shift at the point of exit as shown below:

V+
∞ = c

∆ f +

f

√√√ ρ

ρ∗ +
GM2

S

8π
(
r+

S

)4 +
GM2

E

8π
(
r+

E

)4

(11a)

V−∞ = c
∆ f −

f

√√√ ρ

ρ∗ +
GM2

S

8π
(
r−S
)4 +

GM2
E

8π
(
r−E
)4

(11b)

In the Earth’s coordinate system, energy is conserved, so that
if the correct equations (11a) and (11b) are used, then mea-
surements should give: V+

∞ − V−∞ = 0 that is:

0 = c
∆ f +

f

√√√ ρ

ρ∗ +
GM2

S

8π
(
r+

S

)4 +
GM2

E

8π
(
r+

E

)4

−

− c
∆ f −

f

√√√ ρ

ρ∗ +
GM2

S

8π
(
r−S
)4 +

GM2
E

8π
(
r−E
)4

.

(12)

However, if the SQR terms are different, for (12) to be true
it requires that ∆ f + , ∆ f −, and hence measurements done
by NASA with (10) will show an anomaly. The anomaly is
contained in the difference of the SQR terms in (12). Since

V+
∞ = c

∆ f +

f
and V−∞ = c

∆ f −

f

are almost the same, both of the order of km/s differing by an
amount 6 orders of magnitude smaller, of the order of mm/s,

we can write the following relation to calculate the measured
anomaly:

Vanom = V∞
√√√ ρ

ρ∗ +
GM2

S

8π
(
r+

S

)4 +
GM2

E

8π
(
r+

E

)4

−

−V∞
√√√ ρ

ρ∗ +
GM2

S

8π
(
r−S
)4 +

GM2
E

8π
(
r−E
)4

.

(13)

Numerical analysis of (13) shows it is possible to identify
three cases.

4.1 First case

The distances from the point of entry and the point of exit to
the Sun and to Earth are the same. (r+

S = r−S and r+
E = r−E).

In this case the two terms in the parenthesis of (13) are the
same and no anomaly will be detected (incoming and outgo-
ing points are symmetric with respect to the Sun and Earth).

4.2 Second case

In this second case entry point and the exit point are at dif-
ferent distances from the Sun but at the same distance from
Earth. It means that r+

S , r−S , hence:

GM2
S

8π
(
r+

S
)4 ,

GM2
S

8π
(
r−S

)4 ,

so that the SQR terms in (12) are different. For this relation
to be correct it requires that ∆ f + , ∆ f −. Hence if the speeds
are being measured with relations

V+
∞ = c

∆ f +

f
and V−∞ = c

∆ f −

f

as in (10) the flyby will certainly show an anomaly: V+
∞ , V−∞.

However, numerical calculations show that the anomalous
values in this case are very small and non measurable.

4.3 Third case

In this third case entry point and the exit point are at different
distances from the Sun and at different distance from Earth.
It means that, r+

S , r−S and r+
E , r−E . In this case the two terms

in the parenthesis of (13) are different. Hence if the speeds
are being measured with relations

V+
∞ = c

∆ f +

f
and V−∞ = c

∆ f −

f

as in (10) the flyby will certainly show an anomaly: V+
∞ ,

V−∞. Numerical calculations show that an anomaly will be
measured in the range of values reported, negative or positive,
with a value and sign that depends on the entry and exit points
used for measurement. We conclude that the anomaly is due
to neglect of the SQR terms in the calculation of the entry and
exit velocities derived from the Doppler flyby data.
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Table 2: Distances to the Sun and to Earth with calculated entry and exit points that predict, with (13), the measured Flyby Anomaly of the
Galileo 1 (December 1990) flyby and the NEAR (January 1998) flyby.

Galileo 1 NEAR
Entry point Exit point Entry point Exit point

Distance from Sun (m) 1.502803 × 1011 1.502831 × 1011 1.495630 × 1011 1.495950 × 1011

Distance from Earth (m) 1.7651 × 107 1.4864 × 107 7.2000 × 107 1.2200 × 107

Spacecraft Velocity (m/s) 8949 6851
Measured Flyby Anomaly (mm/s) 3.930 13.46
Calculated Flyby Anomaly (mm/s) 3.944 13.38
Difference (%) +0.40 −0.57

5 Results

In order to apply the theory described above to predict the
anomaly measured for any given spacecraft flyby it is neces-
sary to introduce into (13) the values of the parameters of the
spacecraft maneuver, namely the spacecraft speed at the entry
point and the distances to the Sun and to Earth of the incom-
ing and outgoing points. The spacecraft speed is available,
however, the required information of entry and exit points has
not been possible to obtain. Only the right ascension and dec-
lination of these vector directions are given by Anderson et
al. [2]. With these angular parameters we have defined vec-
tors, from the Earth, for incoming and outgoing directions as
well as from the Earth to the Sun’s direction along its right
ascension and declination on the day of the Flyby. Then with
calculated tables of numerical values of the SQR terms of
(13) for varying entry and exit points along the incoming and
outgoing vectors (i.e. values of r+

S , r−S and of r+
E , r−E) excluding

the immediate distances (1h 40min before and after the clos-
est approach location) we have arrived at likely entry and exit
points that closely predict the observed NEAR (January 23,
1998) flyby. For Galileo I (December 8, 1990) flyby the in-
coming and outgoing points were calculated along likely in
and out points not specifically along the actual incoming and
outgoing vectors. Results of these calculations are shown in
Table 2.

6 Possible measurement of ρ∗ with the Flyby Anomaly

Based on the Flyby Anomaly explanation given above, it is
possible to use the experimental results of measured flyby
anomalies in spacecraft to calculate, in an independent way,
the gravitational energy density values that lead to the mea-
sured anomalies. Since the gravitational energy density is
composed of the contribution due to the planets and the Sun,
which can be accurately calculated with (8), the contribution
due to the far away stars and galaxies, ρ∗, could be solved as
a single adjustable parameter, and calculated. This could be
done by programming the theory presented here in the Orbit
Determination Program of the JPL, or by an accurate knowl-
edge of the points of entry and exit in the hyperbolic trajectory

where the measurements were made that produced a Flyby
Anomaly. This measurement of ρ∗, the gravitational energy
density of the far away stars and galaxies, would provide an
additional estimation of its value besides that given by Jorge
Céspedes-Curé [19, page 279], ρ∗ = 1.094291 × 1015 Jm−3,
obtained using starlight deflection measurements during total
sun eclipses, see Appendix A, or that given by Greaves [26]:
ρ∗ = 1.0838×1015 Jm−3, obtained using NASA accurate mea-
surement of the Pioneer Anomaly when Pioneer 10 was at
20 AU, see Appendix B.

7 Discussion

Eq. (2) assumes a spherical mass distribution for the mass of
the Earth or Sun in the calculation of the gravitational en-
ergy density. It does not consider the possible influence of
the Earth’s oblate shape, which is known to affect orbiting
spacecraft and could affect hyperbolic orbits.

Estimation has been done of the magnitude of the mass of
Earth that deviates from spherical shape in order to calculate
to what extent this can affect the gravitational energy density
along the Flyby Anomaly trajectory. The calculation gives
that the non spherical mass is of the order of less than 0.337%
of the Earth mass. This amount influences the third term of
the denominator in (9) and quantities derived from it. How-
ever, the subtraction or addition of this mass to the mass of
Earth on the SQR term of (9) affects this term in less than the
tenth significant figure. This estimate implies that the mass
of Earth causing the gravitational quadrupole does not affect
the calculations based on the Céspedes-Curé hypothesis.

The hypothesis also predicts that ranging measurements
based on a constant value of c will be affected in the same
manner as the anomalous speed measurements based on the
Doppler data. Anomalous ranging is briefly mentioned by
Anderson et al. [2]. However, no numerical data of this ano-
maly has been provided. Perhaps due to the small signal-to-
noise ratio on the incoming ranging signal and a long integra-
tion time (typically minutes) that must be used for correlation
purposes [21, page 7].

We calculate the speed of light at the International Space
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Station to be
c′ = 299798845.6 ms−1,

that is 6387.6 ms−1 higher than c on the Earth’s surface, about
0.002% [31]. Ranging measurements based on a constant c
that is lower than is predicted by this theory will be in slight
error. And the error will be in the same manner as the anoma-
lous speed measurements. The Cépedes-Curé hypothesis pre-
dicts the anomalous measurements of the Pioneer spacecraft
without any adjustable parameter [27]. There are reports that
that the Pioneer Anomaly was resolved as a thermal effect on
papers by Rievers and Lammerzahl [15], Turyshev et al. [32]
and Francisco et al. [33]. These reports do complex parame-
terized models of the thermal recoil to explain the anomaly.

We have reasons to doubt this explanation:
First. A detailed paper about the Pioneer Anomaly (55 pages
in Phys. Rev. by Anderson et al. 2002) [21] clearly argues
(see sections VIII. B, C and D, pages 32–35) that thermal
recoil cannot account for the anomaly,
Second. Rievers and Lämmerzahl [15] do a very complex
computational model of the spacecraft constructing all parts
of the spacecraft internal and external in finite elements; as-
signing thermal, and radiative properties for each component,
(absorption, reflection and emittance coefficients) in order to
arrive at their resulting thermal radiation pressure.

Turyshev et al. [32] do a complex parameterized model
for the thermal recoil force of the Pioneer spacecraft with sev-
eral adjustable parameters. In particular the two adjustable
parameters of Eq. (1) on page 2 predict the anomaly. How-
ever, any other parameters would negate the thermal origin of
the anomaly.

Francisco et al. [33] use different modeling scenarios re-
sulting in different acceleration values and choosing the 4th

one with which a Monte Carlo modeling procedure is used to
arrive at a value of the reported acceleration of the Pioneer 10
at an instant 26 years after launch.

All of these reports imply models with numerous adjusta-
ble parameters which could disprove the thermal origin of the
anomaly.
Third. If the anomalous acceleration towards the sun de-
pended on the thermal emission of heat from the RTG, Plu-
tonium 238Pu power sources, with a half life time of 87.74
years, the anomalous acceleration should decrease in time at
the same rate, however, this is contrary to the almost flat long
term behavior observed [21].
Forth. An anomaly similar to the Pioneer spacecraft was de-
tected in Galileo spacecraft (see Section V. C, page 21) with
a value of (acceleration) of (8±3)×10−8 cm/s2, a value simi-
lar to that from Pioneer 10, with additional evidence based on
ranging data, and in the Ulysses spacecraft (see Section V. D,
page 21) Ulysses was subjected to an unmodelled accelera-
tion towards the Sun of (12 ± 3) × 10−8 cm/s2, in Anderson
et al. [21]. Both spacecraft have completely different geome-
tries and the thermal recoil theory is not applicable to them.

There are some unexplored fundamental aspects to the
Céspedes-Curé hypothesis. The elementary relation (4) that
is deduced for the relative speed of light c′ measured on a
space site relative to c on Earth, coupled to Einstein’s relation
for the rest mass E = mc2 leads to an analytical relation that
predicts Mach’s principle, i.e. that mass and inertia depend on
the far away stars and galaxies. Likewise, the Céspedes-Curé
Hypothesis coupled to the electromagnetic expression for the
speed of light, c = 1/

√
ε0µ0 leads to a direct relationship be-

tween the electromagnetic and gravitational forces.

8 Conclusions

The values shown in Table 2 indicate that the Flyby Ano-
maly can be accurately predicted by the theory presented in
this work. This theory is capable of explaining qualitatively
and quantitatively the anomaly, both, the measured positive,
null and negative values. To calculate exact values of the
anomaly of a spacecraft it is necessary to know the incoming
and outgoing points where the spacecraft velocity was mea-
sured. The precise calculation of the Flyby Anomaly provides
additional confirmation of the Céspedes-Curé hypothesis, that
c the speed of light depends on the gravitational energy den-
sity of space as defined by (1) namely:

c′ =
k
√
ρ′
.

The evidence presented in this work for the Céspedes-
Curé hypothesis has profound consequences in the current
cosmology theories since it implies a revision of all astro-
nomical measurements of velocity based on the Doppler, blue
and red shifts, of stars and galaxies. These have importance
in determination of matters such as the Hubble constant, the
expansion of the universe, the flat rotation curve of galax-
ies (which gave birth to the theory of dark matter) and the
extreme values of the redshifts of very far away galaxies (so
called inflation) which gave birth to the theory of dark energy.
These redshifts do not follow the linear relation proposed by
Hubble but rather seem to imply an accelerated rate of ex-
pansion. The theories that follows from this hypothesis, the
evidence and attempts to gather evidence for it and some of
its consequences on current physics are explored in [18] and
in the unpublished work mentioned above in [31].

Appendix A. Supporting data (Céspedes-Curé)

See Table 3: Data of starlight deflection measurements, re-
ported by P. Merat [34] (δ in seconds of arc) at different dis-
tances from the Sun during total eclipses, used by J. Céspe-
des-Curé [19, see page 279], to calculate ρ∗ = 1.094291 ×
1015 Jm−3, the energy density of space due to far-away stars
and galaxies.

Appendix B. Supporting data (Greaves)

Data used by E. D. Greaves in [26] for the arithmetic to cal-
culate ρ∗ = 1.0838 × 1015 Jm−3, the energy density of space
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Table 3: Data of starlight deflection measurements, reported by P.
Merat [34] (δ in seconds of arc) at different distances from the Sun
during total eclipses, used by J. Céspedes-Curé [19, see page 279],
to calculate ρ∗ = 1.094291 × 1015 Jm−3, the energy density of space
due to far-away stars and galaxies.

Row r (Ro Units) δ ± ∆δ (Merat)

1 2.09 1.02 ± 0.11
2 3.12 0.67 ± 0.08
3 4.02 0.58 ± 0.04
4 5.10 0.40 ± 0.07
5 6.06 0.41 ± 0.04
6 7.11 0.31 ± 0.04
7 7.84 0.24 ± 0.04
8 9.51 0.20 ± 0.06
9 11.60 0.16 ± 0.03

due to far-away stars and galaxies.
The calculation uses the following equations from [26]:

Eq. (8) ρ∗ =
ρSfar + ρEfar − n′2

(
ρS 1AU + ρE

)
n′2 − 1

, and

Eq. (19) n′ = 1 −
ED c

2 fe G
(

MS

r2
S

+ ME

r2
E

) ,
where: (numerical values in SI units)

n′, index of refraction of space at 20 AU (comes out to
0.999973567943846),

ρ∗, energy density of space due to far-away stars and galax-
ies,

ED, a steady frequency drift of 5.99 × 10−9 Hz/s from the
Pioneer 10 spacecraft [21, page 20],

fe = 2295 MHz, the frequency used in the transmission to
the pioneer spacecraft [21, page 15],

c = 299792458.0 m/s. Speed of light on Earth at surface,
G = 6.67300 × 10−11 m3kg−1s−2, Newton’s universal con-

stant of gravitation,
MS = 1.98892 × 1030 kg, mass of the Sun,
ME = 5.976 × 1024 kg, mass of the Earth,
1 Astronomical Unit (AU) = 149 598 000 000 m.

The distances rS and rE are the distances from the spacecraft
at 20 AU (20 AU from the Sun, 19 from Earth) to the center
of the Sun and Earth respectively. To calculate Eq. (8) of [26]
use is made of the energy density ρi given by Eq. (4) also
of [26]:

ρi =
GM2

i

8πr4 ,

where r is the distance from the centre of the Sun or Earth
to the point where the energy density is being calculated as
follows:

For the Earth’s surface: rE = 63781.40 m, radius of Earth,
For the Sun at 1 AU: rS = 149598000000 m,
For the Sun at 20 AU: Twenty times the previous value used

to calculate ρSfar,
For the Earth at 20 AU: radius of earth + 19 times 149 598

000 000 m used to calculate ρEfar.

All values were calculated with Microsoft Office Excel 2003
which uses 15 significant digits of precision.
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A brief review article gives examples of using the physical model based on the mech-
anistic interpretation of J. Wheeler’s geometrodynamics. The examples show the need
to consider gravity in the microworld. The latter is based on the balance of magnetic
and gravitational forces.The gravitational constant was used in calculating the masses
of quarks, neutrinos, proton size, coupling constants, etc. A new deviation of 28 GeV
in the physical experiments of CMS Collaboration was confirmed by calculations. The
unusual value of s- quark and b- quark masses is explained.

1 Introduction

In the Standard Model of Fundamental Interactions (SM),
gravitational forces are not taken into account. However, the
model based on the geometrodynamics of John Wheeler
(Wheeler John Archibald) has proved the need for introduc-
ing gravitational forces into the microworld.

In the mechanistic interpretation of J. A. Weheler’s geo-
metrodynamic, charged microparticles are singular points on
a non-simply connected two-dimensional surface of our
world, connected by a “wormhole” or a drain-source current
line in an additional dimension, forming a closed contour. But
“wormholes”, by necessity and by virtue of physical analogy
in their mechanistic interpretation, can only be vortex current
tubes, where the charge is in the “coulombless” form pro-
portional to the medium momentum along the vortex current
tube, spin, respectively, to the angular momentum relative to
the longitudinal contour axis, and the magnetic interaction be-
tween the conductors is similar to the forces acting between
the current tubes [1].

In this model, the electron size with mass me and radius re

is taken as a medium unit element, and then the contour mass
becomes proportional to its length. It is this hidden mass
and its motion that is responsible for gravity, charge, spin,
and magnetic interaction in the microworld. The introduction
of gravity into the microworld allows one to explain various
micro-phenomena and in some cases to calculate some im-
portant parameters quite accurately, using only fundamental
constants and an elementary mathematical apparatus.

2 On the structure of microparticles

Thus, microparticles are not point objects, but are likened to
vortex formations in an ideal fluid, which can reside in two
extreme forms — the vortex on the surface of radius rx along
the X-axis (let it be the analog of a fermion of the mass mx)
and the vortex thread under the surface in depth of radius r, of
the angular velocity v, and of the length ly, filling the current
tube of the radius re along the Y-axis (let it be the analogue of
a boson of the mass my).

In a real medium these structures oscillate, passing into
each other (oscillation of oscillators), where fermions retain

part of the bosonic mass, introducing a half spin. Note that
bosonic masses cannot in principle be stable, like their physi-
cal counterparts — vortex formations in a continuous medium
(if they do not lean on a phase boundary). The parameters of
the vortex thread my, v, r, ly for an arbitrary p+- e−-contour
were determined in dimensionless units of the electron mass
me, its classical radius re, and the speed of light c [2]:

my = ly = (an)2, (1)

v =
c1/3

0

(an)2 , (2)

r =
c2/3

0

(an)4 , (3)

where n is the main quantum number, a is the inverse fine
structure constant, while c0 is the dimensionless light velocity
c/[m/sec].

It is further shown particles themselves to be similar to the
contour and have their own quantum numbers ni, which deter-
mine, as it were, the zone of influence of these microparticles
with the size li = (ani)2. For the proton and electron ni are
0.3338 and 0.5777, respectively. A vortex tube of radius re

is filled spirally with a vortex thread; therefore, with extreme
“compression” and full filling, its length along the Y-axis is
shortened proportional to 1/r. In this case its compressed
length Lp = lyr coincides numerically with the boson contour
mass energy of units mec2, and then it is true:

Lp = lyr = myr = myv
2 =

c2/3
0

(an)2 . (4)

It is obvious that an arbitrary boson mass in the mass-
energy units will match of its own numerical value my only
when the vortex tube ultimate excitation’s case, wherein we
have r → re, v → c, and ni → 0.189 (in experiments at
high energie, for example). According to [2], the standard
contour bosonic mass my is c2/3

0 = 4.48 × 105 (in units of
me), which approximately corresponds to the summary mass
of W, Z-bosons. Therefore, it can be argued the vortex cur-
rent tube to be form by three vortex threads rotating around
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mx 6.10 × 106 2090 1 (4.4 ± 0.1) × 10−7

ni 0.189 0.334 0.577 1.643
rx 669 2090 6270 5.07 × 104

mk = Lp 1.02 1.80 3.10 8.83
n 4.88 3.64 2.77 1.643
ly = my 4.48 × 105 2.49 × 105 1.44 × 105 5.07 × 104

a common longitudinal axis. These threads are finite struc-
tures. They possess, by necessity, the right and left rotation;
the last thread (it is evidently double one) possesses summary
null rotation. They can be associated with the vector bosons
W+, W−, Z0.

This model assumes that a closed contour is created be-
tween charged particles in a region X (a p+- e−-contour, for
example); and only a temporary contour appears in a region
Y, when a case of the weak interaction occurs (when a pro-
ton absorbs an electron, for example). The temporary contour
then loses its charge (longitudinal momentum) and becomes
a one-dimensional neutrino vortex tube, retaining spin. Since
current tubes (i.e. field lines of some field) are treated as mate-
rial objects, there are gravitational and magnetic interactions
between them.

For a counter-currents closed contour the characteristic
contour size lk, which is the geometric mean of two linear
quantities, is derived. This size is based on the balance of
gravitational and magnetic forces written in the “Coulomb-
less” form [2]. Applied to the X-axis lk is:

lk = (lxrx)1/2 =

(
zg1 zg2

ze1 ze2

)1/2

(2πγρe)1/2 × [sec], (5)

where zg1 , zg2 , ze1 , ze2 , rx, lx are gravitational masses and
charges expressed through the mass and charge of the elec-
tron, the distance between the current tubes (charges) and
theirs length, γ is the gravitational constant, while ρe is the
electron density me/r3

e = 4.07 × 1013 kg/m3.
A vortex tube having a momentum equivalent to the elec-

tron charge was shown in [3] really to contain three single
vortex threads (the calculated value is 2.973). These unidirec-
tional vortex threads rotate about a longitudinal axis. Their
peripheral speed v0 is derived from the balance of magnetic
and inertial (centrifugal) forces. In the case of unit charges, it
is equal to:

v0 =
re

(2π)1/2 × [sec]
= 1.12 × 10−15 m/sec, (6)

and does not depend on the length of the vortex threads and
the distance between them.

3 On the weak interaction

The proton has a complex structure, and quarks are in this
model an active part of its mass, a kind of ring currents inside

the proton, where in three local sections the medium velocity
reaches critical parameters [2]. In the p+- e−-contour, proton
quarks are involved in the circulation, and their mass as zg1

is included in equation (5) and depends on the contour size.
For the weak interaction, the contour is limited only by its
influence zone li = (ani)2. Setting rx = li and taking into ac-
count formulas (1–5), for the mass of quarks at unit charges,
we obtained:

mk = zg =
anic

1/3
0

2πγρe × [sec2]
. (7)

It should be noted that the quarks charges are integer ones
inside the proton, and in the form of fractional quantities they
are only projected onto the outer surface of the proton.

In the case of the weak interaction (electron absorption by
the proton) the quark mass-energy is assumed to compar with
the compressed bosonic contour mass-energy Lp in the Y-
region, which, having lost a longitudinal momentum (charge),
becomes the bosonic neutrino vortex tube [4]. This process is
something similar to the charge and spin separation — a phe-
nomenon registered in ultrathin conductors [5], which can be
likened to a one-dimensional vortex current tube. Under this
condition mk = Lp, the quantum number n of Y-contour is
calculated from formula (4), and the mass my (relative length)
according to formula (1).

Table 1 that above shows the calculated parameters un-
der various conditions of the weak interaction, i.e. for vari-
ous distances between the proton and the electron, namely:
the characteristic masses of fermions mx, their own quantum
numbers ni, distances between charges rx, quark masses mk,
boson tube quantum numbers and masses n and my.

The relationship between the fermion and bosonic masses
was established in [2]. The most probable fermionic mass of
neutrinos was determined in [4] under the additional condi-
tion of symmetry, when rx = ly and n = ni (see Table 1);
moreover, there are three more independent formulas con-
taining the gravitational constant and giving actually that the
result, equal to 4.4×10−7 (0.225 eV). It is not known whether
neutrinos appear as a fermion at higher n; in these cases, their
masses would be negligible, because they are inversely pro-
portional to n14. As for the structure of the neutrino, then,
having no charge, it should have a closed shape. Appar-
ently, the bosonic vortex tube, consisting a total of four vortex
threads, is as a result organized into a pair of closed vortex
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threads with left-right rotation and, conversely, with right-left
rotation (with respect to the motion axis direction).

The minimum quark mass, as follows from the table,
matches to the electron mass, and the most probable one
(when neutrino is released) matches to the d-quark mass of
8.83 (4.8 MeV). The bosonic masses my are close to the mass-
es of three, two (Higgs mass), one and one third of the W,
Z particles masses. Although the last boson with a mass of
5.07 × 104 (26 GeV) has not yet been detected, events with
close energies of about 28 GeV have already been recorded
in the CMS Collaboration experiments [6].

These bosons are considered, on the one hand, to be truly
fundamental particles, and on the other, to be pointlike virtual
particles, moreover having enormous mass-energy. This fact
is in no way compatible with the particles or atoms internal
energy. They exist only about 10−25 seconds, although the
duration of the weak interaction is t > 10−12 seconds. The
latter in this model is understandable, because t determines
the time of a medium runing with speed v around the entire
“extended” contour length. That is, given (1–4), we have:

t =
a8n8

c0

re

c
, (8)

that in the indicated range n gives 10−9 . . . 10−13 seconds,
there is an interval corresponding to possible times of the
weak interaction.

Given the inconsistencies in the W and Z bosons prop-
erties and based on the calculated masses my, these bosons
(including the Higgs boson) are probably not fundamental
particles, but rather the excited boson forms of neutrinos,
which during high energy experiments acquired (or did not
have time to lose) for a short time a longitudinal momentum
(charge).

4 On the coupling constants

It was found [7] that the formula for the number of threads in
a vortex tube, cubed, is the ratio of the inertia forces arising
from the acceleration of the bosonic standard contour mass
and acting towards the periphery, to the gravitational forces
acting between fermionic masses of me at a distance re. The
numerator is a constant, so this dependence is only deter-
mined by gravity, i.e. interacting masses and the distance be-
tween them

n3
i =

mec2/3
0 re/

(
(2π)1/2 × [sec2]

)
(2π)1/2 γm2

e/r2
e

= 26.25. (9)

This formula indicates the strength of bonds between the
structural elements of microparticles (quarks) and, as it turns
out, can serve as the equivalent of the coupling constant as

for weak and strong interactions. Suppose that quarks are
located in the corners of a regular triangle at a distance re.
Then, taking into account the geometry of their interaction

and after calculating the constants, the formula (9) can for the
general case be represented in a dimensionless form:

as = 15.15 (r/m)2. (10)

At low energies of interacting particles, affecting only the
external structure of nucleons (small “depth” along Y), the
peripheral inertia forces exceed the attractive forces, therefore
quarks are weakly coupled to each other within a vortex tube
of radius re, and they interact with quarks of nearby nucleons.
At high energies (about 100 GeV, a great “depth” along Y)
they reach within the proton itself vortex thread the minimum
distance of r sin 60◦ (here r is calculated from (3)); in this
case the mutual attraction forces keep the quarks in a bound
state within the nucleon size. Then, with the quark minimum
mass, mk = 1, substituting r = 1 and r = 0.0887 in (10), we
obtain: as = 15.15 and as = 0.119. These values coincide
with the actual ones.

The validity of the above is also convincingly confirmed
by the determination of the proton radius rp provided that
as = 1 and mk = 1. Obviously, it is the vortex tube cir-
cumferential size and it is equal to r/ sin 60◦. Revealing the
constant in (10) and using the above formulas, we finally get:

rp =

 8πγρe

31/2c2/3
0

1/2

× [sec] = 0.297 or 0.836 Fm, (11)

which exactly coincides with the value obtained in recent ex-
periments (0.833 femtometers, with an uncertainty of ±0.010
femtometers) [8].

In the weak interactions, bosonic vortex tubes take part
in, but since their mass is high, the coupling constant for the
weak interaction is very low (about 10−5). With increasing
interaction energy, vortex tubes are excited and their radius
increases, and then this constant increases significantly. Thus,
the coupling constant determines neither the nature of nuclear
forces, nor the strength of interaction, but only indicates the
strength of bonds within the complex structure of nucleons.

5 On the masses of s- and b- quarks

In [2] the total masses of the second and third generation
quarks were approximately determined. But the masses of
negative s- and b- quarks was in experiments found to be
much smaller than the masses of their positive partners, and
it can not be explained in SM. In this model the mass or-
der of these quarks is at least reliably determined when using
formula (5), derived from the balance of magnetic and gravi-
tational forces. It was shown in [2] that any contour connect-
ing charged particles can consider similar to a particle that
is part of a larger contour, where the smaller contour mass
is assumed to be a hypothetical fermion mass (a proton ana-
log) for the larger one. Thus three generations of elementary
particles are formed.
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For the second generation (µ-contour), the proton ana-
log is the mass of the standard contour c2/3

0 , for the third (τ-
contour) one is the mass of the µ-contour, determined from
the limiting conditions at ni = 0.189 and equal to 6.10 × 106.
Thus, for contours of subsequent orders it can be assumed
of linear scale unit’s increasing in proportion to the ratios of
the µ-contour and τ-contour masses to the proton mass mp.
Since quarks masses is directly proportional to lxrx, i.e. to a
linear parameter square, and inversely proportional to leptons
masses, then, bearing in mind (5), we can write the relation:

s- quark mass mk s =
mk(c2/3

0 /mp)2

mµ
= 222 mk ,

b- quark mass mk b =
mk(6.10 × 106/mp)2

mτ
= 2450 mk ,

where mµ and mτ are the µ- and τ- particles masses.
Consequently, the s- and b- quarks masses order is deter-

mined correctly: for the s- quark it is several hundred masses
of the first generation quark, for b- quarks it is several thou-
sand masses of the first generation quark.

6 Conclusion

Thus, the above examples show that gravity has a significant
effect in the microworld, and the gravity constant should in-
evitably be included in the more accurate theories describing
the microworld. Perhaps it is just this factor that may con-
tribute to the further creation of the “theory of everything”.

Submitted on April 15, 2020
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We have developed the relevant setup and studied a possibility of the influence on the
radioactive decay by an external impulsive electromagnetic field. It is shown that such
action can result not only in a change in the rate of decay (rate of counting of gamma-
quanta), but also in a clear variation of the statistical properties of the series of suc-
cessive measurements of the counting rate such as the appearance of periodicities and
hyperrandom properties. It is found that the excitation of a system of radioactive nuclei
induced by the external influence disappears approximately in 4–6 days.

1 Introduction

We will describe our attempt to find a possibility to affect
parameters of the radioactive decay with the help of an im-
pulsive electromagnetic field. As is known, at the radioac-
tive decay, the number of decays per unit time is a random
variable which is described by the Poisson distribution [1].
Hence, from the viewpoint of the statistical analysis, the prob-
lem of search for the signs of changes after some treatment of
a radioactive specimen can be reformulated as a problem of
changes in the statistical properties of samples which are the
records of the results of measurements before and after the
treatment.

It should be emphasized that we intend to seek the weak
changes which can be only precursors of the changes seen
by naked eye (hence, of those possessing a practical signifi-
cance). From the viewpoint of the dominant theory, the rate
of radioactive decay cannot be affected at all (see [2]). While
experimentally determining the influence of some factor, the
researchers try to find, as a rule, the changes in the counting
rate at least on the level of the statistical effects. We pose the
problem in a more general form: to seek the differences be-
tween samples which can or cannot be reduced to a change in
the mean counting rate.

The sought signs can be the periodic variations in a count-
ing rate or the appearance of irregular “splashes” of the inten-
sity or other irregularities leading to that the series of mea-
surements of the counting rate cease to be random in the sense
of mathematical statistics. In this case, a change in the form
of a distribution function (loss of the Poisson property) can
be only one of the possible sought signs.

The radioactive decay can be considered as an example of
the process (if the radioactive half-life is much more than the
time of measurements), for which the long series of measure-
ments of its parameters is considered to be stationary in the
sense of mathematical statistics, i.e. its statistical parameters
do not vary with time. For comparison, we can indicate exam-

ples of other natural processes without the property of station-
arity such as the noise of the ocean, where ships move from
time to time near a detector of noises. The problem of the
analysis of such data was considered, for example, in [3, 4].

In the present work, we will analyze changes in the decay
statistics for signals of the rate of counting of gamma-quanta
from radioactive specimens after the action of an impulsive
electromagnetic field onto them.

2 Data and methods of their analysis

We will examine a possibility to influence the process of ra-
dioactive decay by external impulsive electromagnetic field.
The setup generating the electromagnetic impulses that act on
a radioactive specimen will be called a driver for simplicity.
In order to use the statistical methods of analysis, we need the
long series of regular measurements of the rate of decay. Such
series were recorded with the use of a dosimeter-radiometer
“Pul’s” aimed at the remote radiation control. The device was
produced at the small joint-stock enterprise “Opyt”, includes
a detector on the basis of NaI(Tl), and allowed us to execute
every-second measurements with the record of results into a
memory unit.

We analyzed the results of measurements of a specimen
treated with a driver during February–May in 2018 in the
city of Chornobyl’. As a specimen, we took monazite sand,
i.e. we measured and analyzed the summary signal (gamma-
radiation) from decay products of 232Th. First, before the
treatment of the specimen with a driver, we carried out the
measurements of the counting rate for several days. Later on,
we compared those data with the results obtained after the
action of a driver onto the specimen.

In the analysis of the statistical properties of the measured
signals, we used the statistical theory of hyperrandom phe-
nomena [5]. This theory is based on the hypothesis that the
results of measurements of natural processes are not indepen-
dent and identically distributed. Hence, they do not obey the
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basic preconditions for the application of well-known meth-
ods of mathematical statistics. In other words, the basic as-
sertion of the theory of hyperrandomness consists in that the
process under study can undergo the action of external influ-
ences, which induces, respectively, changes in the statistics
of a signal. This is manifested in the loss of the statistical
stability by data, i.e. the results of measurements become de-
pendent on the time. However, it can turn out that very long
series of measurements should be made for such changes to
be revealed.

The main distinction of the hyperrandom data from the
standard random numbers which are independent and iden-
tically distributed consists in that the variance of the former
does not decrease, as the number of measurements increases
(increase in the size of a sample). On the contrary, starting
from some number of measurements, the variance of hyper-
random data increases [3, 4]. Such effect can be a conse-
quence of the tendency to a change in the mean, the autocor-
related function, etc during the measurement. (We emphasize
once more that the similar changes in a sample can have the
statistical character and can be invisible for naked eye.)

The formulas for the analysis of hyperrandom data can be
found in [5, 6]. We now indicate only the principle of such
analysis. Let us have the sample of the results of measure-
ments X with size N: X = (x1, x2, . . . xN) is a regular tempo-
ral series of the results of measurements. We accentuate that
the series is ordered in the meaning that the elements of the
series should not be permuted. We are interested in the de-
pendence of its parameters on the size of a sample, i.e. on the
time. For this purpose, we calculate the accumulated means,
i.e. the means for the first two, three, etc elements of the input
series. As a result, we get a new first-order series of data in
the form of accumulated means Y (1) = (Y1,Y2, . . .YN), where
Yn = 1

n
∑n

i=1 xi(n = 1,N), with its mean mYN = 1
N
∑N

n=1 Yn. Then
we can repeat the procedure and form the series of higher or-
ders Y (2), Y (3), etc.

The object of our analysis is the function, being the un-
biased variance of fluctuations from the accumulated mean,
DYN = 1

N−1
∑N

n=1 (Yn − mYN )2.

As the quantitative measure of one of the hyperrandom
properties, specifically, the statistical instability of a series of
data, we take the coefficient γN characterizing the absolute

level of statistical instability: γN =
M[DYN ]
NDYN

, where M[∗] is the
operator of mathematical expectation.

To have a possibility to compare different samples with
one another, the units of statistical instability are introduced
in the theory. For the coefficient γN , the role of a unit of sta-
tistical instability of measurements is played by the quantity
γ0N which corresponds to the noncorrelated series of read-
ings with constant variance Dxn = Dx and zero mathematical
expectation at a fixed value of N. The coefficient γ0N is given

by the formula

γ0N =
N + 1

(N − 1) N
CN −

2
N − 1

, where CN =

N∑
n=1

1
n
.

Using the unit of measurements γ0N , we introduce the ra-
tio hN =

γN
γ0N

, i.e. the coefficient characterizing the absolute
level of statistical instability in units of γ0N . These coeffi-
cients are dimensionless. The degree of hyperrandomness hN

of the analyzed data will be considered in what follows.
We note that though the hyperrandom properties of our

data are manifested undoubtedly (see below), the derivation
of the quantitative estimates of the degree of hyperrandom-
ness is not a simple matter. We clarify this point by the exam-
ple. Let us deal with a really random stationary process, so
that its signal has no signs of the hyperrandomness. At some
time moment, let a quite short external influence arise (the du-
ration of the external action is assumed to be much less than
the time of observations). It causes an increase in the mean
and, respectively, to the appearance of the hyperrandomness.
After some time period, the signal again becomes random and
stationary.

Hence, the sample as a temporal signal can be partitioned
into three parts. The midsection is hyperrandom, and the be-
ginning and the end are normal stationary signals. In this
situation, the sample has, on the whole, hyperrandom proper-
ties. But the results of calculations for each of the three parts
separately will give different results.

In real situations, the information about the very fact of
the external influence (treatment by a driver) can be unknown.
Hence, we should consider the problem of determination of
changes in the statistics of a series, the problem of analysis
of the dynamics of those changes in time, and the problem
of searching for the time, when the driver acts. If, for exam-
ple, the aftereffect is present and varies in time, we can say
nothing about the time moment of the transition of the sam-
ple into the third part, even if we are based on the analysis of
the whole series. Moreover, the very fact of such transitions
should be studied. We reformulate this problem as follows:
Are there some regularities of changes in the hyperrandom-
ness indicating the action of a driver and can we determine,
for example, the characteristic time of relaxation of the “hy-
perrandomness state” arisen due to the action of a driver?

In view of the above discussion, we need to analyze the
separate parts of samples with the purpose to find the distinc-
tions between them and to establish the optimum size of such
subsamples. To make it, we chose a “window” of a definite
size, i.e. we set the size of a subsample. With such window,
we scan the whole series of measurements. For each “win-
dow”, we calculated the necessary parameters.

3 Results and discussion

As was indicated, the hyperrandomness by its nature arises
at a change in time of some parameters of the process such
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Fig. 1: Analysis for hyperrandomness of a series of measurements
during 13 days from 14.02.2018 to 26.02.2018 (prior to the treat-
ment). There is the sign of the hyperrandomness, which is revealed
as an increase in hN after approximately 5000–8000 min of measure-
ments.

as, in particular, the solitary short-time splashes. The statis-
tical characteristics of a series calculated before the splash
can be changed after it. If the duration of the action of a
driver is from several minutes up to several hours, it can be
considered a short-time influence against the background of
measurements during several days.

One of the tasks of the present work is the search for the
time of relaxation of a signal after the action of a driver, which
is reduced to the analysis of short segments of the entire se-
ries. In Fig. 1, we present the results of a test for the hyper-
randomness. We took a sufficiently long-time (13 days) series
of measurements before the action of a driver in order to esti-
mate the order of long-time changes.

In each of the figures below, the upper plot is the input se-
ries of data; the middle plot presents a variation in time of the
accumulated variance; and the lower plot shows the param-
eter hN which characterizes the degree of hyperrandomness.
The results of calculation of the hyperrandomness parameter
are accompanied by the analysis of whether such result can
be formed accidentally. It is a reasonable question, because
we analyze the series of random numbers. For this purpose,
we generated a computer-created sample of random numbers
with the same parameters (mean and variance), as those of the
experimental series. For such model sample with the same
programs, we made analysis for hyperrandomness. This pro-
cedure was repeated several times for the sake of reliability,
and the results were drawn on one figure. In the presence of
a noticeable hyperrandomness, the experimental curve must
be outside the zone, where the curves for model samples are
placed. This zone for the model series of random numbers is
shown in the lower plot by dotted lines.

As is seen in Fig. 1, the series manifests some hyperran-

domness during 13 days before the treatment. It starts to re-
veal itself after approximately 5–6 days of measurements.

Then, on 27.02.2018, we executed the treatment of the
specimen with a driver (impulsive electromagnetic field).

In Fig. 2, we present the results of analysis for the hyper-
randomness of a series of measurements before and after the
action of a driver. We recall that our purposes are to register
the time of a manifestation of the action of a driver and to de-
termine the temporal changes of the signs of such action. We
analyzed the subsamples 4 days in duration. In other words,
we analyzed a part of the series 4 days in duration, then the
“window” was shifted by one day, and so on. Hence, the
subsamples were overlapped during 3 days in order to more
or less reliably notice the times of changes in the degree of
hyperrandomness.

In view of Fig. 2, we can formulate the following main
results:

1. After the action of a driver, the rate of counting of
gamma-quanta somewhat increased.

2. In the analyzed series, the hyperrandomness was not
observed practically for 4 days (accepted size of a scan-
ning “window”) before the treatment: the variance de-
creased, as the size of a sample increased.

3. After the action of a driver on 27.02.2018, we observe
a sharp increase in the hyperrandomness. The vari-
ance starts to grow already approximately in 1200 min
(20 h).

4. This effect of hyperrandomness practically disappeared
on 04.03.2018 (in 4–5 days) to the level of noises.

4 Conclusions

1. We have revealed that, under the action of electromag-
netic impulses, the statistics of the radioactive decay is
changed.

2. It is found that, after the action of a driver, the pro-
cess of decay became hyperrandom. This means that
its characteristic such as the accumulated variance in-
creases in time, rather than decreases. In turn, this
means that the process of decay stops to be stationary.

3. This forced nonstationarity was observed during ap-
proximately 5 days. Then the process of decay returns
to the stationary mode (experimental curve in Fig. 2f is
located in the zone of random values).

4. Such time of existence of the aftereffect (tens of hours),
which is much more than the characteristic time of the
evolution of a separate nucleus, is, most probably, the
experimental confirmation of the theories (see [7–10])
that assert that the radioactive decay is a collective pro-
cess in the system of correlated nuclei. From this po-
sition, we may assert that the quantitative estimates of
the process of relaxation of a system of nuclei are made
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Fig. 2: Analysis for hyperrandomness: the series of successive overlapping subsamples from 28.02.2018 to 03.03.2018. The measurement
at once after the treatment which occurred 27.02.2018. After the action of a driver, the hyperrandomness appeared: an increase in the
variance and in h is clearly seen. On the fifth day, the hyperrandomness drops to the level of random noises.
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for the first time. The determined time of the relaxation
has the order of hours.
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We have determined a mode of treatment of a radioactive material (232Th and daughter
products in a colloid solution of monazite sand) with a sequence of short impulses of
an electromagnetic field which results in a change in the intensity (counting rate) of
gamma-radiation. The value of changes in the intensity as a general trend is approxi-
mately 1.8 % for a period of about 1 month. In addition to the changes in the intensity,
we observed changes in the statistics of the radioactive decay. In the long-term signal
of every-second regular measurements of the counting rate for daughter products of the
decay of 232Th obtained after the treatment of the specimen with an impulsive electro-
magnetic field, we have found the periodic components among which the periods of
0.5, 1, and 6.6 days are distinguished most clearly.

1 Statement of the problem

The regular periodic changes in the intensity of signals of
the radioactive decay, as well as the sporadic splashes of the
counting rate, were observed many times (see [1]). They in-
clude the seasonal changes with periods of 1 year, 1 month,
and 1 day which can be obviously related to astronomical
phenomena. While analyzing the periodicity of the 1-day
radioactive decay, it is necessary to separate the studies of
the changes in the intensity of signals from radon and beryl-
lium in the near-Earth layer of the atmosphere, which are
caused mainly by geophysical or meteorological factors and
are omitted in the present work, from the studies of the ra-
dioactive decay under controlled conditions (see [2–4] and
references therein), where the manifestations of the variabil-
ity of a signal are assigned to changes namely in the rate of
radioactive decay. The presence of changes in the rate of de-
cay can be related, in our opinion, to such fundamental causes
as cosmophysical factors. Separately, we mention the works
by S. E. Shnoll [5], where the regular changes in the statis-
tics of separate parts of the series of measured data on the
rate of radioactive decay, namely, the changes in a form of
the distribution function, were observed. It is worth to note
the fundamental cycle of works executed by opponents of this
idea [6–8], where the special studies of this question revealed
no existence of seasonal changes in the half-life period.

But earlier, the existence of that or other regularities of the
radioactive decay was discussed without any experimental in-
terference at laboratories. Moreover, the possibility of the in-
fluence of external physical factors, being outside the nuclear
scale of energies, on the rate of radioactive decay was con-
sidered impossible since Rutherford’s times [1,9,10]. Hence,
the studies in this direction have a fundamental meaning, be-
cause they would prejudice the basic assertions of the theory
that, first, all events of a radioactive decay are mutually in-

dependent, and, second, the internal processes in a nucleus
which define the processes of decay can be affected only by
the fluxes of particles and quanta with energies of the order
of those of nuclear transitions from kiloelectronvolts to mega-
electronvolts. However, we mention a well-known exclusion,
isotope 229Th, whose excitation energy is about 1 eV.

In this work, we present the results of laboratory stud-
ies of the influence of an external electromagnetic field with
sufficiently low intensity on the rate of counting of gamma-
quanta from a radioactive specimen and will show that such
influence is possible.

Especially, we note that, though the revealed changes in
the intensity of a signal after the action of an external factor
for the period of observations up to 40 days are rather small,
the changes in the statistical properties of the obtained regular
series of measurements are obvious and objective.

2 Materials and methods

The setup realizing the action on a specimen (for simplicity,
we call it a driver) is a system of coils with special structure
aimed at the creation of an impulsive electromagnetic field.
The duration of impulses is 1–10 nsec. The treatment was
carried on for 10–30 min. The power of the setup is about
25 W. The energy of impulses is at most 2.5 J.

The scheme of the experiment is as follows. First, we car-
ried on the control measurements for some time. After the
action of a driver, the specimen was returned to a counter,
and we measured the radiation from the specimen for sev-
eral days. Such procedure can be repeated several times. In
this case, we studied the intensity of the summary gamma-
radiation from a specimen of natural monazite sand (mineral
with 232Th) for the period from 20.12.2017 to 15.01.2018.
The results are obtained in a laboratory, i.e. under controlled
conditions. During the indicated period of measurements, the
driver did not act on the specimen, i.e. the presented results
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are a manifestation of the aftereffect.
To gauge the counting rate, we used a counter of gamma-

quanta such as a dosimeter “Pul’s” for the remote radiation
control. It was produced at the small joint-stock enterprise
“Opyt” and includes a detector on the basis of NaI(Tl). The
construction of the counter itself contains no lead-based pro-
tection. The counter can operate in the automatic mode and
can write the result of measurements in the memory every
second. During the measurements, the counter with a speci-
men have no special protection or can be placed inside a lead
cylinder. The latter was open from one end, was about 30 cm
in length, and has walls 10 cm in thickness. The measure-
ments were carried out on different specimens, in different
modes of action of a driver, many times, under the lead pro-
tection, and without it. On the whole, the results were in-
variable, i.e. the below-described effects did not disappear.
The described conditions of measurements are given for the
concreteness. The measurements were performed in heated
premises. The changes on the temperature were in the inter-
val 17–22 oC, but they were not regular with daily period.

In the room, where the measurements were performed,
the background was much lower than the level of signals. For
the indicated period, we have got a series of every-second
measurements of the intensity of gamma-radiation with inter-
ruptions for the time, when the treatment of a specimen was
executed.

Since the purpose of the present work is the search for the
periodicity of a signal, we applied the wavelet-analysis using
Gauss–Morlet wavelets [11, 12].

In Fig. 1, we show the signal from the untreated speci-
men in the form of a noisy path and its wavelet-expansion as
a two-dimensional pattern of disordered spots. If some peri-
odic regularities of the type of modulation by a sinusoid are
present in the signal, the pattern of coefficients of the Gauss
wavelet-expansion will contain the series of spots regularly
arranged along the horizontal. The distance between such
regular spots along the horizontal is equal to the half-period
in units of the horizontal axis.

In view of the low rate of counting, while seeking the
periodicities with a period of 1 h and more, we transformed
the input series of data into a series of measurements for each
10 minutes (sum of sequential values for each 600 sec without
the overlapping of intervals, where the number of counts is
calculated).

3 Results

The analyzed signal itself after the action of a driver and the
result of its wavelet-expansion are given in Fig. 2. The upper
plot is the series of data which should be analyzed. Below, the
two-dimensional pattern is the representation of coefficients
of the wavelet-expansion (result of a wavelet-transformation
of some series of data is the two-dimensional matrix of co-
efficients of the expansion). On the horizontal axis of the
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Fig. 1: Wavelet-expansion of a signal of the intensity of gamma-
radiation from a specimen of monazite sand without the treatment
with a driver. The upper plot is a signal; below, the two-dimensional
pattern is the representation of the matrix of coefficients of the
wavelet-expansion of this signal.

pattern, we indicate the number of a measurement which is
proportional to the time from the start of measurements.

We note that the measurements are regular, and, in this
case, each measurement corresponds to a time interval of 10
min. Therefore, for example, the number 1000 on the hori-
zontal axis corresponds to a time moment of 10 000 min from
the start of measurements. Along the vertical axis of the two-
dimensional pattern, we give the half-period of a signal in
units of the horizontal axis. We see clearly several horizontal
rows of “spots,” the distances between which are equal to the
half-period (by assuming the modulation by a sinusoid).

In the table near the wavelet-expansion pattern, we show,
as an example, several distances between spots for the rows
indicated by arrows directly from the two-dimensional pat-
tern in Fig. 2. This allows us to draw conclusion about the
uncertainty of those estimates.

In addition to the appearance of a periodic daily modu-
lation on the wavelet-expansion patterns, we observe that the
signal itself looks as a uniform noisy path. We see also a tooth
ripple of the daily variation and a small asymptotic decline.

4 Discussion of results and conclusions

The obtained array of results about the dynamics of the rate
of counting of gamma-quanta after the treatment of a speci-
men with a driver testifies indisputably to the presence of the
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Fig. 2: Wavelet-expansion of a signal of the intensity of gamma-radiation of a specimen with Th after the treatment with a driver. The upper
plot is the signal; below, the two-dimensional pattern is the representation of the matrix of coefficients of the wavelet-expansion of this
signal. Arrows indicate the periodic series. The signal is the number of impulses for 1 min. The table on the right shows some examples of
the estimates of distances between spots. The lower row gives the mean values.

external influence on the process of radioactive decay. This
fact cannot be a result of erroneous measurements or, espe-
cially, improper analysis: the effect is not observed prior to
the treatment and is seen after it.

Because the described result, i.e. the appearance of a peri-
odicity in the noisy signal, is reliably established experimen-
tally, we may ask: why was no effect observed earlier? The
possible causes are as follows:

1. The effect is reliably registered only in definite opera-
tional modes of a driver. To observe it, one needs to
perform special long-term experiments, since the effect
can reveal itself in several tens of days after the action
of a driver.

2. In the whole array of experimental data, the effect of
a variation of the trend of the rate of counting is not
strong (several percents) and is variable in time. There-
fore, without regular long-term measurements, the ef-
fect can be considered as a noise or the uncertainty of
a procedure of measurements.

Thus, we showed experimentally the presence of many
periodicities with noninteger ratios in measured sequences of
the rates of counting. The logical consequence of these results
and of the up-to-date model representations about the fractal
dynamics of intranuclear clusters [13–15] and about the nu-
clear structure [13–18] is the conclusion that sufficiently weak
electromagnetic signals can excite the dynamics of intranu-
clear clusters, and, hence, it is possible to observe a manifes-
tation of this changed dynamics in the probabilities of nuclear

processes.

Received on May 4, 2020
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