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PREFACE 

 

 
 
 

In this book authors for the first time give several types of 

problems on MOD structures happens to be an interesting field of 

study as it makes the whole 4 quadrant plane into a single 

quadrant plane and the infinite line into a half closed open 

interval. So study in this direction will certainly yield several 

interesting results. The law of distributivity is not true. Further 

the MOD function in general do not obey all the laws of 

integration or differentiation. Likewise MOD polynomials in 

general do not satisfy the basic properties of polynomials like its 

roots etc. 

Thus over all this study is not only innovative and 

interesting but challenging. So this book which is only full of 

problems based on MOD structures will be a boon to researchers. 

Further the MOD series books of the authors will certainly be an 

appropriate guide to solve these problems. 
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Chapter One 
 

 
 
PROBLEMS ON MOD INTERVALS  
 
 

In this chapter we just recall all types of MOD intervals and 

the algebraic structure enjoyed by them. All problems related 

with these MOD intervals and the algebraic structures enjoyed by 

them are proposed here. 

 

DEFINITION 1.1: S = {[0, n); n ∈ Z
+
 \ {1} is the MOD real 

interval mod n.  

 

We see the infinite real line (–∞, ∞) can be mapped onto the 

MOD interval [0, n); n ∈ Z
+
 \ {1} in the following way. 

 

Let η: (–∞, ∞) → [0, n) 

 

η(x) = 

0

0 0 ( ( , ))

0

0

0

x if x n

if x or tn t

n x if x

x t
t if x n and s

n n

x t
n t if x and s

n n

< <
 = ∈ −∞ ∞
 − −∞ < <



> > = +



− −∞ < < = +

 

 

η is the MOD real transformation.  
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We will illustrate this by some examples. 

 

Example 1.1: Let S = {[0, 6)} be the real MOD interval  

modulo 6. 

 

η: (–∞, ∞)  →  [0, 6) 

η(4.332)  =  4.332, 

η(9.82)  =  3.82, 

η(–7.68)  =  6 – 1.68 

=  4.32. 

 

η(48)   =  0 

η(0)   =  0 and η(–24) = 0 

η(0.331206) =  0.331206 

η(–0.1150893) = 5.8849107. 

 

η is a MOD real transformation from (–∞, ∞) to [0, 6). 

 

Example 1.2: Let S = {[0, 13)} be the real MOD interval. 

 

η: (–∞, ∞) → [0, 13) is defined by η(0.84) = 0.84 

 

η(12.993)  =  12.993,  

η(–1.234)  =  11.766, 

η(65)   =  0, 

η(–26)   =  0,  

η(0)   =  0. 

η(–13)   =  0 and so on. 

 

This the way MOD real transformation η from (–∞, ∞) to  

[0, 13) is made.  

 

We see η is maps many points (or infinitely many points) 

onto a single point. 

 

If we want to study the reverse the MOD transformation say 

η–1
 : [0, n) → (–∞, ∞). 
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We see η–1
(0) = 0, η–1

(x) = tnx where t ∈ Z
+
; so a single x 

can be or should be mapped onto infinitely many. This is true 

for every x ∈ [0, n).  

 

We will illustrate this situation by some examples. 

 

Example 1.3: Let S = {[0, 10)} be the MOD real interval. 

 

Let η–1
 : [0, 10) → (–∞, ∞) defined by  

 

η–1
(3) = {10n + 3; n ∈ 10Z

+
; 10n + 7 ∈ 10Z

–
} 

Thus η : (–∞, ∞) → [0, 10) 

 

η(3)  =  3 

η(–7)  =  3 

η(13)  =  3 

η(–17)  =  3 

and so on. 

 

Thus η–1
 the inverse ‘map’ is a pseudo map (as a single 

element is map onto) infinitely many elements, that is why the 

term pseudo map is used.  

 

η–1
(0.75) = {0.75, 10.75, 20.75, 30.75, 40.75, …, –9.25,  

–19.25, –29.25, …}. Thus the single point 0.75 in [0, 10) is 

mapped onto infinitely many points in (–∞, ∞).  

 

That is why we can η–1
 as the pseudo MOD real 

transformation. Likewise the mappings are carried out in a very 

systematic way.  

 

We give one more example of this situation. 

 

Example 1.4: Let η–1
 : [0, 12) → (–∞, ∞) be the pseudo MOD 

map. 

 

η–1
(0) = {0, 12n, n ∈ Z

+
} 

η–1
(1) = {1, 13, 25, 37, … and –11, –23, –35, …} 
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η–1
(2) = {2, 14, 26, 38, 50, …, –10, –22, –34, –46, …} 

η–1
(3) = {3, 15, 27, 39, 51, 63, …, –9, –21, –33, …} 

 

Thus infinitely many points of (–∞, ∞) are associated with a 

single point of [0, 12). 

 

Consider 0.3189 ∈ [0, 12).  

 

η–1
(0.3189) = {0.3189, 12. 3189, 24.3189, 36.3189, …, 

11.6811, 23.6811, 35.6811, 47.6811 and so on}.  

 

Thus the single point 0.3189 is mapped on an infinite 

number of points by the pseudo MOD map  

 

η–1 
: [0, 12) → (–∞, ∞). Further both MOD transformation 

map η and pseudo inverse MOD maps are unique.  

 

We have infinitely many real MOD intervals, however only 

one real interval (–∞, ∞).  

 

Next we can define operations of + and × on [0, n).  

 

{[0, n), +} is a group of infinite order.  

 

η : (–∞, ∞) → [0, n) is compatible with respect to addition. 

For if we take the MOD interval [0, 4).  

 

Let x = 5.732 and y = 0.193 ∈ (–∞, ∞). 

 

x + y  =  5.925 

η(x)  =  1.732 

η(y)  =  0.193 

η(x)  =  η(x) + η(y) 

η(5.925) =  η(5.732) + η(0.193)  

1.925  =  1.732 + 0.193  

=  1.925. 

 

Hence we see η can be compatible with respect to +.  
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We have only one group under ‘+’ using (–∞, ∞) but there 

are infinitely many MOD interval real groups  

{[0, m) | m ∈ Z
+
 \ {1}, +}. This has subgroups of both finite and 

infinite order. 

 

Example 1.5: Let G = {[0, 24), +} be the MOD interval real 

group of infinite order. {Z24, +} = H1 is a subgroup of finite 

order. 

 

H2  =  {0, 6, 12, 18, +} is a subgroup of finite order. 

H3  =  {0, 8, 16} is a subgroup of finite order. 

H4  =  {0.1, 0.2, …, 23, 23.1, 23.2, …, 23.9, 0} ⊆ G is  

  a subgroup of G. 

 

Example 1.6: Let G = {[0, 17), +} be a MOD interval group of 

infinite order.  

 

Can we say G is a torsion group? 

 

We can as in case of usual groups define MOD 

homomorphism from G = {[0, m), +} to H = {[0, t), +}.  

 

This will be illustrated by examples. 

 

Example 1.7: Let G = {[0, 6), +} and H = {[0, 12), +} be two 

MOD groups of infinite order. 

 

Define φ : G → H 

 

φ(0) =  0 

φ(x)  =  2x if x ∈ G 

φ(0.76)  =  1.52 and so on. 

 

Clearly φ(x + y) = 2x + 2y 

 

Let x = 3.84 and y = 4.57 ∈ G. 
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φ(x + y)  =  φ(3.84 + 4.57) 

=  2.41 × 2 

=  4.82     …  I 

 

 

φ(x) + φ(y)  =  φ(3.84) + φ(4.57) 

=  7.68 + 9.14 

=  4.82      …  II 

 

I and II are identical hence the claim. 

 

This is the way operations or MOD homomorphisms are 

made. 

 

Clearly one can define MOD isomorphisms of MOD interval 

group.  

 

Next we proceed onto define the notion of MOD interval 

semigroups. 

 

DEFINITION 1.2: Let S = {[0, m), ×} be the MOD interval 

semigroup for a, b ∈ S. a × b (mod m) ∈ S. 

  

We will illustrate this situation by some examples. 

 

Example 1.8: Let M = {[0, 12), ×} be the MOD interval 

semigroup.  

 

Let x = 3.2 and y = 6.9 ∈ M  

 

x × y = 3.2 × 6.9 = 10.08 (mod 12). 

 

Let x = 6 and y = 2 so x × y = 6 × 2 ≡ 0 (mod 12). 

 

Thus M has zero divisors.  

 

Clearly 1 ∈ M is such that 1 × x = x for all x ∈ M.  
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Thus M is a monoid. M has zero divisors. 11 ∈ M is such 

that 11 × 11 = 1 (mod 12). 

 

Let x = 2.4 and y = 5 ∈ [0, 12).  

 

Clearly x × y = 2.4 × 5 = 0 (mod 12) so is a zero divisor. 

But 5 ∈ [0, 12) is a unit as 5 × 5 ≡ 1 (mod 12). Thus a unit 

contributes to a zero divisor.  

 

This gives one a natural problem namely why in the MOD 

interval semigroups we have units contributing to zero divisors.  

 

This is the one of the marked difference between the usual 

semigroups and MOD interval semigroups. Thus MOD interval 

semigroup behave in an odd way so we define such zero 

divisors contributed by units of the MOD interval semigroup as 

MOD pseudo zero divisors or just pseudo zero divisors. 

 

Example 1.9: Let S = {[0, 7), ×} be the MOD interval semigroup 

of infinite order. 

 

This has only pseudo zero divisors. For x = 3.5 and y = 2 ∈ 

S is such that x × y = 0 (mod 7) is a pseudo zero divisor 

however y = 2 is a unit in S as 2 × 4 ≡ 1 (mod 7). 

 

Consider x = 1.75 and y = 4 ∈ S.  

 

x × y = 0 (mod 7) is again pseudo zero divisor; however y is 

a unit of S. 

 

Thus S has pseudo zero divisors which are not zero divisors 

for one of them is a unit. 

 

Next we proceed onto study about the substructures in MOD 

interval monoids. MOD interval monoids have finite order 

subsemigroups but can it have ideals of finite order is a question 

mark. 

 

Example 1.10: Let S = {[0, 18), ×} be the MOD interval monoid. 
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P1  =  {0, 9},  

P2  =  {0, 2, 4, …, 16},  

P3  =  {0, 3, 6, …, 15},  

P4  =  {0, 6, 12} and  

P5  =  {Z18, ×}  

are finite order MOD subsemigroups of S.  

 

H1 = {〈0.01〉, ×} is an infinite order subsemigroup of S.  

H2 = {〈0.1〉},  

H3 = {〈0.2〉} are all some of the infinite order MOD 

subsemigroup of S.  

 

None of them are ideals.  

 

Finding ideals happens to be a very difficult problem. 

 

Example 1.11: Let S = {[0, 23), ×} be the MOD interval 

semigroup (monoid).  

 

S is of infinite order.  

 

P1 = {Z23} is a subsemigroup of finite order.  

 

P2 = {〈0.1〉} is a subsemigroup of infinite order.  

 

P3 = {〈0.2〉} is a subsemigroup of infinite order and so on.  

 

Finding ideals of S happens to be a challenging problem. 

 

Now MOD interval groups and semigroups are also built 

using matrices with entries from MOD intervals [21-2, 24].  

 

Study in this direction is interesting.  

 

Next we proceed onto describe the notion of MOD real 

interval pseudo rings for more [21]. 
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Example 1.12: Let R = {[0, 10), +, ×} be the MOD interval 

pseudo ring. R has zero divisors, units and idempotents. R has 

subrings as well as pseudo subrings.  

 

However finding pseudo ideals of R happens to be a 

challenging problem. 

 

Example 1.13: Let W = {[0, 29), +, ×} be the MOD interval 

pseudo ring. This MOD pseudo ring has pseudo zero divisors, 

units and subrings of finite order. 

 

Can P = {〈0.1〉, +, ×} be the MOD pseudo subring of W?  

 

Finding MOD pseudo subrings of infinite order happens to 

be a very difficult problem.  

 

Z29 = P is a subring of order 29 which is not pseudo.  

 

Infact P is a field so W is a S-real MOD pseudo ring.  

 

Studying properties associated with them happens to be a 

very difficult problem. 

 

Example 1.14: Let S = {[0, 48), +, ×} be the pseudo MOD real 

interval ring of infinite order. This has several subrings of finite 

order which are not pseudo subrings. 

 

Once again finding ideals of S happens to be a very difficult 

problem.  

 

Next we introduce the MOD neutrosophic interval. 

  

Let (–∞I, ∞I); I
2
 = I be the real neutrosophic interval.  

 

[0, m)I = {aI | a ∈ [0, m), I
2
 = I}, 1 < m < ∞ is defined as 

the MOD neutrosophic interval.  
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Clearly N = {[0, m)I} under + is an abelian group under 

product is a semigroup and under + and ×. N is only a MOD 

pseudo neutrosophic interval ring.  

 

All properties associated with MOD real interval can be 

derived for N also. For more refer [24].  

 

Next we proceed onto study the notion of MOD finite 

complex modulo integers [0, m)iF; 
2

Fi  = (m – 1), got from the 

complex infinite interval (–∞i, ∞i).  

 

We can have MOD transformations both for MOD interval 

neutrosophic set [0, m)I as well as MOD interval finite complex 

modulo integers [0, m)iF; 
2

Fi  = m – 1.  

 

This is left as a matter routine for the reader however for 

more information refer [18, 21, 24].  

 

Clearly on [0, m)iF for no value of m; 1 < m < ∞ we can 

built MOD interval finite complex modulo integer semigroup 

under × or a MOD interval finite complex modulo integer pseudo 

ring as × is not a closed operation on [0, m)iF as iF × 3iF = 3 2

Fi  = 

3(m – 1) ∉ [0, m)iF.  

 

This is the marked difference between the other types of 

MOD intervals and the MOD finite complex modulo integer 

interval. 

 

Example 1.15: Let M = {[0, 8)iF, 
2

Fi  = 7, +} be a MOD interval 

finite complex modulo integer group of infinite order. 

 

However M is not even closed under × as 2iF × 2.4iF = 4.8 2

Fi  

= 4.8 × 7 = 1.6 ∉ M. Hence {M, +, ×} is also not a MOD 

complex modulo integer interval pseudo ring.  

 

Only the algebraic structure viz. group under + can be 

defined on [0, m)iF; 1 < m < ∞ as 2

Fi  = m – 1. 
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Now we proceed onto define the MOD dual number interval 

got from the real dual number interval (–∞g, ∞g) g
2
 = 0; the 

transformation from (–∞g, ∞g) to [0, m)g is the usual one 

discussed in [17].  

 

We will illustrate this by some examples. 

 

Example 1.16: Let M = {[0, 18)g | g
2
 = 0, +} be the MOD 

interval dual number group. M is of infinite order. M has 

subgroups of finite order also. 

 

Example 1.17: Let P = {[0, 29)g | g2
 = 0, +} be the MOD dual 

number group. M has subgroups of finite order.  

 

Now we proceed onto build semigroup using [0, m)g;  

g
2
 = 0. [17, 21, 24]. 

 

Example 1.18: Let B = {[0, 12)g | g
2
 = 0, ×} be the MOD 

interval dual number semigroup. Clearly B is not a monoid. 

Further every proper subset of B is a subsemigroup of B. Infact 

B is a MOD interval dual number zero square semigroup of 

infinite order.  

 

Further every subsemigroup is also an ideal of B. These 

happen for any 1 < m < ∞.  

 

Next we proceed to give examples of MOD interval dual 

number ring. 

 

Example 1.19: Let M = {[0, 25)g; +, ×} be the MOD interval 

dual number zero square ring. Since distributive law is true it is 

not a pseudo ring only a ring. 

 

Every subgroup of M under + is an ideal of M. M has both 

finite order as well as infinite order ideals.  

 

For instance P1 = {0, 5g, 10g, 15g, 20g} ⊆ M is an ideal.  

 

P2 = {Z25g | g2
 = 0} is an ideal of M of order 25.  
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P3 = {0, 0.1g, 0.2g, …, g, …, 24g, 24.1g, 24.2g, …, 24.9g} 

⊆ M is a ideal of finite order. 

 

Study of dual number MOD interval rings is important and 

interesting for two reasons it can contribute to zero square 

semigroups as well as subrings. 

 

Next we consider the MOD interval special dual like number 

set [0, m)h, h
2
 = h.  

 

On [0, m)h we proceed to give operations as + or × or both 

+ and ×. [18, 21, 24]. 

 

All these situations will be represented by some examples. 

 

Example 1.20: Let S = {[0, 15)h, h
2
 = h, +} be an infinite MOD 

interval special dual like number group. S has subgroups of both 

finite and infinite order. 

 

P1 = Z15h is a subgroup of order 15.  

 

P2 = {0, 3h, 6h, 9h, 12h} is a subgroup of order 5 and so on. 

 

Example 1.21: Let P1 = {[0, 19)h, h
2
 = h, +} be the MOD 

interval special dual like number group of infinite order. P1 has 

subgroups of both finite and infinite order. 

 

For more refer [18, 21, 24].  

 

Now we proceed onto give examples of MOD interval 

special dual like number semigroup. 

 

Example 1.22: Let M = {[0, 24)h, h
2
 = h, ×} be the MOD 

interval special dual like number semigroup.  

 

M has a subsemigroup of finite order. M has zero divisors, 

idempotents but no units. M has subsemigroups of finite order. 

But M has no subgroups. That is M is not a S-subsemigroup. 
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Example 1.23: Let B = {[0, 47)h | h
2
 = h, ×} be the MOD 

interval special dual like semigroup.  

 

P1 = Z47h is a finite subsemigroup. However B is not a  

S-semigroup. 

 

Example 1.24: Let M = {[0, 16)h, h
2
 = h; ×} be the MOD 

interval special dual like semigroup which has zero divisors and 

idempotents. 

 

Thus we have several properties associated with MOD 

interval special dual like number semigroup of infinite order.  

 

Next we proceed onto study the properties of MOD interval 

special dual like number pseudo ring.  

 

All these rings are pseudo as distributive law is not true in 

general. 

 

Example 1.25: Let S = {[0, 82)h, h
2
 = h, ×, +} be the MOD 

interval pseudo special dual like number ring of infinite order. 

 

S has subrings of finite order like P1 = {0, 41h},  

 

P2 = {Z82h} and  

 

P3 = {0, 2h, 4h, …, 80h} are subrings of finite order which 

are not pseudo. S has also subrings which are pseudo.  

 

Finding subrings of infinite order and ideals of S happens to 

be a challenging problem.  

 

For more about these structures please refer [19]. 

 

Example 1.26: Let P = {[0, 31)h, h
2
 = h, +, ×} be the MOD 

interval special dual like number pseudo ring. P has finite 

subrings which are not pseudo. P has subrings of infinite order. 

Find ideals of P. 
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Thus P has pseudo zero divisors and so on.  

 

Next we proceed onto study the notions associated with 

MOD interval special quasi dual numbers [0, m)k, k
2
 = (m – 1)k, 

1 < m < ∞.  

 

For more about these refer [19].  

 

We will illustrate this by some example. 

 

Example 1.27: Let M = {[0, 24)k, k
2
 = 23k, +} be the MOD 

interval special quasi dual number group. M is an infinite group. 

M has subgroups of finite order as well as subgroups of infinite 

order. 

 

Example 1.28: Let P = {[0, 43)k, k
2
 = 42k, +} be the MOD 

interval special quasi dual number group. P has only few 

number of subgroups of finite order.  

 

Next we proceed onto study MOD interval special quasi dual 

number semigroups. 

 

Example 1.29: Let B = {[0, 48)k, k
2
 = 47k, ×} be the MOD 

interval special quasi dual number semigroup. B has zero 

divisors.  

 

Finding idempotents happen to be a difficult problem.  

 

For more about these refer [19, 24].  

 

Example 1.30: Let M = {[0, 29)k, k
2
 = 28k, ×} be the MOD 

interval special quasi dual number semigroup. M has pseudo 

zero divisors.  

 

Finding S-units or units is a challenging problem.  

 

We propose several problems associated with this structure.  
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Next we proceed onto describe MOD interval specific quasi 

dual number pseudo rings. 

 

Example 1.31: Let B = {[0, 12)k, k
2
 = 11k, +, ×} be the MOD 

interval special quasi dual number pseudo rings. B is of infinite 

order. B has zero divisors. Finding idempotents is a difficult 

task.  

 

However B has subrings of finite order which are not in 

general not pseudo. Finding ideals is yet another difficult task. 

 

Example 1.32: Let S = {[0, 19)k, k
2
 = 18k, +, ×} be the MOD 

interval special quasi dual number pseudo ring. P = {Z19k} ⊆ S 

is a subring of finite order.  

 

Is S a S-ring? This question in general is difficult as we 

have to find a unit, but k
2
 = 18k. [19].  

 

So finding ideals, subrings etc; happens to be a challenging 

task. 

 

This pseudo ring has pseudo zero divisors. Infact all MOD 

interval special quasi dual number pseudo rings in which m is a 

prime always contains pseudo zero divisors. 

 

However even finding zero divisors is a challenging 

problem. Even if p is a prime finding units in those rings are 

very difficult.  

 

But we have just recalled these concepts with illustrative 

examples mainly to make this book a self contained one.  

 

Further these concepts are elaborately analysed in books 

[19-24] but the problems in this book are mainly given as the 

concept of MOD mathematics or more to be in a layman’s 

language the notion of small mathematics is very new and 

adventures in the mathematical world. They behave in many 

places in a chaotic way as the real world.  
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They are not well organized as the real mathematical world. 

So this property of chaos has attracted the authors, so authors 

wish to share these concepts with those interested co-

mathematicians.  

 

The best way to do it is give or suggest a series of problems.  

 

Some problems are simple and direct. Some of them are 

difficult problems. Some can be considered as open conjectures. 

 

The main and sustained work on MOD mathematics is 

surprising us for when they are converted to small scale they do 

not possess all the properties when they are large.  

 

This difficulty is not yet completely overcome by us.  

 

In the following we suggest some problems for this chapter. 

 

 

 

Problems 

 

1. Can we say G = {[0, m), +, m ∈ Z
+
 \ {1}} have infinite 

number of subgroups finite order? 

 

2. How many subgroups of infinite order can G = {[0, m), +},  

(m a prime) contain? 

 

3. Can G = {[0, m), +}, m ∈ Z
+
 \ {1} be a torsion free group? 

 

4. Define φ : G → H where  

G = {[0, 43), +} and H = {[0, 24), +} be two MOD interval 

groups be a MOD homomorphism. 

 

i) How is φ defined? 

 

ii) Is it ever possible to be have a one to one MOD 

homomorphism? 
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iii) Can we have kerφ to be a finite subgroups of G? 

 

iv) Can we define a φ : G → H so that kerφ is an infinite 

subgroup? 

 

v) Let S = {Collection of all MOD homomorphism from 

G to H}. 

 

 What is the algebraic structure enjoyed by S? 

 

vi) Find δ : H → G. 

 Let R = {Collection of all MOD homomorphism from 

H to G}. 

 What is the algebraic structure enjoyed by R? 

 

vii) What is relation exist between R and S? 

 

 

5. Let G = {[0, 48), +} and H = {[0, 35), +} be any two MOD 

interval group.  

 

Study questions (i) to (vii) of problem 4 for this G and H. 

 

 

6. Characterize the property of MOD interval pseudo zero 

divisors in MOD interval semigroups (monoids)  

S = {[0, m), ×}. 

 

 

7. Find special and distinct features enjoyed by MOD interval 

monoids S = {[0, n), ×}. 

 

 

8. Can S = {[0, 19), ×} have only finite number of pseudo zero 

divisors? 
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9. Can a MOD interval monoid S = {[0, m), ×} be free from 

MOD pseudo zero divisors? 

 

 

10. Prove all MOD interval monoids S = {[0, m), ×} are 

Smarandache semigroups. 

 

 

11. Prove or disprove MOD interval monoids S = {[0, 24), ×} 

has more number of zero divisors than the MOD interval 

monoid R = {[0, 43), ×}. 

 

12. Can P = {[0, p), ×} (p a prime) the MOD interval monoid 

have infinite number of pseudo zero divisor? 

 

 

13. Can P in problem (12) have zero divisors which are not 

pseudo zero divisors? 

 

 

14. Is it ever possible to find MOD interval real semigroups 

(monoids) which can have MOD interval ideals which is of 

finite order?  

 

Justify your claim. 

 

 

15. Let S = {[0, 23), +, ×} be the MOD interval pseudo real ring. 

 

i) Find all zero divisors of S. 

ii) Can S have infinite number of zero divisors? 

iii) Can S have idempotents? 

iv) Can S have pseudo zero divisors? 

v) Can S have S-units, S-idempotents and S-zero 

divisors? 

vi) Can S have ideals of finite order? 

vii) How many of the subrings of S are of finite order? 

viii) Find all pseudo ideals of S. 

ix) Can S have S-pseudo ideals? 
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x) Can S have S-subrings of infinite order? 

xi) Is S a S-pseudo interval ring? 

 

 

16. Let P = {[0, 145), +, ×} be the MOD real interval pseudo 

ring. 

 

Study questions (i) to (xi) of problem (15) for this P. 

 

 

17. Let S = {[0, m), +, ×, m a composite number} be the MOD 

real interval pseudo ring. 

 

Study questions (i) to (xi) of problem (15) for this S. 

 

 

18. Let W = {[0, p), +, ×; p a prime} be the MOD real interval 

pseudo ring.  

 

Study questions (i) to (xi) of problem (15) for this W. 

 

 

19. What are the distinct and special features enjoyed by  

N = {[0, m)I; I
2
 = I}? 

 

i) Is N a group under +? 

ii) Can{N, ×} be a semigroup? 

iii) Can{N, +, ×} be a MOD pseudo interval neutrosophic 

ring? 

 Study all properties of N, 1 < m < ∞. 

 

20. What are the special features enjoyed by MOD interval finite 

complex modulo integers [0, m)iF, 
2

Fi  = m – 1? 

 

21. Prove this set [0, m)iF is not closed under product operation. 

 

22. Show the MOD interval dual numbers [0, m)g, g
2
 = 0 behave 

in a very different way from the other MOD intervals. 
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23. Obtain all the special features enjoyed by MOD special dual 

like numbers interval [0, m)h, h
2
 = h; 1 < m < ∞. 

 

24. Prove W = {[0, 23)h, h
2
 = h, +} is a MOD interval special 

dual like number group of infinite order. 

 

P1 = Z23h is a subgroup of W of order 23. 

P2 = {0, 0.1h, 0.2h, …, h, …, 20h, 20.1h, …, 22h, 22.4h, 

22.5h, …, 22.9h, +, h
2
 = h} is also subgroup of finite order 

in the MOD interval dual like number group W = {[0, 23)h, 

h
2
 = h, +}.  

 

Find all finite number of MOD interval special dual like 

number subgroups. 

 

 

25. Let N = {[0, 42)h, h
2
 = h, +} be the MOD interval special 

dual like number group. 

 

i) Find the number of subgroups of finite order. 

ii) Find the number of subgroups of infinite order. 

 

 

26. Let T = {[0, 31)h, h
2
 = h, +} be the MOD interval special 

dual like number group.  

 

Study questions (i) and (ii) of problem (25) for this T. 

 

 

27. Find all special properties satisfied by the MOD interval 

special dual like number semigroup {[0, m)h, h
2
 = h, ×}  

(1 < m < ∞). 

 

 

28. Let B = {[0, 20)h, h
2
 = h, ×} be the MOD interval special 

dual like number semigroup. 
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i) Find the number of finite order subsemigroups of B. 

ii) Find all infinite order subsemigroups of B. 

iii) Can B ever be a S-semigroup? 

iv) Find all ideals of B. 

v) Can ideals of B be of finite order? Justify your claim. 

vi) Find any S-ideal of B. 

vii) Find all idempotents and S-idempotents of B. 

viii) Find all zero divisors and S-zero divisors of B. 

ix) Find any other special feature enjoyed by B. 

 

 

29. Let S = {[0, 23)h, h
2
 = h, ×} be the MOD interval special 

dual like number semigroup. 

 

Study questions (i) to (ix) of problem (28) for this S. 

 

 

30. Let M = {[0, 45)h, h
2
 = h, ×} be the MOD interval special 

dual like number semigroup. 

 

Study questions (i) to (ix) of problem (28) for this M. 

 

 

31. Let A = {[0, 26)h, h
2
 = h, +, ×} be the MOD interval special 

dual like number pseudo ring. 

 

i) Find the number of subrings which are not pseudo in 

A. 

ii) Can A be a S-ring? 

iii) Can A be a pseudo ring which has zero divisors as 

well as S-zero divisors? 

iv) Can A have S-idempotents? 

v) Can A have S-ideals? 

vi) Can A have ideals of finite order? 

vii) Can A have a subfield of infinite order? 

viii) Obtain any other special feature enjoyed by A. 
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32. Let M = {[0, 24)h, h
2
 = h, +, ×} be the MOD interval pseudo 

special dual like number ring. 

 

Study questions (i) to (viii) of problem (31) for this M. 

 

 

33. Let N = {[0, 47)h, h
2
 = h, +, ×} be the MOD interval pseudo 

special dual like number ring. 

 

Study questions (i) to (viii) of problem (31) for this N. 

 

 

34. Let Z = {[0, 248)h, h
2
 = h, +, ×} be the MOD interval special 

dual like number pseudo ring. 

 

Study questions (i) to (viii) of problem (31) for this Z. 

 

 

35. Obtain all special features associated with MOD interval 

special dual like number algebraic structures. 

 

 

36. Let S = {[0, 28)k, k
2
 = 27k, +} be the MOD interval special 

quasi dual number group. 

 

i) Prove o(S) = ∞. 

 

ii) How many subgroups of finite order does S have? 

 

iii) Find the number of subgroups of S of infinite order. 

 

iv) Obtain a transformation from group (–∞k, ∞k) → S. 

(k
2
 = –k in (–∞k, ∞k)). 

 

 

37. Let M = {[0, 15)k, k
2
 = 14k, +} be the MOD interval special 

quasi dual number group. 

 

Study questions (i) to (iv) of problem (36) for this M. 
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38. Let S = {[0, 47)k, k
2
 = 46k, +} be the MOD interval special 

quasi dual number group. 

 

Study questions (i) to (iv) of problem (36) for this S. 

 

 

39. Let B = {[0, 45)k, k
2
 = 44k, ×} be the MOD interval special 

quasi dual number semigroup. 

 

i) Find all finite order subsemigroups of B. 

ii) Can B have ideals of finite order? 

iii) Find all infinite subsemigroups of B which are not 

ideals. 

iv) Can B be a S-semigroup? 

v) Find all pseudo zero divisors of B. 

vi) Find all zero divisors which are not pseudo zero 

divisors of B. 

vii) Can B have units? 

viii) Find all idempotents and S-idempotents of B. 

ix) Can B have S-zero divisors? 

x) Can B have S-ideals? 

xi) Obtain any other special or interesting property 

associated with B. 

 

 

40. Let M = {[0, 23)k, k
2
 = 22k, ×} be the MOD interval special 

quasi dual number semigroup. 

 

Study questions (i) to (xi) of problem (39) for this M. 

 

 

41. Let W = {[0, 24)k, k
2
 = 23k, ×} be the MOD interval special 

quasi dual number semigroup. 

 

Study questions (i) to (xi) of problem (39) for this W. 
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42. Let T = {[0, 42)k, k
2
 = 41k, +, ×} be the MOD interval 

special quasi dual number pseudo ring. 

 

Study all questions (i) to (xi) of problem (39) by 

appropriately changing from semigroups to pseudo rings. 

 

 

43. Let S = {[0, 53)k, k
2
 = 52k, +, ×} be the MOD interval 

special quasi dual number pseudo ring. 

 

Study questions (i) to (xi) of problem (39) by appropriately 

changing from semigroup to pseudo ring. 

 

 

44. Let P = {[0, m)k, k
2
 = (m – 1)k, +, ×} be the MOD interval 

special quasi dual number pseudo ring. 

 

Study questions (i) to (xi) of problem (39) by appropriately 

changing from semigroup to pseudo ring when 

 

i. m is a composite number. 

 

ii. m is a prime number. 

 

 

45. Prove there exists a MOD transformation from the ring  

R = {(–∞k, ∞k); k
2
 = –k, +, ×} to S = {[0, m)k,  

k
2
 = (m – 1)k, +, ×}. 

 

 

46. Obtain any other special features of MOD interval pseudo 

rings. 

 

  
 



 
 
 
  
Chapter Two 
 

 
 
PROBLEMS ASSOCIATED WITH MOD 

PLANES  
 

 In this chapter we propose problems simple, difficult as well 

as open conjectures related to the seven types of MOD planes. To 

make this chapter a self contained one we just recall or describe 

these notions very briefly. However for more about these 

notions please refer [26-7].  Throughout this book the real plane 
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Figure 2.1 
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is a four quadrant plane as shown above.  

The MOD real plane Rn(m); 1 < m < ∞ is a plane which  has 

only one quadrant.  

As it is the small size plane built on modulo integers it will 

be known as MOD-plane.  

We will give some examples of MOD real planes. 

 

 
Figure 2.2 

 

is a four quadrant plane as shown above.  

 

The above diagram is the MOD real plane Rn(m) (1 < m < ∞) 

and elements of Rn(m) = {(a,  b) where a,b ∈ [0, m); that is a 

and b are elements of the MOD interval [0,m)} 

 

 Thus Rn(7), Rn(148), Rn(251), Rn(10706), Rn(20451) and so 

on are all MOD real planes and the main advantage of using MOD 

real planes is that MOD real planes are infinite in number 

whereas the real plane is only one.   

Several problems in this direction are suggested at the end 

of this chapter. 

 Next we recall the description of the MOD complex modulo 

integer plane Cn(m) ; 2 ≤ m < ∞. 

 Cn(m) = {a + biF | a, b ∈ [0, m), 2

Fi  = (m – 1)}.  

Just we give the diagram of this MOD complex modulo 

integer plane in the following. 
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       Figure 2.3 
 

Any point a +  biF is represented as (a, b) in the MOD 

complex modulo integer plane Cn(m). Thus in reality we have 

one and only one complex plane given b y the following figure. 

 

-7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9

-8

-7

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

7

8

x

i

 
       Figure 2.4 
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However there are infinitely many MOD complex modulo 

integer planes given by Cn(m), Cn(5), Cn(2051), Cn(999991), 

Cn(7024) and so on. 

 

 Thus we can choose any appropriate complex modulo 

integer plane and work with the problem.  

 

Infact we have infinite choice in contrast with one and only 

one complex plane which is an advantage. 

 

 We have suggested problems at the end of the chapter some 

of which are normal and a few can be taken for future research. 

 

 Next we proceed onto describe the MOD neutrosophic 

planes I

nR (m) ;  2 ≤ m < ∞ in the following. 

 

 For a fixed positive integer m the MOD neutrosophic plane  
I

nR (m) = {a + bI | a, b ∈ [0, m) I
2
 = I} here the I is an 

indeterminacy which cannot be given a real value.  

 

This cannot be misunderstood for idempotent, when we see 

I × I = I it means, it is an idempotent but an indeterminate 

idempotent which cannot be described as transformation or as a 

matrix; however many times we may multiply an indeterminate 

with itself it will only continue to be an indeterminate I only. 

 

 This mention is made for one should not get confused with 

special dual like number planes.  

R(g) = {a + bg | g
2
 = g where g is a special dual like number}.  

 

This concept is abundant in linear operators which are 

idempotents. Lattices which are abundant in idempotents. 

 

 We will first describe the neutrosophic plane before we 

illustrate the MOD neutrosophic plane I

nR (m); 2 < m < ∞ by the 

following figure. 
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       Figure 2.5 
 

The above figure is a neutrosophic infinite plane.  

We have one and only one neutrosophic infinite plane.   

But we have infinitely many MOD neutrosophic planes 
I

nR (m); 2 ≤ m < ∞; we just give one illustrative example. 

 
Figure 2.6 
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Any point a + bI in I

nR (m) is denoted in the MOD 

neutrosophic plane by (a,b).  

 

Thus a + bI = (a, b) is the representation of its elements in 

the MOD neutrosophic planes. 

 

Once again we have infinitely many MOD neutrosophic 

planes whereas there is one and only one neutrosophic plane. 

This is advantageous while working with real world problem for 

instead of working with one infinite structure we can 

appropriately use any one of the compact one quadrant MOD 

neutrosophic plane which has also the capacity to have infinite 

values but they can be realized as bounded infinities. For a 

precise transformation exists from the four quadrant plane to 

this one quadrant plane. 

 

Several problems can be proposed in this direction which is 

done in at the end of this chapter. 

 

Next we proceed onto describe the dual number plane and 

the  MOD dual number plane in the following. 

 

A dual number plane R(g) is an infinite four quadrant 

infinite plane where R(g) = {a + bg | a, b ∈ R and g
2
 = 0} is as 

follows  
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Figure 2.7 

 

Any point a + bg is denoted by (a, b) in R(g).  

 

This four quadrant dual number plane is unique and there is 

one and only one such plane. 

 

However the MOD dual number planes are infinite in 

number and for any positive integer m it is denoted by  
g

nR (m) = {a + bg | a, b ∈ [0, m); g
2
 = 0} ; 2 ≤ m < ∞.  

 

So there are infinitely many MOD dual number planes. 

 

The dual number plane g

nR (m) is described by the 

following figure: 
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Figure 2.8 

 

Thus as per need of the problem which needs the notion of 

dual numbers these planes can be used.  

 

For g

nR (2), g

nR (3), g

nR (12), g

nR (18), g

nR (204899) and so 

on are some of the MOD dual number planes. 

 

Problems related with them is given at the end of this 

chapter.  

Infact one can built all algebraic structures, groups, 

semigroups and pseudo rings; but this is the only algebraic 

structure which can give infinite order zero square semigroups 

and rings (the rings are not pseudo). 

 

Next we proceed onto describe special dual like number 

plane and MOD special dual like number planes in the following. 

 
g

nR = {(a + bg | g
2
 = g, a, b ∈ R} where a + bg = (a,  b) is 

the notation used. 
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Figure 2.9 

 

However in some places we have used Rn(h) instead of 

Rn(g) but from the very contest one can easily understand 

whether we are using dual number or special dual like number. 

 

Any point a + bg in R(g) is denoted in the special dual like 

number plane by (a, b). 

 

Next we proceed onto describe the notion of MOD special 

dual like number planes in the follows. 

 
g

nR (m) = {a + bg | a , b ∈ [0, m), g
2
 = g} denotes the MOD 

special dual like number plane.  

The diagrammatic representation of g

nR (m) is as follows. 
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Figure 2.10 

 

Any point a + bg in the MOD special dual like number plane 

is  denoted by (a, b). 

 

We have infinitely many special dual like number planes for 

m can vary in the infinite interval 2 ≤ m < ∞. 

 
g

nR (10), g

nR (18), g

nR (18999), g

nR (250) and so on are some 

of the examples of MOD special dual like number planes. 

 

As per need of the problem one can use any appropriate m; 

2 ≤ m < ∞, these planes for storage space is comparatively less 

when compared with R(g). 

 

Problems for the reader are given at the end of this chapter.  

 

Some examples of special dual like numbers in the real 

world problems are square matrices A with A × A = A, any  

p × q matrices B with  B ×n B = B where × is the usual product 

and ×n is the natural product of matrices.  
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Also we have linear operators which can contribute to 

special dual like numbers. 

 

Finally one can get several special dual like numbers from 

Zt; the modulo integers where t is a composite number. 

 

Also semi lattices and lattices are abundant with special 

dual like numbers. 

 

Next we proceed onto describe the infinite plane of special 

quasi numbers and MOD special quasi dual numbers. 

Let R(g) = {a + bg | g
2
 = –g, a, b ∈ R} be the infinite special 

quasi dual  number plane.  

 

We have only one such plane. 

 

However there are infinitely many MOD special quasi dual 

number planes which will be described. 

 

The special quasi dual number plane R(g) is as follows. 
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Figure 2.11 
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Any point a + bg ∈ R(g) is only represented as (a, b) in 

R(g), the real special quasi dual number plane.  

Now the MOD special quasi dual number plane.  

 

Now the MOD special quasi dual number plane g

nR (m) = {a 

+ bg | a, b ∈ [0, m) and g
2
 = (m – 1) g}, 2 ≤ m < ∞. Here also 

any a + bg is represented as (a, b) in the MOD special quasi dual 

number plane 
g

nR (m).  

 

The following diagram gives the MOD special quasi dual 

number plane g

nR (m). 

 
       Figure 2.12 

 

Now using six types of MOD planes we propose the 

following problems.  

 

The authors wish to keep on record that all these definitions 

and notions are recalled to make this book self contained.  

 

As the book is problems on MOD structures all the more we 

wanted to make it as self contained as possible. 
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Problems 
 

1. What are the advantages of using MOD real planes instead 

of the real plane? 

2. Can one say use of MOD real planes saves both time and 

economy? 

 

3. What are the ways of defing the concept of distance 

between two points in the MOD real plane;  

Rn(m), 2 ≤ m < ∞? 

 

4. Illustrate the situation in problem (3) by some examples 

(that is used a fixed m). 

 

5. Can the concept of analytical geometry be employed on 

MOD real planes? 

 

6. Can the notion of Euclidean geometry be used on MOD 

real planes? 

 

7. Give some nice problems in which MOD real planes would 

be  better than usual real plane. 

 

8. Can the concept of continuity be defined in MOD real 

planes? 

 

9. Does the notion of continuity depends on the value of the 

m of the MOD real plane Rn(m) and the function? 

 

10. Give examples of functions which are continuous in the 

real plane and are not continuous in the MOD real plane. 

 

11. Can a non continuous function in the real plane be 

continuous in the MOD real plane Rn(m) depending on m? 

 

12. Can you give examples of functions in the MOD real plane 

which are defined but not defined in the real plane? 
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13. Clearly 
3x

1

−
 = f(x) is not defined in the real plane at  

x = 3. 

  

 i) Prove or disprove f(x) = 
1

x 3−
  is defined in the MOD 

real plane Rn(m) (for some suitable m). 

 

 ii) In which of the other MOD real planes f(x) = 
1

x 3−
 is 

defined? 

 

14. Clearly 
1

(x 2) (x 7) (x 3)− − +
 = f(x) is not defined in  

 

 the real plain at x = 2, x = 7 and x =  –3. 

 

 i) Give all MOD real planes in which  

 

  f(x) = 
1

(x 2) (x 7) (x 3)− − +
 is defined at all points of  

 

  the MOD real plane. 

 

 ii) Can we have more than one real MOD plane for which 

the above statement (i) is true? 

 

15. Can the notion of a circle be defined in the MOD real 

plane Rn(m)? 

 

16. Prove in polynomial real planes Rn(m)[x] as the  

polynomials in Rn(m)[x] do not satisfy distributive law 

the notion of solving equations is an impossibility in 

Rn(m)[x]. 

 

17. Illustrate the situation of problem in (16) for m = 5 and  

m = 12. 
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18. Prove G = {Rn(m), +} is an infinite real MOD plane group 

under +. 

 

19. Can G in problem 18 have decimals (that is elements x ∈ 

Rn(m) \ {(a,b) / a,  b ∈ Zm} such that 
t

x∑ = 0 for some t? 

20. Prove S = {Rn(m), ×} is an abelian MOD real plane 

semigroup. 

 

21. Prove or disprove S is not always a Smarandache 

semigroup. 

 

22. Prove S = {Rn(m), ×} have infinite number of zero 

divisors. 

 

23. Prove or disprove S = {Rn(m), ×} has only finite number 

of idempotents. 

 

24. Can S = {Rn (m), ×} have nilpotent elements of order 

greater than or equal to 2? 

 

25. Can S = {Rn(m), ×} have torsion free elements? 

 

26. Can S = {Rn(m), ×} have torsion elements which are 

infinite in number? 

 

27. Will S = {Rn(m), ×} have ideals which are of finite order? 

 

28. Study problem (27) for S = {Rn(28), ×}. 

 

29. Find all subsemigroups all of which are infinite order but 

are not ideals of S = {Rn(47), ×}. 

 

30. Can S = {Rn(48), ×} have infinite number of 

subsemigroups of finite order? 

 

31. Let M = {Rn(11), ×} be the semigroup of MOD real plane 

Rn(11). 
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 i)  Find all zero divisors of M. 

 ii) Find all idempotents of M. 

 iii) Find all the ideals of M. 

 iv) Can M have ideals of finite order? 

 v) Can M have torsion free elements? 

 vi) Can M  have infinite number of torsion elements? 

 vii) Prove M can have nilpotent elements of order  

   greater than or equal to two. 

 viii) Can M have infinite number of units? 

 ix) Obtain all special properties associated with M. 

 

32. Let R = {Rn(m), × +} be the MOD pseudo ring. 

 

 i) Can we have elements  

  x, y, z ∈ Rn(m) \ {(a, b) | a, b ∈ Zm} which satisfy the 

distributive law x × (y + z) = x × y + x × z ? 

 

 ii) Is the non distributive nature in R an advantage to 

problems in general or disadvantage to those 

problems? 

 

 iii) Can one always accept that all natural problems for 

research really satisfy the distributive laws? Justify! 

 

 iv) Can we prove all practical problems in the world 

satisfy distributive law? 

 

 v) Can one just acknowledge that the non acceptance of 

distributive law does not drastically affect the solution 

of the problem. 

 

 vi) Under any of these circumstances can one claim that 

use of MOD real plane pseudo rings will give more 

accurate answer if appropriately adopted to certain 

problems. 

 

 vii) Find all idempotents of {Rn(m),+ ×} the pseudo  

  ring. 
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 viii) Find all units of {Rn(m), +, ×}. 

 

 ix) Can one say the number of units in both {Rn(m), ×} 

and that of {Rn(m), +, ×} have same number of units? 

 

 x)   Can we prove both {Rn(m), ×} and {Rn(m), +, ×}  

    have the same number of idempotents? 

 

 xi) Can we say both {Rn(m), ×} and {Rn(m), + ×} have 

same number of zero divisors? 

 

 xii) Obtain any of the special features enjoyed by 

{Rn(m), +, ×}. 

 

 

33. Let B = {Rn(23), +, ×} be the MOD real plane pseudo ring.  

 

 Study questions (i) to (xii) of problem (32) for this B. 

 

 

34. Study questions (i) to (xii) of problem (32) for this  

M = {Rn(48), +, ×}. 

 

 

35. Let B = {Rn(m)[x]} be the MOD real plane polynomials. 

 

 i) If p(x) ∈ B is of degree n prove 
dp(x)

dx
 is not a MOD 

polynomial  of degree (n – 1). 

 

 ii) Prove ∫ p(x) dx may or may not be defined in B. 

 

 iii) Prove if p(x) is a MOD polynomial of degree n then 

p(x) need not have n and only n roots. 

 

 iv) Prove p(x) can have finite number of units less than n. 
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 v) Prove p(x) ∈ B can have more than n roots even 

though p(x) is a polynomial of degree n in B. 

 

 vi) Can one say as distributive law is not true we have 

p(x) = (x – α1) (x – α2) . . . (x – αn) ≠ x
n
 – (α1 + α2 + 

… + αn) x
n–1

 + 
i j≠

∑ αiαj x
n–2

 + … ∓ α1 … αn = q(x) 

in general. 

 

 vii)  Prove p(α1) = 0 then q(α1) ≠ 0 in general. 

 

 viii) Does there exist a p(x) of degree n with coefficients 

from Rn(m) \ {(a,b) / a, b ∈ Zn} satisfy the equality.  

 

  (x – α1) (x – α2) … (x – αn) = x
n
 – (α1 + α2 + … + αn) 

x
n–1

 +∑
≠ ji

αiαj x
n–2

 … + α1 … αn? 

 

 ix) Let p(x) = (x + 0.312) (x + 2.5302) (x + 4.2) ∈ Rn(5); 

can equation in (viii) be true for this p(x). 

 

36. Can we have polynomials in Rn(m)[x] so that the 

derivatives are as in case of R[x]? 

 

37. Can we have p(x) ∈ Rn(m)[x] so that the integral exists as 

in case of p(x) ∈ R[x]? 

 

38. Give examples of polynomials in Rn(m)[x] in which both 

integral and derivatives does not exists.  

 

39. Given a MOD polynomial p(x) in Rn(m)[x] for which 

integral exist but derivatives does not exist. 

 

40. Give an example of a MOD polynomial p(x) in Rn[m][x] 

for which derivative exist but integral does not exist. 

 

41. What are the special features enjoyed by Cn(m)? 

 

42. Can Cn(m) have units? 
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43. Can Cn(m) have idempotents? 

 

44. Prove {Cn(m), ×} is only a semigroup of infinite order. 

 

45. Obtain all the special features enjoyed by {Cn(m), +}. 

 

46. Prove Cn(45) have subgroups of finite order. 

 

47. What are the special features enjoyed by {Cn(m), ×}? 

 

48. Find all zero divisors of {Cn(m), ×}. 

 

49. Will {Cn(m), ×} be always a S-semigroup? 

 

50. Can ideals of {Cn(m), ×} be of finite order? 

 

51. Obtain any other differences between {Cn(m), ×} and 

{Rn(m), ×}. 

 

52. Prove {Cn(m), +, ×} is a MOD complex modulo integer 

pseudo ring. 

 

53. Let P = {Cn(45), ×} be the MOD complex modulo integer 

semigroup.  

 

 Study questions (i) to (ix) of problem (31) for this P. 

 

54. Let M = {Cn(47), ×}  be the MOD complex modulo integer 

semigroup.   

 

 Study questions (i) to (ix) of problem (31) for this M. 

 

55. Let W = {Cn(15), ×, +} be the MOD complex modulo 

integer pseudo ring. 

  

 i) Study questions (i) to (xii) of problem (32) for this W. 
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 ii) Obtain any other special and interesting feature 

enjoyed by W. 

 

56. Let V = {Cn(37), ×, +} be the MOD complex modulo 

integer pseudo ring.  

 

 Study questions (i) to (xii) of problem (32) for this V. 

 

57. Let M = {Cn(48), + ×} be the MOD complex modulo 

integer pseudo ring.  

 

 Study questions (i) to (xii) of problem (32) for this M. 

 

58. Characterize all properties that can be associated with the 

MOD complex modulo integer plane set {Cn(p)}, p a prime 

or a composite number. 

 

59. Let = { I

nR (m)} be the MOD neutrosophic plane.  

 

 Find all the special features enjoyed by the MOD 

neutrosophic plane. 

 

60. Let = { I

nR (20), ×} be the MOD neutrosophic semigroup. 

 

 i)  Find all ideals of M. 

 ii) Prove ideals of M are of infinite order. 

 iii) Find all subsemigroups of finite order. 

 iv) Find all subsemigroups of infinite order which are  

   not ideals. 

 v) Find all zero divisors and S-zero divisors of M. 

 vi) Find all idempotents of M. 

 vii) Find nilpotents of order higher than two in M. 

 viii) What are the special features enjoyed by M? 

 ix) Can M be a S-semigroup? 

 x) Can M have S-ideals? 

 

61. Let P = { I

nR (37), ×} be the MOD neutrosophic semigroup.  
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 Study questions (i) to (x) of problem (60) for this P. 

 

62. Let Q = { I

nR (42), +, ×} be the MOD neutrosophic pseudo 

ring. 

 

 i)  Find zero divisors of Q. 

 

 ii) Can Q have S-zero divisors? 

 

 iii) Prove Q has idempotents. 

 

 iv) Can Q have S-idempotents? 

 

 v) Prove Q has ideals of only infinite order. 

 

 vi) Prove Q has S-ideals. 

 

 vii) Prove Q has subrings of finite order. 

 

 viii) Can Q have pseudo subrings of infinite order which  

   are not ideals of Q? 

 

 ix) Obtain any other special feature enjoyed by Q. 

 

 x) Compare MOD neutrosophic pseudo rings with the  

  MOD complex modulo integer pseudo ring and MOD  

  real pseudo ring. 

 

63. Let Q = {
I

nR (53), +, ×} be the MOD neutrosophic pseudo 

ring.  

 

 Study questions (i) to (x) of problem (62) for this Q. 

 

64. Let T = {
I

nR (50), +, ×} be the MOD  neutrosophic pseudo 

ring.  

 

 Study questions (i) to (x) of problem (62) for this T. 
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65. Let W = {
I

nR (m); g
2
 = 0; q ≤ m < ∞} be the MOD dual 

number plane.  

 

 i)  Obtain all the special features enjoyed by W. 

 

 ii) Can the distance concept be defined on this plane? 

 

 iii) Can a circle be defined on this plane? 

 

 iv) Prove {W, ×} = S is the MOD special dual number  

   semigroup of infinite order. 

 

 v) Can S have infinite number of idempotents? 

 

 vi) Prove S has infinite number of zero divisors? 

 

 vii) Prove {W, ×} = S has zero square subsemigroups. 

 

 viii) S = {W, ×} has only ideals of infinite order prove. 

 

 ix) Prove S = {W, ×} have subsemigroups of infinite  

   order which are not ideals. 

 

 x) Obtain any other special feature enjoyed by  

   S = {W, ×}. 

 

 xi) Can S have infinite number of units? 

 

 xii) Can these MOD dual number semigroup find any  

   applications to real world problems? 

 

 xiii) What are the advantages of using these MOD dual  

   number planes in the place of dual number plane? 

 

 xiv) Study all the special features enjoyed by  

   B = {W, +}, the MOD dual number group. 

 

 xv) Can B have subgroups of finite order? 
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 xvi) Is every element in B a torsion element?  

   Justify your claim! 

 

 xvii) Study the algebraic structure enjoyed by the MOD  

   dual number pseudo ring where M = {W, +, ×}. 

 

 xviii) Prove M has subsemigroups of infinite order which  

   are not pseudo. 

 

 xix) Prove all ideals of M are of infinite order. 

 

 xx) Prove or disprove all zero divisors of M and that of  

   the MOD semigroup S are the same. 

 

 xxi) Prove or disprove all units in S and M are same. 

 

 xxii) Prove or disprove all idempotents of S and M are  

   the same. 

 

 xxiii) Find all subrings of M of finite order. 

 

 xxiv) Obtain any other special feature enjoyed by M. 

 

66. Let V = { g

nR (58), g
2
 = 0} be the MOD dual number plane. 

 

 i)  Study questions (i) to (xxiv) of problem (65) for  

   this V. 

 

 ii) Obtain any other feature which is unique about V. 

 

67. Let T = { h

nR (m), h
2
 = h} be the MOD special dual like 

number plane. 

 

 i)  Derive all the special features enjoyed by T. 

 

 ii) Can T find nice applications of the real world  

   problem? 

 

 iii) {T, ×} = W be the MOD special dual like number  



54 Problems on MOD Structures 

 

 

 

 

 

   plane semiring, prove W is a commutative  

   semigroups of infinite order. 

 

 iv) Prove all ideals of W are of infinite order. 

 

 v) Find the number of subsemigroups of finite order. 

 

 vi) Show W can have subsemigroups of infinite order  

   which are not ideals. 

 

 vii) Find all zero divisors of W. 

 

 viii) Can W have S-zero divisors? 

 

 ix) Characterize all idempotents of W. 

 

 x) Can W have S-units? 

 

 xi) Prove or disprove W can have only finite number of 

  units. 

 

 xii) Prove {T, +} = A be the MOD special dual like  

   number group, A has infinite order subsemigroups. 

 

 xiii) How many subgroups of A are of finite order for a  

   given M? 

 

 xiv) Prove S = {T, +, ×} be the MOD special dual like  

   number pseudo ring does not satisfy the distributive  

   law. 

 

 xv) How many subrings of S are of finite order? 

 

 xvi) Find all zero divisors which are not S-zero divisors  

   of S (at least characterize). 

 

 xvii) Can S have infinite number of units?  

 

 xviii) Does S contain infinite number of idempotents? 
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 xix) Find all idempotents of S which are not  

   S-idempotents. 

 

 xx) Give any other special feature enjoyed by these  

   MOD special dual like number of planes? 

 

68. Let W = { h

nR (53), h
2
 = h} be the MOD special dual like 

number plane.  

 

 Study questions (i) to (xx) of problem (67) for this W. 

 

 

69. Let M = { h

nR (48), h
2
 = h} be the MOD special dual like 

number plane.  

 

 Study questions (i) to (xx) of problem (67) for this M. 

 

70. Let P = {
h

nR  (256), h
2
 = h} be the MOD special dual like 

number plane.  

 

 Study questions (i) to (xx) of problem (67) for this M. 

 

71. Let P = {
h

nR (49) |  h
2
 = h} be the  MOD special dual like 

number plane.  

 

 Study questions (i) to (xx) of problem (67) for this P. 

 

72. Let S  = { k

nR (m), k
2
 = (m – 1)k} be the MOD special quasi 

dual number plane. 

 

 i) Study the special and distinct features associated 

with S. 

 

 ii) What are advantages of using the MOD special quasi 

dual number planes? 
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 iii) Give some applications of this MOD special quasi 

dual number planes to real world problems. 

 

 iv) Prove the MOD special quasi dual number plane 

semigroup (S, ×} is commutative and is of infinite 

order. 

 

 v) Prove all ideals of {S, ×} are of infinite order. 

 

 vi) Find all subsemigroups of {S, ×} which are of finite 

order. 

 

 vii) What are the advantages of using this semigroup 

{S, ×} instead of the MOD real semigroup  

{Rn(m),×} or {Cn(m), ×} or {
g

nR (m), ×} or 

{ I

nR (m), ×}? 

 

 viii) Find all units and S-units of {S, ×}. 

 ix) Can we claim {S, ×} has infinite number of zero 

divisors? 

 

 x) Find all idempotents of {S, ×} which are not S-

idempotents of {S, ×}. 

 

 xi) Study the special properties enjoyed by the MOD 

special quasi dual number group {S, +}. 

 

 xii) Find all subgroups of finite order in {S, +}. 

 

 xiii) Can {S, +} have subgroups of infinite order, infinite 

in number or only finite in number? 

 

 xiv) Prove {S, + , ×} is only a pseudo MOD special quasi 

dual number ring of infinite order. 

 

 xv) Find all subrings of {S, +, ×} of finite order. 

 

 xvi) Can {S, +, ×} have infinite number of units? 
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 xvii) Does {S, +, ×} contain S-units? 

 

 xviii) Can {S, +, ×} have infinite number of idempotents? 

 

 xix) Find all S-idempotents of {S, +, ×}. 

 

 xx) Can {S, +, ×} have infinite number of zero 

divisors? 

 

 xxi) Characterize all S-zero divisors of {S, +, ×}. 

 

 xxii) Prove all ideals of {S, +, ×} are only of infinite  

   order. 

 

 xxiii) Obtain any other interesting special feature enjoyed  

   by {S, +, ×}. 

 

73. Let S1 = { k

nR (19), k
2
 = 18k} be the MOD special quasi 

dual number plane.  

 

 i)  Study questions (i) to (xxii) of problem (72) for this  

   S1. 

 

 ii) Does the product reflect on of the properties as   

   m = 19 is a prime? 

 

74. Let B = { k

nR (24), k
2
 = 23k} be the MOD special quasi 

dual number plane. 

 

 i)  Study questions (i) to (xx) of problem (72) for this  

   B. 

 

 ii) Does the fact m = 24 a composite number have any 

impact on number of subrings, number of zero 

divisors and number of units? 

 

 iii) Compare S1 of problem (73) with this B. 
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75. Let M = { k

nR (3
7
), k

2
 = (3

7
– 1)k} be the MOD special quasi 

dual number plane.  

 

 i) Study questions (i) to (xx) of problem (72) for this 

M. 

 

 ii) As m = 3
7
 does it have any impact on the number of 

idempotents of M or on S-idempotents (if any) on 

M. 

 

 iii) Compare M of this problem with B and S1 of 

problem (74) and (73) respectively. 

 

 iv) Can we say if m is a power of a prime number some 

of the properties enjoyed by these MOD special 

quasi dual number plane is distinctly different from 

when m is a composite number? 

 

76. Compare the algebraic structures enjoyed by the planes 

Rn(m), I

nR (m), Cn(m), g

nR (m), h

nR (m) and k

nR (m) when 

they are defined on them. 

 

 i)  Which of the 6 planes is a very powerful as a  

   group? 

 

 ii) Which of the 6 planes will find more applications? 

 

 iii) Which of the six planes behaves more like the real  

   plane? 

 

  



 
 
 
 
 

 

 

 
Chapter Three 
 
 

 
 
PROBLEMS ON SPECIAL ELEMENTS IN MOD 
STRUCTURES  
 
 
 

 In this chapter for the first time we propose the following 

problems some of which are difficult and others are at research 

level. 

 

 We have already recalled the notion of MOD interval and 

MOD planes of different types [26, 30].  

 

In the first place the concept of special pseudo zero divisors 

was defined  that is in [0,5); 4 is a unit but 2.5 ∈ [0, 5) is such 

that 2.5 × 4 ≡ 0 (mod 5) as well as 2.5 × 2 ≡ 0 (mod 5) [21,24]. 

 

 Thus 2 and 4 are units as 2 × 3 ≡ 1 (mod 5) and 4 × 4 ≡ 1 

(mod 5); but they also lead to zero divisors so we define them as 

special pseudo divisors.  

 

For in usual algebraic structures this sort of situation will 

never occur. 
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 Only due to MOD intervals such sort of special pseudo 

divisors in possible. 

 

 Let [0, 8) be the MOD interval. Let 5 ∈ [0,8); clearly  

5 × 5 = 1 (mod 8). 

 

 Now for 1.6 ∈ [0,8) we have 1.6 × 5 = 8 (mod 8) = 0. Thus 

1.6 is a special pseudo MOD zero divisor but 5 is a unit.  

 

Will 1.6 ∈ [0,8) be a unit is another open conjecture?  

 

That is can for some t; (1.6)
t
 = 1 for some t > 2.  

 

Yet 5 × 1.6 = 0.  

 

Can this sort of mathematical magic occur?  

 

This is a open conjecture which is given in the problems 

suggested at the end of the chapter. 

 

 Now baring the study of these MOD interval special pseudo 

zero divisors we can have these types of special MOD pseudo 

zero divisors in the plane. 

 

 They happen to be different from the special MOD interval 

pseudo zero divisors. 

 

 We will illustrate these by the following examples. 

 

 Let R = Rn(7) = {(x, y) | x, y ∈ [0.7)}.   

 

Take (3.5, 1.75) ∈ R; we have (2, 4) ∈ R.  

 

(3.5, 1.75) × (2, 4) = (0, 0) is again a MOD pseudo zero 

divisors of the plane. 

 

 Consider (1.75, 0), (4, 3.116) ∈ R.   

 



Problems on Special Elements in MOD Structures 61 
 

 

 

 

 

Clearly (1.75, 0) × (4, 3.116) = (0, 0) is a MOD special 

pseudo zero divisor.   

 

So finding all pseudo zero divisors, finding idempotents and 

S-idempotents of R is a challenging problem. 

 

 Similarly finding MOD nilpotents and units from  

(x, y) ∈ Rn(7) \ (Z7 × Z7) happens to be a open conjecture. 

 

 Even finding the number of elements which are units and 

nilpotents happens to be a very difficult problem.  

 

We suggest the following problems. 

 

 

 

Problems 

 

1. Let B = {[0, m), ×} be the MOD real interval under product. 

 

i) Can [0,m) have infinite number of units? 

ii) Can [0, m) have MOD pseudo special zero divisors? 

iii) Can the elements of [0, m) which is a special pseudo 

zero divisor be both the units?  

iv) Characterize all MOD pseudo special pseudo zero 

divisors? 

v) Characterize all torsion elements x ∈ [0, m) \ Zm. 

vi) Can x ∈ [0,m) \ Zm be idempotents? 

vii) Can x ∈ [0,m) \ Zm be S-units? 

viii) Can x ∈ [0,m) \ Zm be S-zero divisors? 

ix) Obtain any other special feature associated with it. 

 

2. Let P = {[0, m)k, ×} be the MOD special quasi dual number 

interval semigroup (k
2
 = (m – 1) k). 

 

 i)  Can P have the identity with respect to ×. 

 ii) Study questions (i) to (ix) of problem (1) for this P. 
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3. Let M = {[0,m) h, ×} be the MOD special dual like number 

(h
2
 = h) semigroup. 

 

 i)  What is the multiplicative identity of this semigroup? 

 ii) Study questions (i) to (ix) of problem (1) for this M. 

 

4. Let W = {[0, m)I, ×; I
2
 = I} be the MOD neutrosophic 

interval semigroup. 

 

 i)  Find the multiplicative identity of W. 

 ii) Study questions (i) to (ix) of problem (1) for this W. 

 iii) Obtain any applications of W as a MOD neutrosophic  

   set. 

 

5. Let S = {[0, 25)I, I
2
 = I, ×} be the MOD neutrosophic 

semigroup. 

 

 Study questions (i) to (ix) of problem (1) for this S. 

 

6. Let T = {[0, 47)I, I
2
 = I, ×} be the MOD neutrosophic 

semigroup. 

 

 Study questions (i) to (ix) of problem (1) for this T. 

 

7. Let V = {[0, 24)I, I
2
 = I, ×} be the MOD  neutrosophic 

semigroup. 

 

 Study questions (i) to (ix) of problem (1) for this V. 

 

8. Compare the MOD neutrosophic semigroups in problems 5, 

6 and 7. 

 

9. Let N = {[0,27), ×} be the MOD real interval semigroup. 

 

 Study questions (i) to (ix) of problem (1) for this N. 

 

10. Let Z = {[0, 48), ×} be the MOD interval real semigroup. 

 

 Study questions (i) to (ix) of problem (1) for this Z. 
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11. Let W = {[0, 53), ×} be the MOD interval real semigroup.  

 

 Study questions (i) to (ix) of problem (1) for this W. 

 

12. Compare the MOD interval real semigroups N, Z and W in 

problems 9, 10 and 11 respectively. 

 

13. Let S = {[0, 19) k, k
2
 = 18k, ×} be the MOD interval special 

quasi dual number semigroup. 

 

 Study questions (i) to (ix) of problem (1) for this S. 

 

14. Let D = {[0, 28)k, k
2
 = 27k, ×} be the MOD interval special 

quasi dual number semigroup. 

 

 Study questions (i) to (ix) of problem (1) for this D. 

 

15. Let F = {[0, 243)k, k
2
 = 242k, ×} be the MOD interval 

special quasi dual number semigroup. 

 

 Study questions (i) to (ix) of problem (1) for this F. 

 

16. Compare the MOD interval special quasi dual number 

semigroups S, D and F in problems 13, 14 and 15 

respectively. 

 

17. Let Y = {[0, 96)h, h
2
 = h, ×} be the MOD interval special 

dual like number semigroup. 

 

 i)  Study questions (i) to (ix) of problem (1) for this Y. 

 ii) Derive any other distinct feature enjoyed by Y. 

 

18. Let R = {[0, 47)h, h
2
 = h, ×} be the MOD interval special 

dual like number semigroup. 

 

 Study questions (i) to (ix) of problem (1) for this R. 
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19. Let P = {[0, 625) h, h
2
 = h, ×} be the MOD interval special 

dual like number semigroup. 

 

 Study questions (i) to (ix) of problem (1) for this P. 

 

20. Compare the MOD interval special dual like number 

semigroups; Y, R and P of problems 17, 18 and 19 

respectively. 

 

21. Let N = {[0,m)g | g
2
 = 0, ×} be the MOD interval special 

dual number semigroup. 

 

 i)  N is a zero square semigroup. 

 ii) Prove N has no identity. 

 iii) Prove N has no idempotents. 

 iv) Prove N has all order subsemigroups {2, 3, 4, …, ∞}. 

 v) Can N have S-zero divisor? 

 vi) Prove N cannot be a S-semigroup. 

 

22. Let M = {[0, 42)g, g
2
 = 0, ×} be the MOD interval dual 

number semigroup. 

 

 Study questions (i) to (vi) of problem (21) for this M. 

 

23. Let R = {[0, m), + ×} be the MOD real interval pseudo ring. 

 

 i) Prove or disprove the number of zero divisors of R is 

the same as the number of zero divisors of  

S = {[0, m), ×}, the MOD real interval semigroup. 

 ii) Prove all S-zero divisors of S and R are the same. 

 iii) Will the number of units in S and R be the same? 

 iv) Prove or disprove all S-units of S and R are the same. 

 v) Prove S and R have the same S-idempotents and 

idempotents. 

 vi) Prove ideals of R and S are not the same in general. 

 vii) Can R have MOD pseudo zero divisors which are 

identical with that of S and vice versa? 
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24. Let R = {[0, 48), +, ×} be the MOD real interval pseudo ring. 

 

 Study questions (i) to (vii) of problem (23) for this R. 

 

25. Let M = {[0, 37), +, ×} be the MOD real interval pseudo 

ring. 

 

 Study questions (i) to (vii) of problem (23) for this M. 

 

26. Let Z = {[0, 256), +, ×} be the MOD real interval pseudo 

ring. 

 

 Study questions (i) to (vii) of problem (23) for this Z. 

 

27. Let W = {[0, 47) g, g
2
 = 0, +, ×} be the MOD interval dual 

number pseudo ring. 

 

 Study questions (i) to (vii) of problem (23) for this W. 

 

28. Let T = {0, 49), k, k
2
 = 48k, +, ×} be the MOD interval 

special quasi dual number pseudo ring. 

 

 Study questions (i) to (vii) of problem (23) for this T. 

 

29. Let N = {[0, 120) h, h
2
 = h, +, ×} be the MOD interval 

special dual like number pseudo ring. 

 

 Study questions (i) to (vii) of problem (23) for this N. 

 

30. Let S = {[0, 55)I, I
2
 = I, +, ×} be the MOD interval 

neutrosophic pseudo ring. 

 

 Study questions (i) to (vii) of problem (23) for this S. 

 

31. Can W = {[0, 120)iF, 
2

Fi  = 119; +, ×} be the MOD interval 

complex modulo integer pseudo ring.  Justify? 
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32. Find all special and distinct features enjoyed by  

R = {[0, m)iF; 
2

Fi = (m – 1); +} the MOD interval complex 

modulo integer group. 

 

33. Let R = {Rn(m), ×} be the MOD real plane semigroup. 

 

 i)  Find all MOD pseudo zero divisors of R. 

 ii) Is the number of such MOD pseudo zero divisors of R  

   infinite or finite? 

 iii) Can we say the number of units of R \ {(Zm × Zm)}? 

 iv) Is the collection finite or infinite? 

 v) Does T = R \ {(Zm × Zm)} have idempotents? 

 vi) Find all nontrivial idempotents of T. 

 vii) Can (x, y) ∈ R \ {(x, y) / x, y ∈ Zm} be pseudo zero  

   divisor as well as zero divisor? 

 viii) Can the number of nilpotents in R \ {(x, y) / x, y ∈ Zm}  

   be infinite? 

 

34. Let P = {Rn(20) , ×} be the MOD real plane semigroup.  

 

 Study questions (i) to (viii) of problem 33 for this P. 

 

35. Let M = {Rn(47), ×} be the MOD real plane semigroup. 

 

 Study questions (i) to (viii) of problem (33) for this M. 

 

36. Let T = {Rn(2
14

),
 ×} be the MOD real plane semigroup. 

 

 Study questions (i) to (viii) of problem (33) for this T. 

 

37. Let S = {
I

nR (m); I
2
 = I, ×} be the MOD neutrosophic plane 

semigroup. 

 

 Study questions (i) to (viii) of problem (33) for this S. 
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38. Let L = {
I

nR (42); I
2
 = I, ×} be the MOD neutrosophic plane 

semigroup. 

 

 Study questions (i) to (viii) of problem (33) for this L. 

 

39. Let Z = {
I

nR (23); I
2
 = I, ×} be the MOD neutrosophic plane 

semigroup. 

 

 Study questions (i) to (viii) of problem (33) for this Z. 

 

40. Let S = {
I

nR (3
20

), I
2
 = I, ×} be the MOD neutrosophic plane 

semigroup. 

 

 Study questions (i) to (viii) of problem (33) for this S. 

 

41. Let V = {
g

nR (14), g
2
 = 0, ×} be the MOD special dual 

number plane semigroup. 

 

 Study questions (i) to (viii) of problem 33 for this V. 

 

42. Let Z = {
g

nR (53), g
2
 = 0, ×} be the MOD special dual 

number plane semigroup. 

 

 Study questions (i) to (viii) of problem (33) for this Z. 

 

43. Let N = {
g

nR (7
12

), g
2
 = 0, ×} be the MOD special dual 

number plane semigroup. 

 

 Study questions (i) to (viii) of problem (33) for this N. 

 

44. Let M = {
g

nR (m), g
2
 = 0, ×} be the MOD special dual 

number plane semigroup. 

 

 i)  Study questions (i) to (viii) of problem (33) for this M. 

 ii) Obtain all special features enjoyed by M. 
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45. Let V = {Cn(m), ×; 2

Fi  = (m – 1)} be the MOD special 

complex modulo integer plane semigroup. 

 

 i)  Study questions (i) to (viii) of problem (33) for this V. 

 ii) Obtain all special features enjoyed by V. 

 iii)  Find the difference between V and Rn(m), 
I

nR (m) and  

   
g

nR (m). 

 

46. Let S = {Cn(29); 
2

Fi = 28, ×} be the MOD special complex 

modulo integer semigroup. 

 Study questions (i) to (viii) of problem (33) for this S. 

 

47. Let Z = {Cn(48), 
2

Fi = 47, ×} be the MOD complex modulo 

integer semigroup. 

  

 Study questions (i) to (viii) of problem (33) for this Z. 

 

48. Let T = {Cn(5
40

), 
2

Fi  
= 5

40
 – 1, ×} be the MOD complex 

modulo integer semigroup. 

 

 Study questions (i) to (viii) of problem (33) for this T. 

 

49. Let D = {
h

nR (m), h
2
 = h, ×} be the MOD special dual like 

number semigroup. 

 

 i)  Study questions (i) to (viii) of problem 33 for this D. 

 ii) Find the special features enjoyed by D. 

 iii) Compare D with 
g

nR (m), 
I

nR (m), Rn(m) and Cn(m). 

 

50. Let P = {
h

nR (128), h
2
 = h, ×} be the MOD special dual like 

number semigroup. 

 

 Study questions (i) to (viii) of problem (33) for this P. 
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51. Let B = {
h

nR (47), h
2
 = h, ×} be the MOD special dual like 

number semigroup. 

 

 Study questions (i) to (viii) of problem (33) for this B. 

 

52. Let V = {
h

nR (11
8
), h

2
 = h, ×} be the MOD special dual like 

number semigroup. 

 

 Study questions (i) to (viii) of problem (33) for this V. 

 

53. Let S = {
k

nR (m), k
2
 = (m – 1)k, ×} be the MOD special quasi 

dual number plane semigroup. 

 Study questions (i) to (viii) of problem (33) for this S. 

 

54. Let Z = {
k

nR (24); k
2
 = (m – 1)k, ×} be the MOD special 

quasi dual number plane semigroup. 

 

 Study questions (i) to (viii) of problem (33) for this Z. 

 

55. Let R = {
k

nR (59), k
2
 = 58k, ×} be the MOD quasi dual 

number plane semigroup. 

 

 Study questions (i) to (viii) of problem (33) for this R. 

 

56. Let Z = {
k

nR (13
7
), k

2
 = (13

7
 – 1)k, ×} be the MOD special 

quasi dual number plane semigroup. 

 

 Study questions (i) to (viii) of problem (33) for this Z. 

 

57. Let M = {Rn(m) , +, ×} be the MOD real plane pseudo ring. 

 

i)    Find all zero divisors of M. 

ii) Can we say both  M and S = {Rn(m), ×} have same 

number of zero divisors? 

iii) Find all zero divisors of Rn(m) \ {(x, y) / x, y ∈ Zm}. 

iv) Find all special MOD pseudo zero divisors of  

Rn(m) \ {(x, y) / x, y ∈ Zm}. 
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v) Is the number of zero divisors and MOD special 

pseudo divisors different? 

vi) Can we say all MOD special pseudo zero divisors in  

Rn(m) \ {(x, y) / x, y ∈ Zm} are only units of  

Rn(m) \ {(x, y) / x, y ∈ Zm}? 

vii) Does Rn(m) \ {(x, y) / x, y ∈ Zm} have torsion 

elements? 

viii) Can Rn(m) \ {(x, y) / x, y ∈ Zm} have torsion free 

elements? 

ix) Find all nilpotents of Rn(m) \ {(x, y) / x, y ∈ Zm}. 

x) Obtain any other special features associated with the 

pseudo ring Rn(m). 

xi) Find all idempotents of Rn(m) \ {(x, y) / x, y ∈ Zm}. 

xii)    Find all ideals of Rn(m). 

xiii) Prove all ideals of Rn(m) are of infinite order. 

xiv) Prove Rn(m) has subrings of finite order. 

xv) Can there be finite order subring of order greater 

than m in Rn(m)? 

xvi) Obtain all special features enjoyed by  

  {Rn(m), +, ×}. 

 

58. Let S = {Rn(47), +, ×} be the MOD real plane pseudo ring. 

 

 Study questions (i) to (xvi) of problem (57) for this S. 

 

59. Let M = {Rn(12), + ×} be the MOD real plane pseudo ring. 

 

 Study questions (i) to (xvi) of problem (57) for this M. 

 

60. Let N = {Rn(3
8
), + ×} be the MOD real plane pseudo ring. 

 

 Study questions (i) to (xvi) of problem (57) for this N. 

 

61. Let M = {
g

nR (m); g
2
 = 0, +, ×} be the MOD dual number 

plane pseudo ring. 

 

 i)  Study questions (i) to (xvi) of problem (57) for this M. 

 ii) Prove M has subrings which are zero square subrings. 
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 iii) Prove M has infinite number of zero divisors than the  

   real plane pseudo ring Rn(m). 

 

62. Let V = {
g

nR (24
3
), g

2
 = 0, +, ×} be the MOD dual number 

plane pseudo ring. 

 

 i)  Study questions (i) to (xvi) of problem (57) for this V. 

 ii) Study questions (ii) and (iii) of problem (61) for this V. 

 

63. Let S = {
g

nR (2
21

), g
2
 = 0, +, ×} be the MOD dual number 

plane pseudo ring. 

 

 i)  Study questions (i) to (xvi) of problem (57) for this S. 

 ii) Study questions (ii) and (iii) of problem (61) for this S. 

 

64. Let A = {
g

nR (41), g
2
 = 0, +, ×} be the MOD dual number 

plane pseudo ring. 

 

 i)  Study questions (i) to (xvi) of problem (57) for this A. 

 ii) Study questions (ii) and (iii) of problem (61) for this A. 

 

65. Let B = {
I

nR (m), I
2
 = I, +, ×} be the MOD neutrosophic 

plane pseudo ring. 

 

 i)  Study questions (i) to (xvi) of problem (57) for this B. 

 ii) Obtain any other special features enjoyed by B. 

 

66. Let W = {
I

nR (97), I
2
 = I, +, ×} be the MOD neutrosophic 

plane pseudo ring. 

 

 i)  Study questions (i) to (xvi) of problem 57 for this W. 

 

67. Let F = {
I

nR (420), I
2
 = I, +, ×} be the MOD neutrosophic 

plane pseudo ring. 

 

 i)  Study questions (i) to (xvi) of problem (57) for this F. 
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68. Let G = {
I

nR (7
10

), I
2
 = I, +, ×} be the MOD neutrosophic 

plane pseudo ring. 

 

 i)  Study questions (i) to (xvi) of problem (67) for this G. 

 

69. Compare the MOD neutrosophic pseudo rings W, F and G in 

problems (66), (67) and (68) respectively. 

 

70. Let T = {Cn(m), 
2

Fi = m – 1, +, ×} be the MOD complex 

modulo integer pseudo ring. 

 

 i)  Study questions (i) to (xvi) of problem (57) for this T. 

 ii) Obtain any other nice feature enjoyed by T. 

 

71. Let R = {Cn(96), 
2

Fi = 95, +, ×} be the MOD complex modulo 

integer pseudo ring. 

 

 Study questions (i) to (xvi) of problem (57) for this R. 

 

72. Let S = {Cn(47), 
2

Fi = 46, +, ×} be the MOD complex modulo 

integer plane pseudo ring. 

 

 Study questions (i) to (xvi) of problem (57) for this S. 

 

73. Let V = {Cn(3
12

); 
2

Fi = 3
12

 – 1, +, ×} be the MOD complex 

modulo integer plane pseudo ring. 

 

 Study questions (i) to (xvi) of problem (57) for this V. 

 

74. Compare the MOD complex modulo integer plane pseudo 

rings R, S and V in problems 71, 72 and 73 respectively. 

 

75. Let P = {
k

nR (m), k
2
 (m – 1)k, +, ×} be the MOD special 

quasi dual number pseudo ring. 

 

 i)  Study questions (i) to (xvi) of problem (57) for this P. 
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 ii) Obtain any other special feature associated with these  

   pseudo ring. 

 

76. Let B = {
k

nR (42), k
2
 = 41k, +, ×} be the MOD special quasi 

dual number pseudo ring. 

 

 Study questions (i) to (xvi) of problem (57) for this B. 

 

 

77. Let D = {
k

nR (37), k
2
 = 36k, +, ×} be the MOD special quasi 

dual number pseudo ring. 

 

 Study questions (i) to (xvi) of problem (57) for this D. 

 

 

78. Let E = {
k

nR (7
21

), k
2
 = (7

21
 – 1)k, +, ×} be the MOD special 

quasi dual number plane pseudo ring. 

 

 Study questions (i) to (xvi) of problem (57) for this E. 

 

 

79. Compare the MOD special quasi dual number planes pseudo 

rings in problems (76), (77) and (78) with each other. 

 

80. Let H = {
h

nR (m); h
2
 = h, +, ×} be the MOD special dual like 

number plane pseudo ring. 

  

 i)  Study questions (i) to (xvi) of problem (57) for this H. 

 ii) Obtain any other special striking feature associated with  

   H. 

 

81. Let J = {
h

nR (23), h
2
 = h, +, ×} be the MOD special dual like 

number plane pseudo ring. 

 

 Study questions (i) to (xvi) of problem (57) for this J. 
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82. Let K = {
h

mR (48), h
2
 = h, +, ×} be the MOD special dual like 

number plane pseudo ring. 

 

 Study questions (i) to (xvi) of problem (57) for this K. 

 

83. Let L = {
h

mR (13
4
), h

2
 = h, +, ×} be the MOD special dual 

like number plane pseudo ring. 

 

 Study questions (i) to (xvi) of problem (57) for this L. 

 

84. Compare the MOD special dual like number plane pseudo 

rings, J, K and L in problems 81, 82 and 83 respectively 

with each other. 

 

85. Obtain any special features enjoyed by these pseudo rings 

built using MOD dual number planes. 

 

86. Can S-zero divisors be present in {
g

mR (m); g
2
 = 0, +, ×}? 

 

87. Prove the notion of special pseudo zero divisors is 

impossible in {[0, m)g, g
2
 = 0, +, ×}. 

 

88. Is it possible to define special pseudo zero divisors in case 

of {
g

nR (m), g
2
 = 0, +, ×}? 

 

 



 
 
 
 
 
Chapter Four 
 
 

 
 
PROBLEMS ON MOD NATURAL 
NEUTROSOPHIC ELEMENTS  
 
 
 
 
 In this chapter we propose some problems on MOD 

neutrosophic numbers in [0, m), [0, m)I, [0, m)g, [0, m)h,  

[0, m)k, Rn(m), I

nR (m), g

nR (m), h

nR (m) and k

nR (m); the MOD 

intervals and MOD planes respectively. 

 

 For the first time the natural neutrosophic numbers were 

introduced in [29]. The problem of finding natural neutrosophic 

numbers was proposed by Florentin Smarandache on several 

occasions. The MOD mathematics series [29] has answered this 

question completely.  

 

Here a brief description of this concept is given for more 

one can refer [29]. 

 

 Let Z9 be the set of modulo integers. Now we try to 

introduce the operation of division / on Z9 by / (division).  

{Z9, /} leads to natural neutrosophic numbers {Z9, /} = {0, 1, 2, 



76 Problems on MOD Structures 

 

 

 

 

 

 

…, 8, 0/0, 1/0, 2/0, …, 8/0, 1/3, 2/3, …, 8/3, 0/6, 1/6, 2/6, …, 

8/6}.  

 

 These are denoted by 9

0I  = {1/0, 2/0, …, 8/0, 0/0},  
9

3I = {1/3, 2/3, 0/3, …, 8/3}, 9

6I  = {1/6, 2/6, 0/6, …, 8/6} that is 

division by 0 or 3 or 6 are indeterminates called as the natural 

neutrosophic numbers. 

 

 Further these numbers behave in a different way for;  
9 9 9

3 3 0I I I ,× =  9 9 9

6 6 0I I I× =  and 9 9 9

6 3 0I I I× = . 

 

Thus there are natural  neutrosophic numbers which are 

neutrosophic zero divisors.  

 

Consider the modulo integers Z12 = {0, 1, 2, …, 11}. 
12 12 12 12 12 12 12 12

2 0 3 6 4 8 10 9I , I , I I I , I , I , I  are the collection of all natural 

neutrosophic numbers of Z12 or related with Z12; where  

 
12

2I  = {0/2, 1/2, 2/2, …, 12/2},  
12

0I = {0/0, 1/0, 2/0, …, 12/0} and so on.  
12

9I  = {0/0, 1/9, 2/9, …, 12/9}.  

 
12 12 12 12 12 12

2 6 0 4 4 4

12 12 12 12 12 12

6 4 0 6 6 0

12 12 12 12 12 12

4 2 8 9 9 9

12 12 12 12 12 12

4 9 0 8 8 4

12 12 12 12 12 12

2 8 4 2 9 6

12 12 12

9 6 8

I I I , I I I ,

I I I I I I ,

I I I I I I

I I I I I I

I I I I I I

I I I and soon.

× = × =

× = × =

× = × =

× = × =

× = × =

× =

  

 

Thus natural neutrosophic zero divisors and natural 

neutrosophic nilpotents are got by this method. 

 

Further there are some neutrosophic idempotents for 

instance 12

9I and 12

4I  are neutrosophic idempotents related with 

Z12. 
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Next we study the natural neutrosophic elements of Z16. 

 
16 16 16 16 16 16 16

0 2 4 6 8 10 12I , I , I , I , I , I , I  and 16

14I , 16 16 16

6 6 4I I I× = , 

 
16 16 16

4 4 0I I I× = . 16 16 16 16 16

6 6 6 6 0I I I I I× × × =  is a nilpotent 

neutrosophic element of order four. 

 
16 16 16

8 8 0I I I× = is a natural neutrosophic nilpotent of order two. 

 
16 16 16 16 16

2 2 2 2 0I I I I I× × × =  is again a neutrosophic nilpotent of 

order four. 

 
16 16 16 16 16

10 10 10 10 0I I I I I× × × = is again a neutrosophic nilpotent of 

order four. 

 
16 16 16

12 12 0I I I× = is a neutrosophic nilpotent of order two. 

 
16 16 16 16 16

10 10 10 10 0I I I I I× × × = is again a neutrosophic nilpotent of 

order four. 

 
16 16 16

14 14 4I I I× = so 16

14I  is again a natural neutrosophic nilpotent 

of order four. 

 

We see the natural neutrosophic elements associated with 

Z16 are either neutrosophic nilpotents of order two or of order 

four only.  

 

Clearly there are no neutrosophic natural idempotents 

associated with Z16. 

 

Let Z15 be the modulo integer. 15 15 15 15 15 15

0 3 6 9 5 10I , I , I , I , I , I and 
15

12I are the associated natural neutrosophic elements of Z15. 

 
15 15 15

3 3 9I I I× = , 
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15 15 15 15

3 3 3 12I I I I× × = , 

 
15 15 15 15 15

3 3 3 3 6I I I I I× × × = , 

 
15 15 15

6 3 3I I I× = . 

 

So 15

3I  is not a neutrosophic nilpotent of order two or an 

idempotent. 

 

 However 15 15 15

6 6 6I I I× = is a neutrosophic natural idempotent. 

 

    15 15 15

9 9 6I I I× = ; 

 

 15

9I
 

is not a neutrosophic nilpotent or neutrosophic 

idempotent. 

 
15 15 15

12 5 0I I I× =
 

 
15 15 15

10 10 10I I I× =  is a natural neutrosophic idempotent. 

 

But 15 15 15

3 5 0I I I× = , 

 
15 15 15

3 10 0I I I× = , 

 
15 15 15

6 10 0I I I× = , 

 
15 15 15

6 5 0I I I× = , 

 
15 15 15

12 10 0I I I× =  and 

 
15 15 15

5 9 0I I I× = . 

 

All elements are natural neutrosophic zero divisors.  
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Next we study the complex finite modulo integers C(Z10) 

and its associated natural neutrosophic elements got by division 

which are as follows. 

 

F F F F F F F F F

C C C C C C C C C C C C C C

0 5 5i 2 2i 4 4i 8 8i 8 2i 8 5i 4i 8 8 6i 8 8iI , I . I , I , I , I , I , I , I ,..., I , I , I , I , I+ + + + +  

where  

 
C

0I  = {0/0, 1/0, 2/0, …, 9+9iF/0} 
C

5I  = {0/5, 1/5, 2/5, …, 9+8iF/5, 9+9iF/5} 

F

C

2iI = {0/2iF, 1/2iF, 2/2iF, …, 9+9iF/2iF} and so on. 

 

It is left as an open conjecture to find elements which are 

natural neutrosophic elements in C(Zm) for a given m. 

 

Let C(Z7) be the finite complex modulo integers.  

 

The natural neutrosophic elements associated with C(Z7) is 
C

0I .   

 

Infact is a difficult problem to find other natural 

neutrosophic elements associated with C(Z7).  

 

Next we recall the notion of natural neutrosophic elements 

of the neutrosophic set 〈Zm ∪ I〉 = {a + bI / I
2
 = I and a, b ∈Zm}.  

 

For more about these notions refer [13,14, 29].   

 

Now we study the natural neutrosophic elements of 〈Zm ∪ I〉 

for m = 4. 

 

 Clearly the natural neutrosophic elements associated with 

〈Z4 ∪ I〉 are 

 

 I I I I I

0 2 2I 2 2I 1 3II , I , I , I , I+ + , I

II , and so on where  

 

 I

0I  = {0/0, 1/0, 2/0, 3/0, 4/0, I/0, 1+I/0, …, 3+3I/0},  
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  I

2I  = {0/2, 1/2, 2/2, …, I/2, …, 3+3I/2} and so on. 

 

  I

II  = {0/I, 1/I, 2/I, …., 3+3I/I}. 

 
I

3 II +  is also a natural neutrosophic zero divisor as 
I I I

3 I 2I 0I I I+ × = and I I I

1 3I 2I 0I I I+ × = . 

 

Study in this direction is both interesting and innovative. 

Consider 〈Z3 ∪ I〉. To find the natural neutrosophic elements 

associated with 〈Z3 ∪ I〉.   

 

The natural neutrosophic elements are 
I

0I  and 
I

I21I +  we see 

( )
2

I

1 2II +

I

1 2II +=  so I

1 2II +  is a natural neutrosophic idempotent of  

〈Z4 ∪ I〉. I

II  and I

1 2II +  are  such that  

 
I

II  × I

1 2II +  = I

0I  is a natural neutrosophic zero divisor.   

 
I I I

2 I I 0I I I+ × =  is again a natural neutrosophic zero divisor.   

 
I I I

2I 1 2I 0I I I+× = and I I I

2I 2 I 0I I I I+× + =  are all natural 

neutrosophic zero divisors.  

 

Thus some set of associated natural  neutrosophic elements 

of 〈Z3 ∪ I〉 are I I I I I

0 I 2I 1 2I 2 I{I , I , I , I , I }+ + .  

 

The problem of finding all natural neutrosophic elements is 

a difficult problem. However Z3 has only one natural 

neutrosophic element viz. I

0I  and nothing more.  

 

Further 〈Z3 ∪ I〉 has more number of natural neutrosophic 

elements than Z3 which has only one neutrosophic element 3

0I . 
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Thus 〈Z5 ∪ I〉 has more than one natural neutrosophic 

element. For 
I I I I I I I I I I

0 I 2I 3I, 4I 1 4I 4 I 4 I 2 3I 3I 2I , I , I , I I , I , I , I , I , I+ + + + +  are some of 

the natural neutrosophic elements associated with 〈Z5 ∪ I〉. 

 

Hence finding the number of natural neutrosophic elements 

in 〈Zm ∪ I〉 is a challenging problem.  

 

Consider 〈Z6 ∪ I〉, the number of natural neutrosophic 

elements are given by I I I I

0 2 3 4I , I , I , I ,
 

I I I I I

I 2I 3I 4I 5II , I , I , I , I , 
I I I I

1 5I 5 I 2 4I 4 2II , I , I , I+ + + +  I I I

3 3I 2 2I 4 4II , I , I+ + +  and so on.  

 
I I I

3 3 3I I I× = , I I I

4 4 4I I I× =  are some of the natural neutrosophic 

idempotents of 〈Z6 ∪ I〉. 

 

We see   

 
I I I I I I

1 5I I 0 3 3I 2 0I I I , I I I ,+ +× = × =  I I I

4 2I 3I 0I I I ,+ × =  I I I

2 4I 5I 0I I I .+ × =
 

 
I I I

2 4I 3 3I 0I I I+ +× =  and so on are some of the natural 

neutrosophic zero divisors of  〈Z6 ∪ I〉. Thus 〈Z6 ∪ I〉 has 

several natural neutrosophic elements.  

 

However it is difficult to find natural neutrosophic 

nilpotents in 〈Zm ∪ I〉 for m a prime or a composite number and 

m not of the from p
t
 where p is a prime and t ≥ 2.   

 

Further we have several problems some of which are open 

conjectures that are proposed in the end of this chapter about  

〈Zm ∪ I〉, 2 < m < ∞.  

 

Next we proceed onto analyse the natural neutrosophic 

elements of 〈Zm ∪ g〉 the modulo dual numbers. 〈Zm ∪ g〉 =  

{a + bg / a, b ∈ Zm, g
2
 = 0}.  

 

The natural neutrosophic elements of 〈Z9 ∪ g〉 are { 9

0I , 9

3I ,   

9

6I ,  
9

gI ,    
9

2gI ,  
9

3gI , 9

4gI , 9

5gI , 
9

6gI ,   
9

7gI ,  
9

8gI , 9

3 3gI ,+

9

6 6gI ,+  
9

3 6gI ,+  
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9

6 3gI ,+  
9

3 4gI ,+

9

6 4gI ,+  
9

6 gI ,+  
9

3 gI ,+  
9

3 2gI ,+

9

6 2gI ,+

9

3 3gI ,+  
9

6 3gI ,+  
9

3 5gI ,+  

9

3 7gI ,+  
9

6 5gI ,+  
9

6 7gI ,+

9

3 8gI ,+

9

6 9gI +  }, where 
9

gI  = {0/g, 1/g, 2/g, …, 

1+g/g, …, 8+8g/g} and so on. 

 

For 
9 9 9

6 8g 3g 0I I I+ × = , 
9

3 4gI + × 9 9

6g 0I I=  and so on.  

 
9

3gI ×  
9

6gI  = 9

0I  and 9 9 9

3 3 0I I I .× =  This has nilpotents and zero 

divisors.  

 

Thus the natural  neutrosophic elements of the modulo dual 

numbers 〈Zm ∪ g〉 behave in a distinct way [17].   

 

Next the notion of natural neutrosophic numbers in  

〈Zm ∪ h〉; h
2
 = h. The special dual like number modulo integers 

is analysed. 〈Zm ∪ h〉 =  {a + bh / a, b ∈ Zm, h
2
 = h} [18]. 

 

We now describe the natural neutrosophic elements of  

〈Z12 ∪ h〉 in the following.  

 

The natural neutrosophic elements of 〈Z12 ∪ h〉 are h

01I , h

hI ,  
h

2 10hI ,+   h

2h 10I ,+  h h h h h h

2 4 6 8 10 3I , I I I , I , I , h h

2 4I , I  h h h h

6 8 10 3I I , I , I , h

9I , h

6I ,  h

3hI ,  
h h

2h 4hI I , h h

5h 6hI , I , h h

7h 8hI , I , h

9hI , h h

10h 11hI , I , h

1 11hI ,+
h h

h 11 3 9hI , I+ + , h

3 9hI ,+  
h

4 8hI ,+  h

75 7hI ,+

h

7 5hI ,+

h h

6 6h 3 6hI , I ,+ +

h

6 9hI ,+

h

6 3hI + , h

9 6hI +  and so on where 
12

2 hI +  = {0/2+h, 1/2+h, …, h/2+h, …, 11h+11/2+h} and so on. 

 
h h h

h 9 6h 0I I I ,+× =  h h h

3 4h 0I I I ,× =
 

h h h

4h 4h 4hI I I× =
 
and h h h

9 9 9I I I× = .  

Thus the natural neutrosophic elements associated with  

〈Z12 ∪ h〉 can be natural neutrosophic idempotents, natural 

neutrosophic nilpotents and natural neutrosophic zero divisors. 

 
h h I

7h 5 7h 0I I I+× =   is a natural neutrosophic zero divisors. 

 

Next we study the  special dual like number 〈Z7 ∪ h〉.   
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The natural neutrosophic elements associated with 〈Z7 ∪ h〉 

are h

0I ,  h

hI ,  h

2hI ,  h

3hI ,
h

4hI , h

5hI , h

6hI , h

1 6hI ,+ ,Ih

h6+
h

2 5hI ,+

h

5 2hI ,+

h

3 4hI ,+  

h

4 3hI ,+ …  

 

We see h h h

3 4h 2h 0I I I+ × = , h h h

1 6h 6h 0I I I+ × =  thus there are several 

natural neutrosophic zero divisors.  

 

Further h h h

h h hI I I× =  is an natural neutrosophic idempotent of 

〈Z7 ∪ h〉.  

 

It is important to note all 〈Zm ∪ h〉 has atleast one 

idempotent given by 
h

hI  and 〈Zm ∪ h〉 has atleast m number of 

zero divisors if m is even and (m – 1) number of zero divisors if 

m is odd. 

 

Next we study the natural neutrosophic elements associated 

with 〈Zm ∪ k〉, k
2
 = (m – 1)k  the special quasi dual number 

modulo integers.  Clearly 〈Zm ∪ k〉 = {a + bk | a, b ∈ Zm,  

k
2
 = (m–1)k}.  For more refer [19]. 

 

Now we give the natural neutrosophic elements associated 

with 〈Z5 ∪ k〉 are k

0I ,  k

kI ,  k

1 kI ,+  k

2 2kI ,+  k

3 3kI ,+

k

4 4kI +  and so on, 

where k

0I  = {0/0, 1/0, …, 4/0, k/0, …, 4+4k/0},  

 
k

2 2kI +  = {0/2+2k, ½+2k, …, 4+4k/2+2k} and so on. 

 

We see k k k

k 1 k 0I I I+× =  k k k

k 2 2k 2 2kI I I+ +× = k

3 3kI + , k

4 4kI +  and so on. 

 

We see k k k

k 1 k 0I I I+× =   k k k

k 2 2k 0I I I+× =  are natural neutrosophic 

zero divisors. 

 

Next we study the natural neutrosophic elements of  

〈Z4 ∪ k〉.   
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The natural neutrosophic elements of 〈Z4 ∪ k〉 are k

0I , 
k

kI , k

1 kI +
k k k k

2 2k 2 2k 3 3kI , I , I , I .+ +    

 

Clearly 〈Z4 ∪ k〉 has natural neutrosophic idempotents 

natural neutrosophic nilpotents and natural neutrosophic zero 

divisors. 

 
k

kI × k k

1 k 0I I+ = , k

kI ×  k k

3 3k 0I I+ =  and k

kI × k k

2 2k 0I I+ =  are natural 

neutrosophic zero divisors associated with natural neutrosophic 

elements of 〈Z4 ∪ k〉. 

 
k

2I × k k

2k 0I I= ,  k

2kI ×  k k

2k 0I I=  and k

2 2kI + × k k

2 2k 0I I+ =  are the 

natural neutrosophic nilpotents of order two. 

 

Consider k k k

1 k 1 k 1 kI I I+ + +× =  are natural neutrosophic 

idempotent. For more refer [29].   

 

In view of all these we have the following result. 

 

There is always a natural neutrosophic idempotent 

associated with mZ k∪  given by k

1 2kI ;+  for k k k

1 2k 1 k 1 kI I I+ + +× =  

as (1 + k) × (1 + k) = 1 + 2k + k
2 

 

= 1 + 2k + (m – 1) k  = 1 + (m + 1)k  

= 1 + k (mod m). 

 

Hence the claim. 

 

Further all natural neutrosophic elements associated with 

〈Zm ∪ k〉 has atleast (m – 1) number of neutrosophic natural 

zero divisors. 

 

We see k k k

k t tk 0I I I+× = , t = 1, 2, …, m – 1. 

 

Hence the claim. 
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Now having seen examples of all natural neutrosophic 

elements of modulo integers, we now proceed onto study MOD 

real intervals, MOD complex modulo interval integers, MOD dual 

number intervals and so on. 

 

We see [0, m) the real MOD interval has natural 

neutrosophic elements which are pseudo zero divisors also. 

Consider the  MOD real interval [0, 5). 

 

Clearly [0,5) [0,5)

0 1.25I , I , [0,5) [0,5)

2.5 3.125I , I  where [0,5)

0I = {0/0, 0.0 … 5/0, 

…, 4.999/0 …} and so on are all pseudo MOD zero divisors of 

[0,5).  

 

Thus it is left as a open conjecture to find the pseudo MOD 

neutrosophic numbers.  

 

For [0,5) [0,5) [0.5)

4 1.25 0I I I× = so a unit acts as a zero divisor also  in 

the MOD real neutrosophic interval [0, 5).  

 

That is why we call these type of zero divisors as special 

pseudo zero divisors and their associated neutrosophic element 

as pseudo neutrosophic zero divisors. 

 

Consider the MOD real interval [0, 6); 1.2 × 5 = 0 (mod 6). 

 

But 5 is a unit in [0,6) so 1.2 is a special pseudo zero divisor 

and [0,6)

1.2I  is a natural  neutrosophic special pseudo zero divisor 

and we are forced to include [0,6)

5I  as the natural neutrosophic 

unit as it is the factor which contributes to the special pseudo 

neutrosophic zero divisors. 

 

Consider the MOD dual number interval [0,m)g, g
2
 = 0. 

Every element in [0,m)g is a zero divisor so [0,m)g

xI  is a 

neutrosophic zero divisor for all x ∈ [0,m)g.   

 

So they are infinite in number so not much of development 

is possible for the MOD dual number intervals. 
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Consider the MOD neutrosophic interval [0,m)I; this behaves 

more like a real MOD interval. 

 

Next consider the complex MOD interval [0,m)iF,  
2

Fi  = (m – 1) we see under product [0, m)iF is not even closed so 

nothing can be said about MOD complex intervals [0,m)iF;  

2 ≤ m < ∞. 

 

Now consider the MOD special dual  like number interval  

[0, m)h, h
2

 = h. 

 

This MOD interval also behaves more like the MOD real 

interval. 

 

Next consider the MOD special quasi dual number interval 

[0,m)k; k
2

 = (m – 1) k, 2 ≤ m < ∞.  

 

Clearly this MOD interval also behaves like the MOD real 

interval. So the study of the MOD intervals [0,m)I, [0, m)h and 

[0,m)k is akin to the study of MOD real interval.  

 

Hence only a few problems are proposed at the end of this 

chapter. 

 

Next we proceed onto study about MOD  neutrosophic 

elements of the MOD real plane,  MOD finite complex number 

plane, MOD neutrosophic plane and so on. 

 

Let Rn(m)  be the real MOD plane.  

 

This has several MOD natural neutrosophic elements which 

are MOD neutrosophic idempotents, MOD neutrosophic 

nilpotents and MOD neutrosophic zero divisors [29].  

 

We will illustrate this situation by some examples. 

 

Let Rn(10) be the MOD real plane. 
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R R R

(0,0) (5,5) (0,5)I , I , I ,
R R R

(0,0) (6,5) (5,6)I , I , I ,
R R R

(6,6) (6,0) (0,6)I , I , I , 

R R R

(2,0) (0,2) (2,2)I , I , I , 
R R R

(4,0) (0,4) (4,4)I , I , I  are some of the natural 

neutrosophic elements of Zm × Zm.   

 

Here R

(0,0)I = {(0,0)/(0,0), (0,a)/(0,0), …, (a,b)/(0,0) where  

a, b ∈ Zm}.  

 

It is pertinent to note Zm × Zm is only the cross product and 

not the MOD plane. 

 

Infact 
R R

(2.5,0) (0,2.5)I , I , 
R R

(1.25,0) (0,1.25)I , I , 
R R

(2.5,0) (1.25,2.5)I , I  and so on 

are some of the MOD neutrosophic elements of the MOD plane. 

 

For 
R R R

(1,25,2.5) (8,8) (0,0)I I I× =  is a MOD zero neutrosophic divisor 

of Rn(10) and 
R R R

(6,0) (6,0) (6,0)I I I× =  is the MOD neutrosophic 

idempotents and so on.   

 

Infact all MOD neutrosophic elements of the MOD interval 

[0, 10) will contribute to MOD neutrosophic elements in the MOD 

real plane Rn(10). 

 

Thus all MOD neutrosophic elements of [0, m) will 

contribute to MOD neutrosophic elements of the MOD plane 

Rn(m). 

 

Hence we only propose some problems in the direction.  

 

Similarly I

nR (m) = {a + bI / a, b ∈ [0, m), I
2
 = I} will 

contribute to MOD neutrosophic of I

nR (m). These MOD 

neutrosophic elements are contributed by the intervals [0, m), 

[0, m)I and more. 

 

Apart from other types of MOD neutrosophic elements got 

from a + bI.  
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So study of MOD neutrosophic elements will remain mostly 

akin to MOD neutrosophic elements from [0, m) and [0, m)I; 

hence left as an exercise to the reader. 

 

Now we study I

nR (m) = {a + bg | g
2
 = 0, a, b ∈ [0, m)}.  

The MOD neutrosophic elements of the MOD dual number plane 

will be MOD neutrosophic elements from [0, m), [0,m)g and 

more. 

 

However this study is not that similar to the earlier case but 

in a way only a little similar to I

nR (m). 

 

We can find the MOD neutrosophic elements from the MOD 

complex plane Cn(m) = {a + biF 
2

Fi = (m – 1); a, b ∈ [0,m)}.  

 

One part of MOD neutrosophic elements will be contributed 

by [0, m) however for other part one has to work thoroughly.  

 

Infact it can be left as an open conjecture.  

 

Next for the special dual like number MOD plane  

 
h

nR (m) = {a + bh | a, b ∈ [0, m), h
2
 = h} also works in a 

similar fashion as that of I

nR (m). 

 

Finally the MOD special quasi dual number plane works 

entirely different from all the other MOD planes for  

 
k

nR (m) = {a + bk | k
2
 = (m – 1)k, a, b ∈ [0, m)} 2 ≤ m < ∞. 

 

Study is innovative and interesting but one has work a lot in 

the direction. In this regards several problems are suggest. 

 

Consider Rn(6), g

nR (6), h

nR (6), k

nR (6) Cn(6) and  I

nR (6).  

 

We take same sets of elements and show how differently the 

product behaves. 
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Let x = (2.35, 1.5) and y = (3.5, 2.7) ∈ Rn(6).   

 

x × y = (2.225, 4.05).    …  I 

 

 

Let  x = 2.35 + 1.5 I and y = 3.5 + 2.7 I ∈ I

nR (6). 

 x × y = 2.225 + 3.645I    …  II 

 

 

Let x = 2.35 + 1.5g and  

 y = 3.5 + 2.7 g ∈ g

nR (6) 

 x × y = (2.225 + 5.595 g)   …  III 

 

 

Let  x = 2.35 + 1.5iF and 

 y = 3.5 + 2.7iF ∈ Cn(6). 

 

 x × y  = 2.225 + 5.595 iF + 2.25 

= 4.475 + 5.595 iF ∈ Cn(6).  …  IV 

 

 Let x = 2.35 + 1.5 and 

  y = 3.5 + 2.7h ∈ h

nR (6) 

  x × y = 2.225 + 3.645 h     …  V 

 

Lastly x = 2.35 + 1.5 k and 

 y = 3.5 + 2.7 k ∈ k

nR (6) 

 x × y = 2.225 + 1.845 k    …  VI 

 

We see all the six values are different except I

nR (m) and 
h

nR (m) but I is an indeterminate where as h is a determinate. 

 

We propose the following problems some of which are at 

research level and a few are open conjectures. 
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Problems 
 

1. For a given m find all the natural neutrosophic elements 

associated with Zm. 

 

2. Find all the natural neutrosophic elements associated with 

Z48. 

 

3. Find all natural neutrosophic elements associated with Z256. 

 

i) Can we say that none of the natural neutrosophic 

elements associated with Z256 will be neutrosophic 

idempotents except 
256 256 256

0 0 0I I I× = ? 

ii) Can we claim every natural neutrosophic element of 

Z256 will be natural nilpotents? 

 

4. Obtain any other special features associated with the natural 

neutrosophic elements related with Zm; 2 ≤ m < ∞. 

 

5. Let C(Zm) be the finite complex modulo integers. 

 

i) Find the number of natural neutrosophic elements 

associated with C(Zm) for a fixed m. 

ii) Can we say when m is a  prime number the number of 

natural neutrosophic elements would be the least? 

iii) Can  we claim the more m has divisors; C(Zm) will have 

more natural neutrosophic elements? 

iv) Compare the number of natural neutrosophic elements 

m C(Z210) and C(Z505). 

 

6. Let C(Z101) be the finite complex modulo integers. 

 

 i) Find the number of natural neutrosophic elements 

associated with C(Z101). 

 ii) How many natural neutrosophic idempotents are related 

with C(Z101)? 
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 iii) Can there be natural neutrosophic nilpotents related 

with C(Z101)? 

 

7. Let C(Z96) be the finite complex modulo integers. 

 

 Study questions (i) to (iii) of problem (6) for this C(Z96). 

 

8. Can we say C(Z96) will have more number of natural 

neutrosophic elements associated with it than C(Z101)? 

 

9. Compare the number of natural neutrosophic elements 

associated with C(Zm) and Zn for a fixed m. 

 

10. Characterize all m which are such that both C(Zm) and Zm 

have same number of natural neutrosophic elements. 

 

11. Can we say in general C(Zm) will have more number of 

natural neutrosophic elements than Zm when m is a 

composite number? 

 

12. Obtain any other special feature associated with the natural 

neutrosophic elements of C(Zm).
 

 

13. Find the number of natural neutrosophic numbers associated 

with 〈Zm ∪ I〉;  2 ≤ m < ∞.
 

 

14. Let 〈Z15 ∪ I〉 be the modulo neutrosophic integers. 

 

 i) Find all the associated natural neutrosophic elements of  

〈Z15 ∪ I〉.
 

 ii) Prove there are natural neutrosophic zero divisors. 

 iii) Prove there are natural neutrosophic elements. 

 iv) Does the associated natural neutrosophic elements has 

nilpotents? 

 v) Find any other special features enjoyed by these natural 

neutrosophic elements. 

 vi) Prove the collection of all natural neutrosophic elements 

is a semigroup under product. 
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15. Let 〈Z19 ∪ I〉
 
be the modulo neutrosophic integers. 

 

 Study questions (i) to (vi) of problem (14) for this 〈Z19 ∪ I〉. 

 

16. Let 123
Z I∪ = S be the neutrosophic modulo integers. 

 Study questions (i) to (vi) of problem (14) for this S. 

 

17. Let T = 〈Zm ∪ g〉 
 
be the dual number modulo integers. 

 

 i) Find all the  natural neutrosophic elements associated 

with 〈Zm ∪ g〉 for  a fixed m. 

 ii) Prove there are many natural neutrosophic zero 

divisors. 

 iii) Study questions (i) to (vi) of problem (14) for this T. 

 

18. Let W = 〈Z19 ∪ g〉
 
be the dual number modulo integers. 

 

 Study questions (i) to (vi) of problem (14) for this W. 

 

19. Let M = 〈Z18 ∪ g〉
 
be the dual number modulo integers. 

 

 Study questions (i) to (vi) of problem (14) for this M. 

 

20. Let P = 202
Z g∪

 
be the dual number modulo integers. 

 

 Study questions (i) to (vi) of problem (14) for this P. 

 

21. Let T = 〈Zm ∪ h〉;
 
h

2 
= h be the special dual like number 

modulo integers. 

 

 Study questions (i) to (vi) of problem (14) for this T. 

 

22. Let S = 〈Z10 ∪ h〉;
 
h

2
 = h be the special dual  like number 

modulo integers. 

 

 Study questions (i) to (vi) of problem (14) for this S. 
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23. Let B = 65
Z h∪ ;

 
h

2
 = h be the special dual like number 

modulo integer.  

 

 Study questions (i) to (vi) of problem (14) for this B. 

 

24. Let D = 〈Z47 ∪ h〉;
 
h

2
 = h be the special dual like number 

modulo integers. 

 

 Study questions (i) to (vi) of problem (14) for this D. 

 

25. Obtain all the special features of the natural neutrosophic 

elements associated with 〈Zm ∪ k〉; the special quasi dual 

number modulo integers. 

 

26. Let W = 〈Zm ∪ k〉, k
2
 = (m – 1)k the special quasi dual 

number modulo integers. 

 

i) Find all the natural neutrosophic elements associated 

with 〈Zm ∪ k〉. 

ii)  How many are natural  neutrosophic zero divisors? 

iii) Find all natural neutrosophic nilpotents. 

iv) How many are  natural neutrosophic idempotents? 

 

 (Study for a fixed m, m a prime and m a composite 

number). 

 

27. Let T = 〈Z23 ∪ k〉;
 
k

2
 = 22k be the special quasi dual number 

modulo integers. 

 

 Study questions (i) to (iv) of problem (26) for this T. 

 

28. Let P = 67
Z k∪ ;

 
k

2
 = (7

6
 – 1)k be the special quasi dual 

number modulo integers.  

 

 Study questions (i) to (iv) of problem (26) for this P. 

 

29. Let B = 〈Z24 ∪ k〉; k
2
 = 23k be the special quasi dual 

number modulo integers.  
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 Study questions (i) to (iv) of problem (26) for this B. 

 

30. Compare the natural neutrosophic elements of T, P and B 

given in problems 27, 28 and 29 respectively. 

 

31. Can there be a real MOD interval [0, m) without special 

pseudo zero divisors? 

 

32. Find all special pseudo zero divisors of [0, 16). 

 

33. Find all special pseudo zero divisors of the MOD real 

interval [0,43). 

 

34. Obtain all special pseudo zero divisors of the MOD real 

interval [0,45). 

 

35. Finding the total number of MOD natural neutrosophic 

elements of the MOD real interval [0,m) 2 ≤ m < ∞ happens 

to be a open conjecture. 

 

36. It is a open conjecture to find the total number of MOD 

special pseudo neutrosophic zero divisors of the MOD real 

interval [0,m). 

 

37. Find all MOD neutrosophic elements of P = [0, 13), the MOD 

real interval. 

 

38. Find all MOD neutrosophic special pseudo zero divisors of P 

in problem 37. 

 

39. Let M = [0, 48) be the MOD real interval;  

 

 i)  Find all MOD neutrosophic elements of M. 

 ii) Find all MOD special pseudo zero divisors of [0,48). 

 

40. Let W = [0, 3
24

) be the MOD real interval. 

 

 Study questions (i) and (ii) of problem (39) for this W. 
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41. Compare the nature of the MOD neutrosophic elements and 

MOD special pseudo neutrosophic zero divisors in problems 

(37), (39) and (40) for P, M and W respectively. 

 

42. Prove [0,m)g, g
2
 = 0 the MOD dual number interval has 

infinite number of MOD neutrosophic zero divisors and MOD 

neutrosophic nilpotents of order two and has no MOD 

natural neutrosophic idempotents. 

 

43. Prove or disprove [0,m)I and [0,m) have the same type of 

MOD neutrosophic zero divisors, idempotents, and special 

pseudo zero divisors. 

 

44. Compare the MOD neutrosophic elements of [0,m)I and 

[0,m). 

 

45. Study for P = [0,24)I the MOD neutrosophic zero divisors, 

MOD neutrosophic idempotents and MOD neutrosophic 

pseudo zero divisors. 

 

46. Study M = [0, 3
10

)I, the MOD neutrosophic interval; for MOD 

neutrosophic elements. 

 

47. Compare P and M of problems (45) and (46) with  

W = [0,29)I. 

 

48. Study the MOD special dual like interval [0,m)h h
2
 = h for 

natural MOD neutrosophic elements. 

 

i) Can we say [0,m)I and [0,m)h have same type of  

natural MOD neutrosophic elements? 

ii) Find the difference between [0,m)h and [0,m). 

iii) Find the difference between [0,m)I and [0,m). 

 

49. Let P = [0,m),k k
2
 = (m – 1)k be the MOD special quasi dual 

number interval. 

  

 i) Study questions (i) and (ii) of problem (39) for this P. 
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50. Let S = [0,96)k, k
2
 = 985k be the MOD special quasi dual 

number interval. 

  

 Study questions (i) to (ii) of problem (39) for this S. 

 

51. Compare the MOD special quasi dual number interval 

[0,m)k, MOD special dual like number interval, [0,m)h MOD 

special quasi dual number interval; [0,m)g, and the 

neutrosophic MOD interval; [0,m)I and so on. 

 

52. Find the MOD neutrosophic elements of the real MOD plane 

Rn(m). 

 

53. Find the collection of all MOD neutrosophic elements of the 

MOD real plane Rn(27). 

 

54. Find the collection of all MOD neutrosophic elements of the 

MOD real plane Rn(47). 

 

55. Find the collection of all MOD neutrosophic elements of the 

MOD real plane Rn(24). 

 

 (i)  Does Rn(24) contain pseudo zero divisors? 

 (ii)  Does Rn(24) contain pseudo natural MOD neutrosophic  

        zero divisors? 

 

56. Find the collection of all MOD neutrosophic elements of the 

MOD complex modulo integer plane Cn(m); 
2

Fi  = m – 1. 

 

57. Find the collection of all MOD neutrosophic elements of the 

MOD neutrosophic plane Cn(45); 2

Fi  = 44. 

 

58. Let S = Cn(29), 2

Fi  = 28 be the MOD complex plane. Find all 

the MOD neutrosophic elements of S.  

 

59. Let M = Cn(48), 2

Fi = 47 be the MOD complex modulo 

integer plane. Find all MOD neutrosophic elements of M. 
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60. Compare the MOD neutrosophic elements of S and M in 

problems 58 and 59 respectively. 

 

61. Find the collection of all MOD neutrosophic elements of 
I

nR (m) the MOD neutrosophic plane. 

 

62. Let M = I

nR (48) be the MOD neutrosophic plane find the 

MOD neutrosophic elements of M.  

 

63. Let M1 = I

nR (13) be the MOD neutrosophic plane find the 

MOD neutrosophic elements of M1. 

 

64. Compare M and M1 in problems (62) and (63) respectively. 

 

65. Let N = g

nR (m) be the MOD dual number plane.  

 

 Find all MOD neutrosophic elements of N. 

 

66. Let P = g

nR (28) be the MOD dual number plane. 

 

 i)  Compare P with N of (65). 

 ii) Obtain all MOD neutrosophic elements of P. 

 

 

67. Let S = g

nR (47) be the MOD dual number plane. 

 

 i) Study questions (i) and (ii) of problem (66) for this S. 

 

68. Let R = h

nR (m) be the MOD special dual like number plane. 

 

 (i) Study questions (i) and (ii) of problem (66) for this R. 

 

 (ii) Compare R of this problem with S of problem (67) 
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69. Let T = k

nR (m), k
2
 = (m – 1)k be the MOD special quasi dual 

number plane. 

 

 i) Study questions (i) to (ii) of problem (66) for this T. 

 ii) Compare T with R of problem in (67). 

 

69. Let M = { k

nR (24), k
2
 = 23k} be the MOD special quasi dual 

number plane. 

 

 i) Study questions (i) to (ii) of problem (66) for this M. 

 ii) Compare M with P = { h

nR (42), h
2
 = h}. 

 

70. Let Y = { k

nR (426), k
2
 = 425k} be the MOD special quasi 

dual number plane. 

 

 i) Find all MOD neutrosophic elements of Y. 

 ii) Prove Y has pseudo zero divisors. 

 

 



 
 
 
 
 
Chapter Five 
 
 

 
 
PROBLEMS ON MOD INTERVAL 
POLYNOMIALS AND MOD PLANE 
POLYNOMIALS  
 
 
 
 In this chapter for the first time we introduce the notion of 

MOD interval  polynomials and MOD plane polynomials. For 

more refer [26-30]. 

 

Clearly [0, m)[x] = i

i

i 1

a x
∞

=




∑  ai ∈ [0, m)} is the MOD real 

interval polynomials.  

 

Finding roots of [0, m)[x] is an impossibly.  As [0, m)[x] is 

only a pseudo ring we see it is difficult to get roots.  

 

Several difficult open problems are suggested in this which 

are open conjecture.  

 

Study [0,96)[x] = i

i

i 1

a x
∞

=




∑  ai ∈ [0, 96)}, the MOD real 

interval polynomials.  
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Find all roots of p(x) = x
3
 + 90 ∈ [0, 96)[x].  

 

Let [0,m)I[x] be the  neutrosophic polynomial interval 

pseudo ring.  

 

We see p(x) ∈ R[x] may be continuous in the plane R; 

however these polynomials in [0,m)[x] behave very differently. 

 

Next we can have MOD interval dual number polynomials, 

[0, m)g[x] = i

i

i 1

a x
∞

=




∑  ai ∈ [0, m)g}.   

 

These polynomials p(x) ∈ [0,m)g[x] has no solution in 

many cases as this polynomial ring is a zero square ring and is 

not pseudo. 

 

We see [0, m)I[x] is the MOD neutrosophic interval pseudo 

polynomial ring.  

 

The problem of solving the equations arises from the fact I 

is an indeterminate and not a invertible element that is I has no 

inverse.  

 

So solving these equations is also impossible for we can  

only say or find roots of Ix and not x. 

 

Similar situation arise in case of [0,m)h[x] and [0, m)k[x], 

h
2
 = h and k

2
 = (m – 1)k respectively. Thus we get only values 

of Ix, gx, hx or kx and not for x.  

 

The case where x gets the value is [0, m)[x] the MOD real 

interval pseudo ring. 

 

Next we study the polynomials in MOD planes.  

 

 Rn(m)[x] = i

i

i 1

a x
∞

=




∑  ai ∈ Rn(m)}. 
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We see even the simple equation y = x
2
 is not continuous 

has several zeros in the MOD (real plane Rn(m)).  

 

Such illustrations and study is carried out in [Books 1 & 2]. 

However here we propose some problems. 

 

Similarly the equation y = sx + t ∈ Rn(m); 1 ≤ s, t < m 

behaves in a very different way has several zeros.  

 

So a linear equation in the MOD plane can have several 

zeros. 

 

Next the study of a simple equation y = nx, 1 < n < m in 

Rn(m) has many zeros.  

 

Hence we have given several open problems in this chapter 

regarding roots of a polynomial. 

 

Next if we consider MOD polynomials in the MOD complex 

modulo number plane Cn(m), m – 1 = 2

Fi  we  see the similar 

situation arises. For more information refer (Books 1, 2). 

 

Thus for instance even simple polynomials like  

p(x) = (a + biF)x
2
 + c + diF, a, b, d, c ∈  [0,10) behave in a very 

unnatural way for varying values of a, b, c, d ∈ [0, 10). 

 

Study in this direction is also left open for interested reader.   

 

Consider 5x + 8 + 2iF = 0 ∈ Cn(10). 

 

 Solving this equation is near to an impossibility as  

5
2
 = 5 (mod 10), so 5x = 2 + 8iF is the solution. 

 

Consider (2 + 4iF) x + 5 = 0 ∈ Cn(10).  

 

Clearly (2 + 4iF)x = 5 is the solution for 2 and 4 are zero 

divisors in Cn(10). 

 

(2 + 4iF) × 5 ≡ 0 (mod 10). 
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So one cannot lessen the coefficient. 

 

Infact (2 + 4iF) x = 5 multiply by 3 one gets (6 + 2iF) x = 5 

so are both same one is left to wonder. 

 

Next we study MOD neutrosophic polynomials in I

nR (m)[x].   

 

Since I is an indeterminate if the coefficients of x or its 

power contains I it is not solvable for x. 

 

Consider 3Ix + 2 + 4I ∈ I

nC (5)[x] 

 

3Ix = 3 + I 

Ix  = 1 + 2 I 

 

So we solve this not for x only for Ix. 

 

Consider  2x + 0.7 + 2.43iF ∈
I

nC (5)[x] 

    2x = 4.3 + 2.57iF. 

 

So  x = 2.9 + 2.71iF is the value of x. 

 

Let   2.5 x
2
 + 4.31 + 2iF ∈ I

nC (5)[x] 

2.5 x
2
 = 0.69 + 3iF since 

2.5 × 2 ≡ 0 (mod 5); 

 

we see value of x cannot be got only the value of x
2
 is got. 

 

One can find 22.5x  = F0.69 3i+ so that  

x(1.58113883) = F0.59 3i+ we do not know whether 

1.58113883 is a unit or not in [0, 5).  

 

So solving even a quadratic equation in Cn(m)[x] is not that 

easy. 

 

Further in Cn(m)[x] or for that matter in all types of MOD 

planes we see 
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(x – α1) (x – α2) … (x – αn) ≠ x
n
 (α1 + α2 + … + αn) x

n–1
 + 

n 2

i j

i j

x −

≠

α α∑  … + α1 α2 … αn as the distributive law is not true, 

so after solving the p(x) one faces lots of difficulty all these are 

left as open conjecture to the reader. 

 

Next we study the polynomial in the MOD neutrosophic 

pseudo polynomial rings. 

 

I

nR (m)[x] = i

i

i 1

a x
∞

=




∑  ai = di + ciI ∈ I

nR (m)} is the MOD 

neutrosophic polynomial pseudo ring.  

 

As 2 ≤ m < ∞ we have infinitely many such rings for each 

value of m, however there is only one neutrosophic ring, 〈R ∪ 

I〉[x] = i

i

i 1

a x
∞

=




∑ ai ∈ 〈R ∪ I〉}.  

 

Solving MOD polynomial equations in I

nR (m)[x] is as 

difficult as in MOD complex polynomials and MOD real 

polynomials. 

 

Consider 0.5Ix + 10.2I + 0.99 ∈ I

nR (12).   

 

Clearly 0.5Ix = 1.8I + 11.01.  However value of x cannot be 

found only the value of 0.5Ix is got. 

 

Thus even linear equations in general are not solvable in 
I

nR (12). 

 

So solving quadratic equations and equations of higher 

degree is a very difficult problem, hence left as a open 

conjecture or for future study. 

 

Let  5 x
2
 + 3.7I ∈ I

nR (12) 

   5x
2
 = 8.3I 
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   x
2
 = 5.5 I so x 2.34520788I so for this quadratic 

equation has a solution.  

 

However 

 

  5x
2
 + 3.7 I ≠ 0 if 

  x = 2.34520788I but its value is 7.2 only. 

 

We see x
2
 = 5.5 I is true but 5x

2
 = 8.3I is not true.  

 

There is a fallacy in solving so left as a open conjecture.  

 

In case of modulo addition or multiplication how to solve 

equations. 

 

Thus there are several intricate problems involved while 

solving equations in MOD neutrosophic polynomials in 
I

nR (m)[x]. 

 

Next we proceed onto describe and discuss about the MOD 

dual number polynomials g

nR (m)[x] = i

i

i 1

a x
∞

=




∑  ai ∈

g

nR  (m)  

where  ai = x + yg, x, y ∈ [0,m), g
2
 = 0}.  

 

Solving these equations is a very difficult task for  

0.7g x
3
 + 7.3 = 0 is in g

nR (10)[x].  

 

Clearly as g
2
 = 0 we cannot cancel g using any inverse. 

 

Now 0.7g x
3
 = 2.67. 

 

We cannot take the cube root as g is a dual number and is it 

possible to take cube root of a dual number is still a open 

problem for the dual number can be matrix or a transformation 

or from Zn the ring of modulo integers n a composite number.  

 

Under these circumstances only 0.7gx
3
 value is got is not 

further solvable. Consider 
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3x
3
 + 0.786 ∈ g

nR (10)[x]. 

3x
3
 = 9.214 (multiplying by 7 taking mod10 we get) 

x
3
 = 4.498. 

 

So x = 1.650719001 is one of the roots of the given MOD 

polynomial. 

 

Thus one cannot always say all the polynomials in MOD 

planes are not solvable.  

 

Some of them may be solvable partially and a few fully and 

many of the polynomials never solvable. 

 

Even solving  

p(x) = (6.78 + 9.33g) x
2
 + (4.775 + 0.33g)x + (0.52 + 9.32g) 

in g

nR (10)[x] is near to an impossibility.  

 

Readers can try this as a recreation or pursue this as a 

hobby. 

 

Several open conjectures are laid before them. 

 

Next the notion of MOD special quasi dual like number 

polynomials in  

h

nR (m)[x] = i

i

i 1

a x
∞

=




∑ ai = x + yh ∈ h

nR (m), h
2
 = h and x, y 

∈ [0, m), 2 ≤ m < ∞} are discussed in the following. 

 

Let p(x) = hx
3
 + 0.335 + 6.7h ∈ h

nR (7)[x]. Solving this for 

x is a difficult problem. 

 

For if hx
3
 = 6.665 + 0.3h then what is the cube root of 6.665 

+ 0.3h. This is not a easy work for square roots can be done as 

in case of  complex numbers but finding cube root or n
th 

root 

happens to be a challenging problem. 
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However if hx
3
 = 6.4h then we can solve for x as follows  

hx = 1.856635533 h is one of the roots. However as in case of 

other MOD plane some are solvable but certainly all polynomial 

equations are not solvable. 

 

Next we proceed onto study the solving of MOD 

polynomials in  

 

k

nR (m)[x] = i

i

i 1

a x
∞

=




∑  ai = x + yh ∈ k

nR (m), x, y ∈ [0, m), 

k
2
 = ( m – 1) k, 2 ≤ m < ∞}.  

 

Let p(x) = 8x
3
 + 6.24 k ∈ k

nR (11)[x]. 

 

8x
3
 = 4.75k, so multiplying the equation by 7 and taking 

mod we get 

 

x
3
 = 0.25 k 

 

x  = 0.62999605249 is one of the values of x for this p(x). 

 

Solving equations is not an easy task but this research is 

interesting and innovative.  

 

Further each MOD plane differently and infact one has 

infinite number of such MOD planes, be it real MOD plane or 

complex MOD plane or dual number MOD plane and so on. 

 

In the following we suggest some problems which are open 

conjectures, some of them at research level and some of them 

are simple. 

 

 

Problems: 
 

1. Prove or disprove the fundamental theorem of algebra for 

roots for the MOD real interval polynomials [0,m)[x]. 
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2. Can a polynomial of degree n have less than n number of 

roots?  

 

Justify your claim. 

 

3. Can a polynomial of  degree n in [0,m)[x] have more than 

n roots?  

 

Justify your claim. 

 

4. As distributive law is not true can we say finding roots of 

[0,m)[x] is an impossibility? 

 

5. Let [0,m)I[x] be the MOD neutrosophic interval 

polynomials. 

 

 i) Does there exist p(x) ∈ [0,m)I[x] of degree n which  

have n and only n roots? 

 

 ii) Give a polynomial p(x) ∈ [0,m)I[x] of degree n 

which has only less than n roots. 

 

 iii) Prove a polynomial p(x) of degree n in [0, m)I[x] 

has more than n roots. 

 

 iv) Show the distributive law is not true in [0,m)I[x] 

which affects the roots and the number of roots of 

p(x) in [0,m)I[x]. 

 

 

6. Let R = [0,45)I[x] be the MOD neutrosophic polynomial 

pseudo ring.  

 

 Study questions (i) to (iv) of problem (5) for this R. 

 

 

7. Let S = [0,37)I[x] be the MOD neutrosophic polynomial 

pseudo ring.  
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 Study questions (i) to (iv) of problem (5) for this S. 

 

 

8. Let W = [0,m)g[x] be the MOD dual number interval 

pseudo ring. 

 

 i) Solve p(x) = 0.8g x
3
 = 4.8gx

2
 + 6.1gx + 4.21g ∈ W. 

  a) Can p(x) have more than 3 roots? 

  b) Can p(x) have less than 3 roots? 

  

 ii) Show roots of degree one alone is solvable provided 

coefficients of x is 1 so it is not possible. 

 

 iii) Can 5.03gx
2
 + 7.2g = 0 have two roots or no root? 

 

9. Prove or disprove dual number MOD interval polynomials 

are not solvable if the highest coefficient is not 1 or not 

possible. 

 

10. Let P = [0,m)h[x], h
2
 = h be the MOD interval special dual 

like number polynomial pseudo ring. 

 

 i) Show p(x) ∈ P cannot be solved in general. 

 

 ii) Even linear polynomial in P cannot be solved prove 

or disprove. 

 

 iii) Obtain any other special feature enjoyed by P. 

 

 iv) Prove p(x) ∈ P behaves in an odd way in all MOD 

interval polynomials baring [0,m)[x]. 

 

11. Let M = [0,45)h[x], h
2
 = h be the MOD interval special 

dual like number plane.  

 

 Study questions (i) to (iv) of problem (10) for this M. 
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12. Study the MOD interval special quasi dual number 

polynomial pseudo ring B = [0,m)l[x]; k
2
 = (m – 1)k their 

roots. 

 

13. Study questions (i) to (iv) of problem (10) for this B 

 

14. Let M = [0,24)l[x], k
2
 = 23k be the MOD interval special 

quasi dual number pseudo ring.  

 

 Study questions (i) to (iv) of problem (10) for this M. 

 

15. For a polynomial p(x) fixed compare the roots in 

[0,10)[x], [0,10)I[x], [0,10)g[x]; g
2
 = 0, [0,10) h[x], h

2
 = h 

and [0,10)k[x], k
2
 = 9 k. 

 

16. Find any special feature  associated with polynomials in 

Rn(m)[x]. 

 

17. Prove the equation y = x
2
 + 1 for varying m in Rn(m)[x] 

has different sets of roots. 

 

18. Give a polynomial of degree 5 in Rn(6)[x] which has more 

than n roots. 

 

19. Let p(x) = x
3
 + 0.375 + 4.7h ∈ h

nR (5)[x].  Find all roots 

of p(x). 

  

20. Does there exist a polynomial p(x) of degree 7 in Rn(5)[x] 

which has less than seven roots? 

 

21. Give the graph of the polynomial y = 4x + 2 ∈ Rn(8)[x]. 

 

 i) Is the curve a continuous one? 

 

 ii) Find all the zeros of y = 4x + 2. 

 

 iii) Compare y = 4x + 2 ∈ Rn(8)[x] with  

  y = (4x + 2) ∈ Rn(6)[x]. 
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22. Let y = x
2
 ∈ Rn(4)[x] be the  function in the MOD plane. 

 

 i)  Find all zeros of y = x
2
 in Rn(4)[x]. 

 

 ii) Can this function be continuous? 

 

 iii) Trace the graph of y = x
2
 in Rn(4)[x]. 

 

 iv) Can this function have more than two zeros? 

 

 v) Is the function continuous in the real plane? 

 

 vi) Can the function be continuous in any other MOD  

   plane? 

 

23. Let y = 3x
2
 + 4 ∈ Rn(5)[x]. 

 

 i) Study questions (i) to (vi) of problem (22) for this 

function. 

 ii) Study this function in the planes Rn(6), Rn(7), 

Rn(10), Rn(12) and Rn(23). 

 

24. Let y = x
3
 + 2 ∈ Rn(3)[x]. 

 

 i) Study questions (i) to (vi) of problem (22) for this 

function. 

 ii) Study the function in the MOD plane Rn(8), Rn(91), 

Rn(24) and Rn(19). 

 

25. Let y = 4x
2
 + x + 1 ∈ Rn(6)[x]. 

 

 i) Study questions (i) to (vi) of problem (22) for this 

function. 

 ii) Study this questions in the planes Rn(9), Rn(23), 

Rn(48) and Rn(121). 

 

26. Solving polynomial equations be it linear or otherwise is a 

difficult task.  
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 So this problem is left as an open conjecture. 

 

27. Solve p(x) ∈ Rn(20)[x] = i

i

i 1

a x
∞

=




∑ ai x

i
 / ai ∈Rn(20) where 

ai  = (ti, vi), ti, ui ∈ [0,20)} where p(x) = (0,2)x + (10.31, 

3.2). 

 

28. Solve p(x) = (4,9) x
3
 + (2,1.09)x + (6.67, 4) ∈ Rn(12)[x]. 

 

 i) How many roots exist for p(x)? 

 ii) Can p(x) have more than 3 roots? 

 

29. Solve p(x) = (4,0.7)x
5
 + 0.7, 0.8)x

4
 + (5.2, 0)x

3
 + (0, 4.3) 

∈ Rn(4)[x]. 

 

 i) Study questions (i) to (vi) of problem (21) for this 

p(x). 

 ii) Study for this p(x) in Rn(19)[x], Rn(12)[x], 

Rn(43)[x]; Rn(4)[x] and Rn(10)[x]. 

 

30. Find polynomials other than y = x which is continuous in 

Rn(m) [x], 2 ≤ m < ∞. 

 

31. Let p(x) ∈ Cn(m) [x] be a MOD polynomial with complex 

coefficients.  

 

 Study for the same p(x) but for varying m;  2 ≤ m < ∞. 

 

32. Compare polynomials in Cn(m)[x] and Rn(m)[x]. 

 

33. In which MOD plane a polynomial p(x) will have more 

zeros in Cn(m)[x] or Rn(m)[x]? 

 

34. Study the roots of the polynomial f(x) = ax
3
 + bx + 1 ∈ 

Cn(7)[x] where a = 3.47 + 2.4iF, b = 0.46 + 2.34iF and 1 = 

1 + 0iF ∈ Cn(7). 
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 i) Can f(x) have more than three roots? Justify your 

claim. 

 

 ii) If a = 3 + 4iF and b = 4 + 3iF will f(x) has only three 

roots? 

 

 iii) If a = 3.5, b = 1.75 and 1 = 1 + 0iF, can f(x) have 

only three roots? 

 

35. Let p(x) = 5 x
3
 + 7x + 34 ∈ Cn(10)[x] and also this  

p(x) ∈ Rn(10)[x]. 

 

 i) Will p(x) have different sets of roots in  Rn(10)[x] 

and Cn(10)[x]? 

 ii) Can we say p(x) will have 3 roots? 

 iii) Can p(x) have more than three roots? 

 iv) Will p(x) have less than three roots? 

 v) Is p(x) solvable in Rn(10)[x]? 

 

36. Can we write program for solving roots of a polynomial 

equation in (m)

nR [x] and (m)

nC [x]? 

 

37. What will be the probable applications of these 

polynomials in [0,m)[x]? 

 

38. Can we say this paradigm  shift will give new dimension 

to solving polynomial equations? 

 

39. Let p(x) = 0.03 x
5
 + 0.01iF ∈ Cn(2)[x]. 

 

 i) Does the roots of p(x) exist? 

 ii) Will p(x) have atleast one root? 

 iii) Can p(x) have more than 5 roots? 

 iv) Derive a method to solve p(x) in Cn(2)[x]. 

 v) Is 0.03 ∈ [0,2) an invertible element? 

 

40. It is left as an open conjecture to find  
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 i) All zero divisors and nilpotents in [0,2) ([0,m) in 

general, 2 ≤ m < ∞). 

 

 ii) Finding idempotents in [0,2) ([0,m) in general, 2 ≤ 

m < ∞). 

 

 iii) Finding units of [0,2) ([0,m) in general, 2 ≤ m < ∞). 

 

41 It is yet another open conjecture of finding the total 

number of MOD natural neutrosophic elements in [0,m), 

[0, m)h and [0,m)k for 2 ≤ m < ∞. 

 

42. Prove [0,m)g and [0,m)I has infinite number of MOD 

neutrosophic elements. 

 

 i) Does they contain as many as the cardinality of  

  [0,m) itself? 

 

43. Prove once [0,m) is solved one can solve all the MOD 

plane Rn(m), 2 ≤ m < ∞. 

 

44. Solve  the equation p(x) = 2.7 Ix
2
 + 4 + 6.3I ∈ I

nR (8)[x]. 

 

 i)  Does p(x) have more than one root? 

 ii) Can x be got only in terms of xI; be got as a 

solution? 

 iii) Can p(x) have more than 2 roots? 

 iv) Study this problem in I

nR (11)[x] and I

nR (12)[x]. 

 

45. Let p(x) = 2.034 x
3
 + 0.75 + 0.745 I ∈ I

nR (3)[x].   

 

 Study questions (i) to (iv) of problem (44) for this p(x). 

 

46. Let q(x) = 0.770 x
2
 + 0.55x + (0.312 I + 0.13) ∈ I

nR (2)[x].  

 

 Study questions (i) to (iv) of problem (44) for this p(x). 
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47. Let q(x) = 6x
3
 + (3 + 4I) ∈ I

nR (7)[x].  

 

 Study questions (i) to (iv) of problem (44) for this q(x). 

 

 

48. Let q(x) = 0.78x + 4.5I ∈ I

nR (5)[x]. 

 

 i)  Study for roots in I

nR (5)[x]. 

 ii) Can q(x) have more than one root? 

 iii) Is 0.78 a unit or a zero divisor in I

nR (5)? 

 

49. Let p(x) = (0.2 + 0.5g) x
2
 + (0.6 + 0.8) ∈ g

nR (4)[x]. 

 

 i) Study questions (i) to (iv) of problem (44) for this 

p(x). 

 ii) Can we say 0.2 + 0.5g is a zero divisor or an 

idempotent in g

nR (4)? 

 

50. Let p(x) = 2x
2
 + (4 + 6g) ∈ g

nR (10)[x]. 

 

 i)  Study questions (i) to (iv) of problem (44) for this  

   p(x). 

 

 ii) Does a root exist as 2 is a zero divisor in g

nR (10)? 

 

51. Let p(x) = (3 + 2g) x
2
 + (4 + 3g) ∈ g

nR (6)[x]. 

 

 i) Study questions (i) to (iv) of problem (44) for this 

p(x). 

 

 ii) Can we say (3 + 2g) is a zero divisor in 
g

nR (6)? 
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 iii) Can we say polynomials of the form p(x) is not 

solvable even in 〈Z6 ∪ g〉 [x] = {
i 1

∞

=

∑ (ai + big) x
i
 / ai 

+ big  ∈ 〈Z6 ∪ g〉 where g
2
 = 0 and ai bi ∈ Z6}? 

 

 

52. Let p(x)  = (0.6 + 0.2g) x
3
 + 0.33g ∈ 

g

nR (6)[x]. 

 

 i)  Study questions (i) to (iv) of problem (44) for this p(x). 

 

 

53. Finding units, idempotents, zero divisors and nilpotents of 

the MOD dual number plane g

nR (m) , g
2
 = 0, 2 ≤ m < ∞ 

happens to be a very challenging open problem. 

 

54. Find all units, zero divisors and idempotents of g

nR (53), 
g

nR (12) and  g

nR (625), g
2
 = 0. 

 

55. Let p(x) = (7 + h)x
2
 + (4 + 3h) ∈ 

h

nR (14)[x], h
2
 = h.  

 

 Find the roots of p(x) and study questions (i) to (iv) of 

problem (44) for this p(x). 

 

56. Let f(x) = (0.7 + 1.4h) x
2
 + (2 + 7h) ∈ h

nR (14)[x].  

 

 Study questions (i) to (iv) of problem (44) for this f(x). 

 

57. Finding all the units, zero divisors and idempotents of 
h

nR (m), h
2
 = h, 2 ≤ m < ∞ happens to be a open 

conjecture. 

 

58. Find all units, zero divisors, idempotents and nilpotent 

elements of the MOD special dual like number MOD planes 
h

nR (43), h

nR (24) and h

nR (81). 
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59. Find all innovative techniques that can be used in solving 

polynomials in h

nR (m), h
2 
= h and 2 ≤ m < ∞. 

 

60. Let p(x) = 3kx
3
 (9 + 5k) ∈ k

nR (15)[x] k
2
 = 14k. 

 

 i) Solve for x or kx. 

 ii) Study questions (i) to (iv) of problem (44) for this 

p(x). 

 iii) Will the solution p(x) be the same in k

nR (15) and 

〈Z15 ∪ g〉? 

 

61. Let p1(x) ∈ 0.3kx
3
 + (0.09 + 0.5k) ∈ k

nR (15)[x], k
2
 = 14k.  

 

 Study questions (i) to (iv) of problem (44) for this p1(x). 

Compare p(x) in problem (60) with this p1(x). 

 

62. It is left as an open conjecture to find the units, 

idempotents, zero divisors of the MOD special quasi dual 

number plane 
k

nR (m), k
2
 = (m – 1)k; 2 ≤ m < ∞. 

 

63. Find the zero divisors, units and idempotents of the MOD 

special quasi dual number plane k

nR (10), k

nR (47) and 
k

nR (16). 

 

64. Solve the equation q(x) = (4 + 0.4k) x
3
 + 0.004 kx

2
 + 

(0.04 k + 4.4) x + 0.0004 ∈ k

nR (5)[x]; k
2
 = 4k. 

 

 i)  Study questions (i) to (iv) of problem (44) for this  

   q(x). 

 ii) Study q(x) in 
h

nR (5)[x], h
2
 = h, 

 iii) Study q(x) in Rn(5)[x] 

 iv) Study q(x) in Cn(5)[x]. 

 v) Study q(x) in 
g

nR (5)[x]. 

 vi) Compare the solutions in all the 5 MOD planes. 

 

 



 
 
 
 
 
Chapter Six 
 
 

 
 
PROBLEMS ON DIFFERENT TYPES  
OF MOD FUNCTIONS  
 
 
 

In this chapter  we just recall different types of MOD 

functions viz. MOD trigonometric, MOD logarithmic, MOD 

exponential and their generalizations. However such study is 

carried out in [27].  

 

Here our main aim is to suggest problems some of which 

are open conjectures and some of them are simple.  

 

For more about these MOD functions refer [27]. 

 

Problems: 
 

1. Define MODsine; nsinx function. 

 

2. Does values / graph of nsinx vary for varying Rn(m);  

2 ≤ m < ∞. 

 

3. Study problem (2) for ntanx, ncosx and nsecx. 
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4. Describe the trigonometric function MOD cosecx 

(ncosecx) in Rn(7). 

 

5. Can we say MOD trigonometric functions are in no way 

different from usual trigonometric functions?  

 

Justify your claim. 

 

6. Give some special features about ntan3x in the MOD real 

plane Rn(9). 

 

7. What are the advantages of using MOD trigonometric 

function? 

 

8. Obtain any special properties enjoyed by MOD 

trigonometric functions. 

 

9. Can we see nsinmx behaves in the same way in all MOD 

planes m a fixed number? 

 

10. For problem (9), study the situations in the MOD planes 

Rn(t). 

 

 i)  if t / m 

 ii) If (t1m) = 1 

 iii) If (t1m) = d 

 iv) m / t. 

 

11. Compare the MOD trigonometric functions nsinx and 

ncosx in the MOD real plane Rn(15). 

 

12. Study ntanx in the MOD planes Rn(t) where t is as in 

problem  10. 

 

13. Compare ntanx with ncot x. 

 

14. Can any of the MODtrignometric functions be continuous 

in Rn(t); for any value of t; 2 ≤ t m. 
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15. Let nsin5θ be the MOD trigonometric function in Rn(5). 

 

 

 i)  Is this function continuous? 

 ii) If Rn(5) is replaced by Rn(2) or Rn(3) or R5(4),  

   Rn(10) and Rn(6) study the nature of the curve. 

 iii) Study ncosec7θ in the MOD plane Rn(7). 

 

16. Study nsec9θ in the MOD planes Rn(3), Rn(9) and Rn(27). 

 

17. Study nsec(mθ); 2 ≤ t < ∞ in the MOD planes Rn(t) where 

(t, θ) = 1, t / θ and (t, θ) = d. 

 

18. Obtain any special feature associated with MOD 

trigonometric functions. 

 

19. Study MOD exponential functions in the MOD planes. 

 

20. How does the study of MOD trigonometric functions in 

MOD planes Rn(m) different from the trigonometric 

functions in the real plane? 

 

21. Study the MOD trigonometric function nsin
-1

x in the MOD 

plane Rn(15). 

 

22. Study ncot
-1

5x in the MOD planes Rn(5), Rn(7), Rn(4), 

Rn(15) and Rn(10).  

 

 Are these functions graph different in different planes or 

is it the same? 

 

23. Study the MOD inverse trigonometric function nsec
-1

x  in 

the MOD planes Rn(2), Rn(4), Rn(3), Rn(5), Rn(6), Rn(13) 

and Rn(18). 

 

 Draw the curves in these seven MOD planes and compare 

them. 
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24. Is this equation nsinθ + ntan2θ = 0 solvable in Rn(5). Find 

the values of θ. 

 

25. Solve for θ the following functions. 

 

 i)  
n cos3

1 n tan

θ

+ θ
 in Rn(13) 

 ii) 
n cot 2

n sin n cos

θ

θ + θ
 in Rn(10) 

 iii) 
2

n sec3

1 n tan 3

θ

+ θ
 in Rn(5). 

 

26. Solve for θ the following MOD trigonometric inverse 

functions. 

 

 i)  
1

1

n sin 2

1 n tan

−

−

θ

+ θ
 in Rn(17). 

 ii) 
1

1

n cot 5

ncis 2 1

−

−

θ

θ +
 in Rn(5) 

 iii) 
1

1

n tan 5

1 n cot 5

−

−

θ

+ θ
 in Rn(15) 

 iv) 
1

1

n cos 3

1 nsec 3

−

−

θ

+ θ
in Rn(7) 

 

27. Trace the curve ne
x
 in the MOD plane Rn(2001589). 

 

28. Obtain all the special features enjoyed by the MOD 

logarithmic functions. 

 

29. Derive all special features in studying MOD exponential 

function. 

 

30. Distinguish the logarithmic functions from the MOD 

logarithmic functions.   



 
 
 
 
 
Chapter Seven 
 
 

 
 
PROBLEMS ON MOD DIFFERENTIATION 

AND MOD INTEGRATION OF  
FUNCTIONS IN THE MOD-PLANES  
 
 
 

In this chapter  we just give some relevant problems related 

with differentiation and integration of MOD functions defined on 

MOD  planes. For more about these please refer [27]. 

 

It is important to keep on record that differentiation and 

integration of MOD functions in general behaves in a very odd 

way. They do not obey most rules associated with 

differentiation or integration.  

 

Further a function which is continuous in the real plane or a 

complex plane need not in general be continuous in the MOD 

planes.  

 

So at this stage itself most of the properties associated with 

MOD functions do not  behave like usual functions 

 

In fact we see polynomial functions behave very 

haphazardly. 
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For a n
th
 degree polynomial in the MOD interval need not 

have any of the derivatives to exist in [0,6)[x].  

 

Thus if f(x) = x
36

 + 3.714x
18

 + 4.025 x
6
 + 3.7 ∈ [0,6)[x].  

 

   Then 
df

dx
= 0. 

 

There is a vast difference between MOD polynomials and 

usual polynomials in the study of differentiation. 

 

This has been elaborately discussed in the books [26-30]. 

 

Likewise if  

 

f(x) = 0.7x
23

 + 4.02x
17

 + 2.5135 x
5
 + 0.33 ∈ [0,6)[x] then 

we see  

 

∫f(x) dx = ∫0.74x
23

 dx + ∫4.02x
17

dx + ∫2.5135 x
5
 dx + ∫0.33 dx 

 

= 
24 180.7x 4.02x

24 18
+ +  

62.5135x 0.33
x c

6 1
+ +  is not defined 

for in [0,6) the values of 
1

24
, 

1

18
 and 

1

6
 are not defined.   

 

Here we  proceed onto give some more examples. 

 

Consider the MOD interval polynomial pseudo ring. 

 

[0,12)x = i

i

i 1

a x
∞

=




∑  ai ∈ [0,12)}. 

 

p(x) = 3.7 x
24

 + 1.2 x
12

 + 3x
4
 + 4x

3
 + 6x

2
 + 7.331 ∈ [0,12)x. 

 

Clearly 
dp(x)

dx
= 0. 



Problems on Different types of MOD Functions 123 
 

 

 

 

 

 

 

 

That is the derivative is zero though p(x) is of degree 24. 

 

The integral of p(x) is also not defined for; 

 

∫p(x) dx = 
24.7x

1

3
 + 1.2x

13
 + 

53x

5
+ 

44x

4
+ 

36x

3
+ 7.331x + 

c, where c is a constant.  

 

Since 
1

4
 and 

1

3
 are not defined in [0,12) as they are zero 

divisors in [0,12).  

 

We see the integral of p(x) is also not defined. 

 

Thus finding polynomials  

p(x) ∈ [0,m)x = i

i

i 1

a x
∞

=




∑  ai ∈ [0,m)} whose derivative and 

integrals are defined properly and those which satisfy the usual 

or classical rules of differentiation and integration also true 

happens to be a very challenging problem. 

 

Consider  

p(x) = 2x
7
 + 0.7x

14
 + 6.5x

28
 + 32x

7
 ∈ [0,24)x = i

i

i 1

a x
∞

=




∑  ai 

∈ [0,14)}.  

 

We see 
dp(x)

dx
= 0.   

 

Further ∫p(x) dx = 
82x

8
+ 

150.7x

14
+

296.5x

29
+

732x

8
+ c is not 

defined as 
1

8
,  

1

14
 are undefined in [0,14).   
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So in [0,m)x there exists several polynomials whose 

derivatives are zero and the integrals does not exists or are 

undefined [26-30], 

 

Characterizing such polynomials happens to be a open 

conjecture.  

 

Next we study polynomials in Rn(m)[x] = i

i

i 1

a x
∞

=




∑  ai ∈ 

Rn(m) = {(a, b) | a, b ∈ [0,m)}.  

 

It is important to note that even in case of polynomial in the 

MOD plane Rn(m) [x] they in general do not satisfy the classical 

properties of differentiation or integration. 

 

Consider p(x) ∈ Rn(4)[x] = 
i

i

i 1

a x
∞

=




∑  ai ∈ Rn(4) = {(a, b) | 

a, b ∈ [0, 4)} where  

 

p(x) = (2,1.2)x
8
 + (3.1, 0.315)x

4
 + (2, 2)x

2
 + (0.1, 0). 

 

 

Clearly 
dp(x)

dx
= 0. 

However  

 

∫p(x) dx = 
9 5 3(2,1.2)x (3.1,0.315)x (2,2)x

1 1 3
+ +

 
 

+ (0.1,0)x + c. 

 

 

As 
1

3  

= 3 the integral exists in this case. 

 

However the derivative is zero.  
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Thus even the polynomials in the MOD plane do  not satisfy 

all the classical properties of derivatives and integrals in 

general. 

 

Suppose we have the polynomials from the MOD plane 

Rn(24)[x] then all  polynomials whose power or degree is 

multiples of 24.   

 

Also if the polynomials have coefficients from  

{(a,b | a, b ∈ {0, 2, 4, 6, …, 22}} then there are possibilities 

where the derivatives are zero. 

 

p(x) = (2,4)x
12

 + (16,8)x
6
 + (12,6)x

4
 +(12,12) x

2
 + (8,6) ∈ 

Rn(24)[x]. 

 

 Then the derivative is zero and the integrals do not exist.  

 

 Also all MOD polynomials whose powers are say p1, p2, p3, 

…, pn and these pi’s take values from {1, 5, 7, 11, 13, 17, 19, 

23} are such that their integrals are not defined. 

 

Let p(x) = (0, (5.33) + (2, 7.21) x + (6.022, 5.001)x
2
 + (5, 

0.331)x
5
 ∈ Rn(24)[x] be such that 

dp(x)

dx
 exists but its integral 

is not defined. 

 

Let p(x) ∈ Rn(m)[x], we see even if p(x) is of degree n, then 

p(x) need not have all the n derivatives to exist. 

 

Secondly even the second derivative of p(x) need not be a 

polynomial of degree (n – 1). 

 

For instance if  

 

p(x) = (3, 6)x
4
 + (2.01, 3.2) x

2
 + (0.77, 6.2) ∈ Rn(12)[x]. 

p(x) is of degree four.  

 

Consider 
dp(x)

dx
= 0 + (4.02, 6.4) x + 0. 
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Thus the first derivative results in a  polynomial of degree 

one. 

 
2

2

d p(x)

dx
 = (4.02, 6.4).   

 

That is the second derivative is a constant polynomial and 

the third derivative 
3

3

d p(x)

dx
 = (0,0). 

 

Hence our claim that a nth degree polynomial in MOD 

planes need not be derivable n times. 

 

Sometimes the first derivative itself can be zero. 

 

Likewise one can define polynomials using the complex 

MOD integer plane Cn(m). 

 

Cn(m)[x] = i

i

i 1

a x
∞

=




∑  ai = c + 

Fi
d ∈ Cn(m); c1 d ∈ [0,m)}. 

 

The degree of the polynomial roots of the polynomials are 

defined in an analogous way as that of Rn(m)[x]. 

 

Suppose p(x) = (5 + 3iF)x
10

 (7.5 + 15iF) x
4
 = 15iF x

2
 + 4.32 + 

0.75iF ∈ Cn(30)[x].   

 

We see even the first derivative is zero. 

 

Further the integral of p(x) does not exist as the terms 
1 1

,
5 3

 

are not defined in Cn(3).  

 

Hence one cannot as in case of polynomials in C[x] define 

the derivatives or integrals of polynomials in Cn(m)[x]; 2 ≤ m < 

∞.  
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Thus it is difficult to find conditions on polynomials in 

Cn(m)[x] to have both the derivative and integrals to exist. 

 

Let p(x) = (2.5 + 1.25iF) x
4
 + 2.5 iF x

2
 + 3.002 + 0.67iF ∈ 

Cn(5)[x]. 

 

dp(x)

dx
 = 0 and  ∫p(x) dx is not defined. 

 

Thus finding integrals and derivatives that follows all 

classical conditions happens to be a challenging problem. 

 

Next we study polynomials in  

g

nR (m)[x] = i

i

i 1

a x
∞

=




∑  ai ∈

g

nR (m) = {a + bg | a, b ∈ [0, m), 

g
2
 = 0}, known as the dual number coefficient polynomials. 

 

If p(x) ∈ g

nR (m)[x] we cannot say that p(x) is integrable or 

derivable in general. 

 

Most of the polynomial do not satisfy the properties of 

classical derivatives.  

 

For let p(x) = (4 + 2.5g)x + (2.5 + 1.25 g)x
4
 + 3.12 + 4.706g 

∈ Rn(5)[x]. 

 

Clearly 
dp(x)

dx
 = 0 which shows the classical property is 

not satisfied. 

 

Further ∫p(x) dx is not even defined as 
1

5
 is not defined in 

[0,5). 

 

Thus in general a polynomial p(x) ∈ Rn(5)[x] is not 

integrable.   
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Thus characterizing those polynomials which are integrable 

(or (and) differentiable) in 
g

nR (m)[x] happens to be a open 

conjecture. 

 

Next we can study MOD special dual like number 

polynomials in  

 

h

nR (m)[x] = i

i

i 1

a x
∞

=




∑ ai = c + bh ∈ h

nR (m), c, b ∈ [0,m),  

h
2
 = h, 2 ≤ m < ∞}.   

 

Clearly polynomials p(x) in 
h

nR (m)[x] will be known as 

MOD special dual like number polynomials. 

 

In general as in case of other MOD polynomials these 

polynomials also do not in general and further do not satisfy the 

classical properties of differentiation or integration.  

 

Apart from this these polynomials also do not satisfy the 

classical properties of roots of  polynomials.  

 

Study in these directions are just left as open conjectures. 

 

We will present an example or two in this direction. 

 

Let p(x) = (1.50 + 3h)x
12

 + (0.75 + 1.50 h)x
8
 + 0.773 + 

4.0075 h ∈ 
h

nR (6)[x].   

 

Clearly 
dp(x)

dx
 = 0 and ∫p(x) (dx) is not defined. 

 

Let p(x) = hx
2
 + (2.31 + 4.35 h) ∈ 

h

nR (6)[x].  

 

Clearly this is a quadratic MOD polynomial equation in 
h

nR (6)[x] but is not solvable in 
h

nR (6)[x].   
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Similarly 3.2 hx + (4.21 + 5.2h) = 0 is not solvable in 
h

nR (6)[x]. 

 

Next we study MOD polynomials with coefficients from the 

special quasi dual numbers or equivalently the MOD special 

quasi dual number polynomials in 
k

nR (m) [x].  

 

Let 
k

nR (m)[x] = i

i

i 1

a x
∞

=




∑ ai ∈ 

k

nR (m) = {a + bk | a, b ∈  

[0, m) k
2
 = (m – 1)k, 2 ≤ m < ∞}. 

 

Let  

p(x) = (5.3 + 0.3k) x
12

 + (4 + 3k) x
6
 +3.718 + 4.37 k ∈ 

k

nR (6) [x].   

 

Clearly 
dp(x)

dx
= 0.  However the integral exist.  

 

Let (0.3k + 4.57) x
2
 + (4.32 + 2.01 k) ∈ 

k

nR (6)[x].  

 

Solve for x.   

 

Further it is important to keep on record that it is not 

possible to solve for x even when it is a linear equation in x. 

 

Consider (0.7 + 4.2 k)x + (0.75 + 2k) ∈ 
k

nR (6)[x].  

 

Solve for x. 

 

Let p(x) = (3.7 + 4.2k)x
5
 + (2.5 + 1.25)x

4
 + (2.5k)x

2
 + (4.32 

+ 2.701 k) ∈ 
k

nR (5).  

 

Prove the derivative is zero and the integral does not exist. 
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Characterizing those polynomials in 
k

nR (m) which are both 

integrable as well as derivable happens to be a challenging 

problem. 

 

Next we consider about solving for roots for polynomials in 
k

nR (m). Consider p(x) = kx
5 
+ 3.7 + 4.7k ∈ 

k

nR (10).  

 

Clearly p(x) cannot be solved for x however one may be at 

times in a position to get the value of kx and x. 

 

Solve 3.52 kx + 4.37 + 2.5k ∈ 
k

nR (15).  Here also we 

cannot solve for x only for kx. 

 

Let x
2
 + 4 ∈ 

k

nR (20) solving for x is a easy task for x
2
 = 16 

so x = ± 4. But if x
2
 + 4k is considered instead then x

2
 = 16k.   

 

x = 4 k . Finding value of k is a very difficult task.   

 

Now in the following we suggest some problems which are 

open conjectures some of them are difficult problems other easy 

exercise. 

 

Problems 

 

1. Find conditions on the MOD interval real polynomials  

p(x) ∈ [0, m)[x] to have derivatives and to satisfy the 

classical properties. 

 

2. Study the integrals of polynomials p(x) ∈ [0,m)[x].  

 

3. Characterize those p(x) ∈ [0,12)[x] which follows the 

classical properties of derivatives. 

 

4. Study question three for p(x) ∈ [0,19)[x]. 

 

5. Let p(x) ∈ Rn(m)[x]. Find condition on p(x) to have 

derivatives. 
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6. Prove p(x) in general in Rn(15)[x] are not integrable. 

 

7. Find conditions on all those polynomials in Rn(4)[x] 

which are both integrable and derivable. 

 

8. Characterize those polynomials p(x) ∈ Rn(5)[x] which are 

derivable but not integrable and vice versa. 

 

9. Let p(x) ∈ Rn(11)[x]. 

 

 i) Find all roots of p(x). 

 ii) If p(x) ∈ Rn(11)[x] is such that p(x) is both 

derivable and integrable can we say p(x) has same 

number of roots as its degree? 

 iii) Characterize all polynomials p(x) in Rn(11)[x] of 

degree n, but has less than n roots. 

 iv) Characterize all polynomial p(x) in Rn(11)[x] of 

degree n but has roots greater than n. 

 

10. What are special and distinct features associated with the 

MOD polynomial interval [0,m)[x]? (2 ≤ m < ∞) 

 

11. Enumerate all the special features enjoyed by the MOD 

polynomials in Rn(m)[x] (2 ≤ m < ∞). 

 

12. Prove both [0, m)[x] and Rn(m)[x] are only pseudo rings 

and not rings. 

 

13. Can we say as the distributive property is not true, is the 

only reason for polynomials not satisfying the classical 

properties? 

 

14. What is the reason for the polynomials in [0,m)[x] and 

Rn(m)[x] to behave in a chaotic manner? 

 

15. Study the MOD complex modulo integer polynomials in 

Cn(m)[x]. 
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16. Characterize all those polynomials in Cn(m)[x] which 

follow both the classical laws of differentiation and 

integration. 

 

17. Characterize all those polynomials in Cn(m)[x], 2 ≤ m < ∞ 

which satisfy all the classical laws of differentiation. 

 

18. Characterize all these polynomials in Cn(m)[x], 2 ≤ m < ∞ 

which satisfy all the classical laws of integration. 

 

19. Characterize all those polynomials in Cn(m)[x] which 

satisfy the classical properties of roots. 

 

20. Study questions (16) to (19) for the polynomials in 

Cn(15)[x]. 

 

21. Study questions (16) to (19) for polynomials in Cn(43)[x]. 

 

22. Study questions (16) to (19) for polynomials in Cn(3
12

)[x]. 

 

23. Solve p(x) = (.37 + 4.2 iF) x
2
 + (7.3 + 5.4 iF) ∈ Cn(10)[x]. 

 

24. Show as the distributive laws are not true in Cn(m)[x] 

finding roots of a polynomial in Cn(m)[x] is a difficult 

task by some examples. 

 

25. Let p(x) = 27 x
3
 + (5 + 6 iF) ∈ Cn(7)[x]. 

 

 i) Solve for x. 

 ii) Will p(x) have three roots in Cn(7)[x]? 

 iii) If α, β and γ are the roots of p(x) can we prove  

(3x – α) (3x – γ) (3x – β) = p(x). 

 iv) If p1(x) = x
3
 + (0.5 + 0.72 iF) ∈ Cn(7)[x] will (iii) be 

true for the roots α, β, γ of p1(x). 

 

26. Prove in Cn(m)[x]; (x – α1) (x – α2) … (x – αn) ≠ x
n
 – (α1 

+ α2 + … + αn) x
n–1

 + ∑
≠ ji

αiαj x
n–2

 … ± α1 … αn where 
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α1, α2, …, αn are roots of a polynomial p(x) and are in 

Cn(m)[x]. 

 

27. When will problem (25) be true in Rn(m)[x]? 

 

28. How will this problem in (25) be over come? 

 

29. Can we have this sort of problem in real world problem? 

(if so give some examples). 

 

30. Is it advantageous to use MOD polynomials of MOD planes 

than usual real plane and complex plane? 

 

31. Let p(x) ∈ 
g

nR (m)[x] = i

i

i 1

a x
∞

=




∑  ai ∈ 

g

nR (m) = {a + bg 

= (a, b); g
2
 = 0; 2 ≤ m < ∞} be the MOD dual number 

polynomial with coefficients from the MOD dual number 

plane 
g

nR (m). 

  

 i) When is p(x) totally solvable? 

 ii) If p(x) is of degree n can we say p(x) will have n 

and only n roots. 

 iii) When will p(x) satisfy all the classical properties of 

differentiation? 

 iv) When will p(x) satisfy all the laws of 

differentiation? 

 v) Obtain any other special or distinct feature 

associated with p(x). 

 vi) Can we say because p(x) is a MOD dual number 

coefficient polynomial they enjoy some special 

features? 

 vii) Characterize all p(x) in 
g

nR (m)[x] for which both 

the integral or derivative does not exist. 

 viii) Characterize all those polynomials in 
g

nR (m)[x] 

which satisfies all properties of derivatives but are 

not integrable. 
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 ix) Characterize those polynomials in 
g

nR (m)[x] which 

satisfy all properties of integrals but does not satisfy 

the properties of derivatives. 

 

32. Let 
g

nR (12)[x] be the dual number polynomials with 

coefficients from the MOD dual number plane  

 
g

nR (12) = {a + bg = (a, b) | g
2
 = 0, a, b ∈ [0, 12)}.  

 

 Study questions (i) to (ix) of problem (31) for this 

polynomials in 
g

nR (12)[x]. 

 

33. Let 
g

nR (43)[x] be the dual number polynomials with 

coefficients from the MOD dual number plane 
g

nR (43).  

 

 Study questions (i) to (ix) of problem (31) of polynomials 

in 
g

nR (43)[x]. 

 

34. Let 
g

nR (5
7
)[x] be the collection of all polynomials with 

coefficients from the MOD dual number plane 
g

nR (5
7
).  

 

 Study questions (i) to (ix) of problem (31) for 

polynomials in 
g

nR (5
7
)[x]. 

 

35. Let p(x) = (0.33 +0.5g)x
3
 + 7.32 + 4.52 g ∈ 

g

nR (12)[x]. 

 

 i) Find all roots of p(x). 

 ii) Is p(x) integrable?  

 iii) Does the derivative of p(x) satisfy the usual laws of 

derivation? 

 

36. Let p(x) = 4.3g x
4
 + (5.2 + 3g)x

2
 + 3.7g + 0.45 ∈ 

g

nR (13)[x].  

 

 Study questions (i) to (iii) of problem (35) for this p(x). 
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37. Let 3.7315g x
3
 + (5 + 2g)x

2
 + 4.32gx + 1.4 + 3g ∈ 

g

nR (2
5
)[x].  

 

 Study questions (i) to (iii) of problem (35) for this p(x). 

 

38. Obtain all special features associated with the MOD 

special dual like number polynomials in 
h

nR (m)[x] with 

coefficients from  

 
h

nR (m) = {a + bh = (a,b) | h
2
 =  h, a,b ∈ [0, m)}. 

 

39. Let p(x) = (0.8 + 4.923 k) (5.92 + 0.74 k)x + (6.93 + 

0.89k)x
2
 ∈ 

h

nR (6)[x]; k
2
 = 5k special quasi dual MOD 

number polynomial. 

 

 i) Find the roots of p(x). 

 ii) Can p(x) have more than two roots? 

 iii) Is x uniquely solvable for this p(x)? 

 

40. Let w(x) = (6.93 + 0.89 h) x
3
 + (4.32 + 5.75 h) ∈ 

h

nR (7)[x] where h
2 

= h be the MOD special dual like 

number polynomial.  

 

 Study questions (i) to (iii) of problem (39) for this w(x). 

 

41. Let t(x) = (8.43 + 15.3h) x
6
 + (10.3 + 0.7783 h)x

3
 + (17 + 

2.315 h) ∈ 
g

nR (19)[x], h
2
 = h, be the MOD special dual 

like number polynomial.  

 

 Study questions (i)  to (iii) of problem (38) for this t(x). 

 

42. Let m(x) = (4.331 + 0.389h) x
4
 + (7.3 + 6.4h) x

3
 + (0.37 + 

4.3h) x
2
 + (1.73 + 1.05 h) x + 7.83 + 6.03 h ∈ 

h

nR (8)[x], 

h
2
 = h be the MOD special dual like number polynomial.  

  

 Study questions (i) to (iii) of problem (38) for this m(x). 
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43. Let p(x) = (4.38 + 0.7 h)x
16

 + (2.312 + 6.449 h)x
8
 + (4.32 

+ 7.3 h)x + (4.311 + 0.77 h) ∈ 
h

nR (8)[x] be the MOD 

special dual like number polynomial. 

 

 i) Find 
dp(x)

dx
 does the derivative satisfy the usual 

laws of derivation? 

 ii) Is  ∫ p(x) dx defined? Justify your claim. 

 iii) Characterize those MOD polynomials in 
h

nR (8)[x] 

for which the integrals follow the usual laws of 

integration. 

 iv) Characterize all those MOD polynomials which 

follows all the classical rules of derivatives. 

 v) Characterize those MOD polynomials in 
h

nR (8)[x] 

which satisfy both the classical law of integration as 

well as that of differentiation. 

 

44. Let 
h

nR (47)[x] be the collection of all MOD special dual 

like number polynomials.  

 

 Study questions (i) to (v) of problem 42 for this 
h

nR (47)[x]. 

 

45. Let 
h

nR (24)[x] be the collection of all MOD special dual 

like number polynomials.  

 

 Study questions (i) to (v) of problem (42) for this 
h

nR (24)[x]. 

 

46. Enumerate all the special features enjoyed by the MOD 

special quasi dual number polynomials 
k

nR (m)[x],  

m
2
 = (m – 1)k. 

 

47. Characterize all MOD special quasi dual number 

polynomials in 
k

nR (m)[x] which are integrable but whose 

derivative is zero. 
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48. Characterize all those MOD  special quasi dual number 

polynomials in 
k

nR (m)[x] which follows the usual laws of 

differentiation but is not integrable. 

 

49. Characterize all those MOD quasi dual number 

polynomials which does not satisfy both classical 

properties of differentiation and integration. 

 

50. Let p(x) =kx
4
 + (6.2 + 4.5 k) ∈ 

k

nR (4)[x] be the MOD 

special quasi dual number polynomial. 

 

 i) Does p(x) satisfy the classical laws of derivation? 

 ii) Prove or disprove p(x) satisfy the classical laws of 

integration. 

 iii) Can p(x) have four roots in 
k

nR (4), k
2
 = 3k? 

 iv) Is p(x) solvable? 

 v) Let p1(x) = 5.32k x
3
 + (2.5 + 7.5k) ∈ 

k

nR (10)[x],  

k
2
 = 9k be the MOD special quasi dual number 

polynomial.  

 

  Study questions (i) to (iv) of problem (49) for this 

p1(x)? 

 

51. Let p(x) = (2.5 + 7.3 k) x
4
 + (1.5 + 0.72 k) x

3
 + (3 + 

4.3k)x
2
 + (0.311 + 4k)x + (0.72 + 5.1k) ∈ 

k

nR (23)[x] be 

the MOD special quasi dual number polynomial.  

 

 Study questions (i) to (iv) of problem (49) for this p(x). 

 

 

52. Let q(x) ∈ 
k

nR (140)[x] where  coefficients of the MOD 

special quasi dual number polynomials are from  

〈Z140 ∪ k〉 = {a + bk | a,  b ∈ Z140, k
2
 = 139 k}. 

 

 i) Can we say all classical laws of  derivatives will be 

true for these polynomials in 〈Z140 ∪ k〉[x]? 
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 ii) Can the classical properties of integration be true 

for these polynomials in 〈Z140 ∪ k〉[x]? 

 

 iii) Can we say a nth degree polynomial in  

〈Z140 ∪ k 〉[x] will have n and only n roots? 

 

 iv) Study questions (i) to (iii) of problems for  

p(x) = 14k x
10

 + 20x
7
 + 10k ∈ 〈Z140 ∪ k〉[x]. 

 

53. Compare polynomials in 〈Zm ∪ k〉[x] with the 

polynomials in 〈Zm ∪ h〉[x] and 〈Zm ∪ g 〉[x]. 

 

54. Study MOD neutrosophic polynomials in 
I

nR (m)[x]. 

 

55. Derive all the special features enjoyed by 
I

nR (43)[x]. 

 

56. If p(x) = 2.3 Ix
7
 + (5.3 + 2.16I) ∈ 

I

nR (10) be the MOD 

neutrosophic polynomial. 

 

 i) Can we say p(x) has seven and only seven roots? 

 ii) Is p(x) solvable in 
I

nR (10)? 

 

57. Let q(x) = (5 + 4I) x
3
 + (2 + 7I) x  + 4I ∈ 

I

nR (8)[x]. 

 

 i)  Will q(x) have only 3 roots or more? 

 

 ii) Find 
dq(x)

dx
. 

 

 iii) Find ∫q(x) dx. 

 

58. Enumerate all the special features enjoyed by 
I

nR (m)[x]. 

 

59. Characterize those MOD neutrosophic polynomials which 

has both derivatives and integrals which satisfy all the 

classical properties. 



 

 

 

FURTHER READING  

 
 

1. Herstein., I.N., Topics in Algebra, Wiley Eastern Limited, 

(1975). 

2. Lang, S., Algebra, Addison Wesley, (1967). 

3. Smarandache, Florentin, Definitions Derived from 

Neutrosophics, In Proceedings of the First International 

Conference on Neutrosophy, Neutrosophic Logic, Neutrosophic 

Set, Neutrosophic Probability and Statistics, University of New 

Mexico, Gallup, 1-3 December (2001). 

4. Smarandache, Florentin, Neutrosophic Logic—Generalization 

of the Intuitionistic Fuzzy Logic, Special Session on 

Intuitionistic Fuzzy Sets and Related Concepts, International 

EUSFLAT Conference, Zittau, Germany, 10-12 September 

2003. 

5. Vasantha Kandasamy, W.B., On Muti differentiation of decimal 

and Fractional Calculus, The Mathematics Education, 38 (1994) 

220-225. 

6. Vasantha Kandasamy, W.B., On decimal and Fractional 

Calculus, Ultra Sci. of Phy. Sci., 6 (1994) 283-285. 



140 Problems on MOD Structures 

 

 

 

 

 

7. Vasantha Kandasamy, W.B., Muti Fuzzy differentiation in 

Fuzzy Polynomial rings, J. of Inst. Math and Comp. Sci., 9 

(1996) 171-173. 

8. Vasantha Kandasamy, W.B., Some Applications of the Decimal 

Derivatives, The Mathematics Education, 34, (2000) 128-129. 

9. Vasantha Kandasamy, W.B., On Partial Differentiation of 

Decimal and Fractional calculus, J. of Inst. Math and Comp. 

Sci., 13 (2000) 287-290.  

10. Vasantha Kandasamy, W.B., On Fuzzy Calculus over fuzzy 

Polynomial rings, Vikram Mathematical Journal, 22 (2002) 

557-560.   

11. Vasantha Kandasamy, W.B., Linear Algebra and Smarandache 

Linear Algebra, Bookman Publishing, (2003).   

12. Vasantha Kandasamy, W. B. and Smarandache, F., N-algebraic 

structures and S-N-algebraic structures, Hexis, Phoenix, 

Arizona, (2005).  

13. Vasantha Kandasamy, W. B. and Smarandache, F., 

Neutrosophic algebraic structures and neutrosophic N-algebraic 

structures, Hexis, Phoenix, Arizona, (2006).  

14. Vasantha Kandasamy, W. B. and Smarandache, F., 

Smarandache Neutrosophic algebraic structures, Hexis, 

Phoenix, Arizona, (2006).  

15. Vasantha Kandasamy, W.B., and Smarandache, F., Fuzzy 

Interval Matrices, Neutrosophic Interval Matrices and their 

Applications, Hexis, Phoenix, (2006). 

16. Vasantha Kandasamy, W.B. and Smarandache, F., Finite 

Neutrosophic Complex Numbers, Zip Publishing, Ohio, (2011). 

17. Vasantha Kandasamy, W.B. and Smarandache, F., Dual 

Numbers, Zip Publishing, Ohio, (2012). 



Further Reading  141 
 

 

 

 

 

 

18. Vasantha Kandasamy, W.B. and Smarandache, F., Special dual 

like numbers and lattices, Zip Publishing, Ohio, (2012). 

19. Vasantha Kandasamy, W.B. and Smarandache, F., Special quasi 

dual numbers and Groupoids, Zip Publishing, Ohio, (2012). 

20. Vasantha Kandasamy, W.B. and Smarandache, F., Algebraic 

Structures using Subsets, Educational Publisher Inc, Ohio, 

(2013). 

21. Vasantha Kandasamy, W.B. and Smarandache, F., Algebraic 

Structures using [0, n), Educational Publisher Inc, Ohio, (2013). 

22. Vasantha Kandasamy, W.B. and Smarandache, F., Algebraic 

Structures on the fuzzy interval [0, 1), Educational Publisher 

Inc, Ohio, (2014).  

23. Vasantha Kandasamy, W.B. and Smarandache, F., Algebraic 

Structures on Fuzzy Unit squares and Neutrosophic unit square, 

Educational Publisher Inc, Ohio, (2014).  

24. Vasantha Kandasamy, W.B. and Smarandache, F., Special 

pseudo linear algebras using [0, n), Educational Publisher Inc, 

Ohio, (2014).  

25. Vasantha Kandasamy, W.B. and Smarandache, F., Algebraic 

Structures on Real and Neutrosophic square, Educational 

Publisher Inc, Ohio, (2014).  

26. Vasantha Kandasamy, W.B., Ilanthenral, K., and Smarandache, 

F., MOD planes, EuropaNova, (2015).  

27. Vasantha Kandasamy, W.B., Ilanthenral, K., and Smarandache, 

F., MOD Functions, EuropaNova, (2015). 

28. Vasantha Kandasamy, W.B., Ilanthenral, K., and Smarandache, 

F., Multidimensional MOD planes, EuropaNova, (2015). 



142 Problems on MOD Structures 

 

 

 

 

 

29. Vasantha Kandasamy, W.B., Ilanthenral, K., and Smarandache, 

F., Natural Neutrosophic numbers and MOD Neutrosophic 

numbers, EuropaNova, (2015). 

30. Vasantha Kandasamy, W.B., Ilanthenral, K., and Smarandache, 

F., Algebraic Structures on MOD planes, EuropaNova, (2015). 

31. Vasantha Kandasamy, W.B., Ilanthenral, K., and Smarandache, 

F., MOD Pseudo Linear Algebras, EuropaNova, (2015). 

 



 

 

 

 

INDEX   

 

 

 

 

D 

 

Dual number plane, 34-8 

 

M 

 

MOD complex modulo integer plane, 31-7 

MOD dual number plane, 34-6 

MOD interval complex modulo integer pseudo ring, 19-24 

MOD interval dual number group, 16-9 

MOD interval finite complex number group, 16-9 

MOD interval polynomial pseudo ring, 120-125 

MOD interval real groups, 10-9 

MOD interval semigroup, 12-9 

MOD interval special dual like number group, 16-22 

MOD interval special dual like number pseudo ring, 19-22 

MOD interval special dual like number semigroup, 16-22 

MOD interval special quasi dual number group, 19-22 

MOD interval special quasi dual number pseudo ring, 19-24 

MOD interval special quasi dual number semigroup, 19-22 

MOD interval special quasi dual number subgroup, 19-23 

MOD logarithmic functions, 115-121 

MOD natural elements, 75-82 

MOD neutrosophic planes, 31-5 

MOD real interval, 7-12 



144 Problems on MOD Structures 

 

 

 

 

 

 

MOD real plane, 30-33 

MOD real transformation, 7-13 

MOD special complex modulo integer pseudo subring, 19-24 

MOD special dual like number plane, 37-9 

MOD special pseudo ring, 16-22 

MOD special quasi dual number plane, 38-40 

MOD special quasi dual number pseudo subring, 19-23 

MOD special real pseudo subring, 16-22 

MOD trigonometric functions, 115-9 

 

N 

 

Natural neutrosophic nilpotents, 76-83 

Neutrosophic  zero divisors, 76-84 

Neutrosophic idempotents, 76-84 

 

P 

 

Pseudo MOD real transformation, 8-15 

Pseudo zero divisors, 80-90 

 

S 

 

Special dual number like plane, 36-9 

Special quasi dual number plane, 38-40 

 



ABOUT THE AUTHORS 
 

Dr.W.B.Vasantha Kandasamy is a Professor in the Department of 
Mathematics, Indian Institute of Technology Madras, Chennai. In the 
past decade she has guided 13 Ph.D. scholars in the different fields of 

non-associative algebras, algebraic coding theory, transportation 
theory, fuzzy groups, and applications of fuzzy theory of the problems 
faced in chemical industries and cement industries. She has to her 
credit 694 research papers. She has guided over 100 M.Sc. and 
M.Tech. projects. She has worked in collaboration projects with the 
Indian Space Research Organization and with the Tamil Nadu State 
AIDS Control Society. She is presently working on a research project 
funded by the Board of Research in Nuclear Sciences, Government of 
India. This is her 111th book. 

On India's 60th Independence Day, Dr.Vasantha was conferred 
the Kalpana Chawla Award for Courage and Daring Enterprise by the 
State Government of Tamil Nadu in recognition of her sustained fight 
for social justice in the Indian Institute of Technology (IIT) Madras 
and for her contribution to mathematics. The award, instituted in the 
memory of Indian-American astronaut Kalpana Chawla who died 
aboard Space Shuttle Columbia, carried a cash prize of five lakh 
rupees (the highest prize-money for any Indian award) and a gold 
medal. 
She can be contacted at vasanthakandasamy@gmail.com  
Web Site: http://mat.iitm.ac.in/home/wbv/public_html/  
or http://www.vasantha.in  
 

 
Dr. K. Ilanthenral is the editor of The Maths Tiger, Quarterly Journal 
of Maths. She can be contacted at ilanthenral@gmail.com  
 

 
Dr. Florentin Smarandache is a Professor of Mathematics at the 
University of New Mexico in USA. He published over 75 books and 200 
articles and notes in mathematics, physics, philosophy, psychology, 
rebus, literature. In mathematics his research is in number theory, 
non-Euclidean geometry, synthetic geometry, algebraic structures, 
statistics, neutrosophic logic and set (generalizations of fuzzy logic 
and set respectively), neutrosophic probability (generalization of 
classical and imprecise probability).  Also, small contributions to 
nuclear and particle physics, information fusion, neutrosophy (a 
generalization of dialectics), law of sensations and stimuli, etc. He got 

the 2010 Telesio-Galilei Academy of Science Gold Medal, Adjunct 
Professor (equivalent to Doctor Honoris Causa) of Beijing Jiaotong 
University in 2011, and 2011 Romanian Academy Award for Technical 
Science (the highest in the country). Dr. W. B. Vasantha Kandasamy 
and Dr. Florentin Smarandache got the 2012 New Mexico-Arizona and 
2011 New Mexico Book Award for Algebraic Structures. He can be 
contacted at smarand@unm.edu 
 




	1-7.pdf (p.1-6)
	Chapter1.pdf (p.7-30)
	Chapter2.pdf (p.31-58)
	Chapter3.pdf (p.59-74)
	Chapter4.pdf (p.75-98)
	Chapter5.pdf (p.99-116)
	Chapter6.pdf (p.117-120)
	Chapter7.pdf (p.121-138)
	refFinal.pdf (p.139-142)
	index.pdf (p.143-144)
	about.pdf (p.145)


 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 6
     Trim: none
     Shift: move up by 36.00 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     0
     270
    
     Fixed
     Up
     36.0000
     0.0000
            
                
         Both
         1
         SubDoc
         6
              

       CurrentAVDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0d
     Quite Imposing Plus 2
     1
      

        
     5
     145
     5
     6
      

   1
  

 HistoryList_V1
 qi2base



