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Abstract: The work covered here had for objective to write a MatlabTM program
able to execute efficiently the DSmT hybrid rule of combination. As we know the
DSmT hybrid rule of combination is highly complex to execute and requires high
amounts of resources. We have introduced a novel way of understanding and treating
the rule of combination and thus were able to develop a MatlabTM program that would
avoid the high level of complexity and resources needs.

15.1 Introduction

The purpose of DSmT [3] was to introduce a theory that would allow to correctly fuse data,
even in presence of conflicts between sources of evidence or in presence of constraints. However,
as we know, the DSmT hybrid rule of combination is very complex to compute and to use in
data fusion compared to other rules of combination [4]. We will show in the following sections,
that there’s a way to avoid the high level of complexity of DSmT hybrid rule of combination
permitting to program it into MatlabTM. An interesting fact to know is that the code developed
and presented in this chapter is the first one known to the authors to be complete and functional.
A partial code, useful for the calculation of the DSmT hybrid rule of combination, is presented
in [3]. However, its function is to calculate complete hyper-power sets, and its execution took us
over a day for |Θ| = 6. This has made it impossible to have a basis for comparison of efficiency
for our code, which is able to execute a complete DSmH combination in a very short period
of time. We will begin by a brief review of the theory used in the subsequent sections, where
there will be presented a few definitions followed by a review of Dempster-Shafer theory and
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its problem with mass redistribution. We will then look at Dezert-Smarandache theory and its
complexity. It is followed by a section presenting the methodology used to avoid the complexity
of DSmT hybrid rule of combination. We will conclude with a short performance analysis and
with the developed MatlabTM code in appendix.
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15.2 Theories

15.2.1 Definitions

A minimum of knowledge is required to understand DSmT, we’ll thus begin with a short review
of important concepts.

• Frame of discernment (Θ) : Θ = {θ1, θ2, . . . θn}. It’s the set including every possible
object θi.

• Power set
(
2Θ
)
: represents the set of all possible sets using the objects of the frame of

discernment Θ. It includes the empty set and excludes intersections. The power set is
closed under union. With the frame of discernment defined above, we get the power set

2Θ = {∅, {θ1} , {θ2} , . . . {θn} , {θ1, θ2} , . . . {θ1, θ2, . . . θn} , . . . ,Θ} .

• Hyper-power set
(
DΘ
)
: represents the set of all possible sets using the objects of the

frame of discernment Θ. The hyper-power sets are closed under union and intersection
and includes the empty set. With the frame of discernment Θ = {θ1, θ2}, we get the
hyper-power set DΘ = {∅, {θ1} , {θ2} , {θ1 ∩ θ2} , {θ1 ∪ θ2}}.

• Belief (Bel(A)): is an evaluation of the minimal level of certainty, or trust, that a set can
have.

• Plausibility (Pl(A)): is an evaluation of the maximal level of certainty, or trust, that a set
can have.

• Constraint : a set considered impossible to obtain.

• Basic belief assignment (bba) : m : 2Θ → [0, 1], so the mass given to a set A ⊆ Θ follows
m (A) ∈ [0, 1].

• Core of Θ (K): The set of all focal elements of Θ, where a focal element is a subset A of
Θ such that m(A) > 0.

15.2.2 Dempster-Shafer Theory

The DST rule of combination is a conjunctive normalized rule working on the power set as
described previously. It combines information with intersections, meaning that it works only
with the bba’s intersections. The theory also makes the hypothesis that the sources of evidence
are mathematically independent. The ith bba’s source of evidence is denoted mi. Equation
(15.1) describes the DST rule of combination where K is the conflict. The conflict in DST is
defined as in equation (15.2).
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(m1 ⊕m2) (C) =
1

1−K
∑

A ∩B = C

m1 (A)m2 (B) ∀C ⊆ Θ (15.1)

K =
∑

A,B ⊆ Θ
A ∩B = ∅

m1 (A)m2 (B) (15.2)

15.2.2.1 DST combination example

Let’s consider the case where we have an air traffic surveillance officer in charge of monitoring
readings from two radars. The radars constitute our two sources of evidence. In this case,
both radars display a target with the level of confidence (bba) of its probable identity. Radar
1 shows that it would be an F-16 aircraft (θ1) with m1 (θ1) = 0.50, an F-18 aircraft (θ2) with
m1 (θ2) = 0.10, one of both with m1 (θ1 ∪ θ2) = 0.30, or it might be another airplane (θ3) with
m1 (θ3) = 0.10. Collected data from radars 1 and 2 are shown in table 15.1. We can easily see
from that table that the frame of discernment Θ = {θ1, θ2, θ3} is sufficient to describe this case.

The evident contradiction between the sources causes a conflict to be resolved before inter-
preting the results. Considering the fact that the DST doesn’t admit intersections, we’ll have to
discard some possible sets. Also, the air traffic surveillance officer got intelligence information
recommending exclusion of the case {θ3}, creating a constraint on {θ3}. Table 15.2 represents
the first step of the calculation before the redistribution of the conflicting mass.

(
2Θ
)

m1 (A) m2 (A)

{θ1} 0.5 0.1

{θ2} 0.1 0.6

{θ3} 0.1 0.2

{θ1, θ2} 0.3 0.1

Table 15.1: Events from two sources of evidence to combine

As we can see in table 15.2, the total mass of conflict is
∑
m (∅) = 0.59. So among all the

possible sets, 0.59 of the mass is given to ∅. This would make it the most probable set. Using
equation (15.1) the conflict is redistributed proportionally among focal elements. Results are
given in tables 15.3 and 15.4. Finally, we can see that the most probable target identity is an
F-18 aircraft.

The problem, which was predictable by analytical analysis of equation (15.1), occurs when
conflict (K) get closer to 1. As K grows closer to 1, the DST rule of combination tends to give
incoherent results.

15.2.3 Dezert-Smarandache Theory

Instead of the power set, used in DST, the DSmT uses the hyper-power set. DSmT is thus able
to work with intersections. They also differ by their rules of combination. DSmT developed
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m1 (θ1) m1 (θ2) m1 (θ3) m1 (θ1 ∪ θ2)
0.5 0.1 0.1 0.3

m2 (θ1) θ1 θ1 ∩ θ2 = ∅ θ1 ∩ θ3 = ∅ θ1
0.1 0.05 0.01 0.01 0.03

m2 (θ2) θ1 ∩ θ2 = ∅ θ2 θ2 ∩ θ3 = ∅ θ2
0.6 0.30 0.06 0.06 0.18

m2 (θ3) θ1 ∩ θ3 = ∅ θ2 ∩ θ3 = ∅ θ3 = ∅ (θ1 ∪ θ2) ∩ θ3 = ∅
0.2 0.10 0.02 0.02 0.06

m2 (θ1 ∪ θ2) θ1 θ2 (θ1 ∪ θ2) ∩ θ3 = ∅ θ1 ∪ θ2
0.1 0.05 0.01 0.01 0.03

Table 15.2: Results from disjunctive combination of information from table 15.1 before mass
redistribution

m1 (θ1) m1 (θ2) m1 (θ3) m1 (θ1 ∪ θ2)
0.5 0.1 0.1 0.3

m2 (θ1) θ1 ∅ ∅ θ1
0.1 0.05

1−0.59 0 0 0.03
1−0.59

m2 (θ2) ∅ θ2 ∅ θ2
0.6 0 0.06

1−0.59 0 0.18
1−0.59

m2 (θ3) ∅ ∅ ∅ ∅
0.2 0 0 0 0

m2 (θ1 ∪ θ2) θ1 θ2 ∅ θ1 ∪ θ2
0.1 0.05

1−0.59
0.01

1−0.59 0 0.03
1−0.59

Table 15.3: Results from disjunctive combination of information from table 15.1 with mass
redistribution

in [3], possesses two1 rules of combination which are able to work around the conflicted mass
redistribution problem:

• Classic DSm rule of combination (DSmC), which is based on the free model Mf (Θ)

m (C) =
∑

A∩B=C

m1 (A)m2 (B) A,B ∈ DΘ,∀C ∈ DΘ (15.3)

• Hybrid DSm rule of combination (DSmH), which is able to work with many types of
constraints

1Actually more fusion rules based on Proportional Conflict Redistributions (PCR) have been presented in
Part 1 of this book. The implementation of these new PCR rules will be presented and discussed in a forthcoming
publication.
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m1⊕2 (∅) 0.000

m1⊕2 (θ1) 0.317

m1⊕2 (θ2) 0.610

m1⊕2 (θ1 ∪ θ2) 0.073

Table 15.4: Final results for the example of DST combination

mM(Θ) (A) = φ (A) [S1 (A) + S2 (A) + S3 (A)] (15.4)

S1 (A) =
∑

X1∩X2=A

m1 (X1)m2 (X2) ∀X1,X2 ∈ DΘ (15.5)

S2 (A) =
∑

[(u(X1)∪u(X2))=A]∨[((u(X1)∪u(X2))∈∅)∧(A=It)]

m1 (X1)m2 (X2) ∀X1,X2 ∈ ∅

(15.6)

S3 (A) =
∑

X1∪X2=A

m1 (X1)m2 (X2) ∀X1,X2 ∈ DΘ and X1 ∩X2 ∈ ∅ (15.7)

Note that φ (A) in equation (15.4) is a binary function resulting in 0 for empty or impossible
sets and in 1 for focal elements. In equation (15.6), u (X) represents the union of all objects
of set X. Careful analysis of equation (15.7) tells us that it’s the union of all objects of sets
X1 and X2, when it is not empty. Finally, also from equation (15.6), It represents the total
ignorance, or the union of all objects part of the frame of discernment. Further information on
how to understand and proceed in the calculation of DSmH is available in subsequent sections.

15.2.3.1 DSmC combination example

This example cannot be resolved by DST because of highly conflicting sources of evidence (K
tends toward 1). Sources’ information shown in table 15.5 gives us, with DSmC, the results
displayed in table 15.6. As we can see, no mass is associated to an empty set since DSmC
is based on free DSm model which does not allow integrity constraints (by definition). Final
results for the present example, given by table 15.7, tell us that the most probable identity of
the target to identify is an hybrid of objects of type θ1 and θ2.

15.3 How to avoid the complexity

15.3.1 Simpler way to view the DSmT hybrid rule of combination

First of all, one simple thing to do in order to keep the use of resources at low levels is to
keep only the useful data. For example, table 15.6 shouldn’t be entered as is in a program
but reduced to the equivalent table 15.8. This way, the only allocated space to execute the
calculation is the data space we actually need.
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(
DΘ
)

m1 (A) m2 (A)

{θ1} 0.8 0.0

{θ2} 0.0 0.9

{θ3} 0.2 0.1

{θ1, θ2} 0.0 0.0

Table 15.5: Events from two sources of evidence to combine

m1 (θ1) m1 (θ2) m1 (θ3) m1 (θ1 ∪ θ2)
0.8 0.0 0.2 0.0

m2 (θ1) θ1 θ1 ∩ θ2 θ1 ∩ θ3 θ1
0.0 0.00 0.00 0.00 0.00

m2 (θ2) θ1 ∩ θ2 θ2 θ1 ∩ θ3 θ2
0.9 0.72 0.00 0.18 0.00

m2 (θ3) θ1 ∩ θ3 θ2 ∩ θ3 θ3 (θ1 ∪ θ2) ∩ θ3
0.1 0.08 0.00 0.02 0.00

m2 (θ1 ∪ θ2) θ1 θ2 (θ1 ∪ θ2) ∩ θ3 θ1 ∪ θ2
0.0 0.00 0.00 0.00 0.00

Table 15.6: Results from DSmC rule of combination with table 15.1 information

(θ1) 0.00 (θ1 ∩ θ2) 0.72 (θ1 ∪ θ2) 0.00

(θ2) 0.00 (θ1 ∩ θ3) 0.08 (θ1 ∪ θ3) 0.00

(θ3) 0.02 (θ2 ∩ θ3) 0.18 (θ2 ∪ θ3) 0.00

(∅) 0.00 (θ1 ∩ θ2) ∪ θ3 0.00 (θ1 ∪ θ2) ∩ θ3 0.00

(θ1 ∪ θ2 ∪ θ3) 0.00 (θ1 ∩ θ3) ∪ θ2 0.00 (θ1 ∪ θ3) ∩ θ2 0.00

(θ1 ∩ θ2 ∩ θ3) 0.00 (θ2 ∩ θ3) ∪ θ1 0.00 (θ2 ∪ θ3) ∩ θ1 0.00

Table 15.7: Final results for the example of DSmC combination (m1⊕2)

This is especially important for full explicit calculation of equation (15.4). As the num-
ber of possible objects and/or the number of possible sources of evidence grows, we would
avoid extraordinary increase in resources needs (since the increase follows Dedekind’s sequence
progression in the worst case [3]).

15.3.1.1 Simple procedure for effective DSmH

Instead of viewing DSmH as a mathematical equation, we propose to view it as a procedure.
Table 15.9 displays that procedure. Obviously, it is still equivalent to the mathematical equation,
but this way has the advantage of being very easily understood and implemented. The ease of
its implementation is due to the high resemblance of the procedure to pseudo-code, a common
step in software engineering.
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m1 (θ1) m1 (θ3)
0.8 0.2

m2 (θ2) θ1 ∩ θ2 θ1 ∩ θ3
0.9 0.72 0.18

m2 (θ3) θ1 ∩ θ3 θ3
0.1 0.08 0.02

Table 15.8: Reduced version of table 15.6

Step S1 If (θ1 ∩ θ2) is a constraint, then continue at step S3,
(θ1 ∩ θ2) otherwise, the mass m1 (X1)m2 (X2) is added to the mass A = (θ1 ∩ θ2).
Step S3 If (θ1 ∪ θ2) is a constraint, then continue at step S2,
(θ1 ∪ θ2) otherwise, the mass m1 (X1)m2 (X2) is added to the mass A = (θ1 ∪ θ2).
Step S2 If (u (X1) ∪ u (X2)) is a constraint, then add mass to It,
(u (X1) ∪ u (X2)) otherwise, the mass m1 (X1)m2 (X2) is added to the mass A = (u (X1) ∪ u (X2)).

Table 15.9: Procedure to apply to each pair of sets (X1,X2) until its combined mass is given to
a set

15.3.2 Notation system used

15.3.2.1 Sum of products

The system we conceived treats information in terms of union of intersections or sum of products.
The sum (ADD) is being represented by union (∪), and the product (MULT) by intersection
(∩). We have chosen this, instead of product of sums, to avoid having to treat parenthesis. We
could also use the principles developed for logic circuits such as Karnaugh table, Boolean rules,
etc. Here are few examples of this notation:

• θ1 ∩ θ2 ∩ θ3 = θ1θ2θ3 = [1,MULT, 2,MULT, 3]

• θ1 ∪ θ2 ∪ θ3 = θ1 + θ2 + θ3 = [1, ADD, 2, ADD, 3]

• (θ1 ∩ θ2) ∪ θ3 = θ1θ2 + θ3 = [1,MULT, 2, ADD, 3] = [3, ADD, 1,MULT, 2]

• (θ1 ∪ θ2) ∩ θ3 = (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) = θ1θ3 + θ2θ3 = [1,MULT, 3, ADD, 2,MULT, 3]

• (θ1 ∩ θ2 ∩ θ3) ∪ (θ4 ∩ θ5) = θ1θ2θ3 + θ4θ5 = [1,MULT, 2,MULT, 3, ADD, 4,MULT, 5]

15.3.2.2 Conversion between sum of products and product of sums notation

As we have seen above, we will use the sum of products as our main way of writing sets. However,
as we will later see, we will need to use the product of sums or intersections of unions in some
parts of our system to simplify the calculation process. More specifically, this dual system of
notation, introduced in the last two columns of table 15.10, was done so we would be able to use
the same algorithm to work with the matrix of unions and the matrix of intersections. Table
15.10 thus presents the notation used, accompanied with its equivalent mathematical notation.
We can see in the sum of products notation in table 15.10, that a line represents a monomial of
product type (e.g. θ1θ3) and that lines are then summed to get unions (e.g. θ1θ3 + θ2). In the
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product of sums notation, we have the reversed situation where lines represents a monomial of
sum type (e.g. θ1 + θ3) and that lines are then multiplied to get intersections (e.g. θ2 (θ1 + θ3)).

Mathematical Matlab input/output Sum of products Product of sums

{θ1} [1]

[
1

] [
1

]

{θ1 ∪ θ2} [1, ADD, 2]

[
1
2

] [
1 2

]

{θ1 ∩ θ2} [1,MULT, 2]

[
1 2

] [
1
2

]

{(θ2) ∪ (θ1 ∩ θ3)} [2, ADD, 1,MULT, 3]

[
2
1 3

]
–

{(θ1 ∪ θ2) ∩ (θ2 ∪ θ3)} – –

[
1 2
2 3

]

{(θ1 ∩ θ2) ∪ (θ2 ∩ θ3)} [1,MULT, 2, ADD, 2,MULT, 3]

[
1 2
2 3

]
–

{(θ2) ∩ (θ1 ∪ θ3)} – –

[
2
1 3

]

Table 15.10: Equivalent notations for events

The difficult part is the conversion step from the sum of products to the product of sums
notation. For the simple cases, such as the ones presented in the first three lines of table 15.10
consist only in changing matrices lines into columns and columns into lines. For simplification
in the conversion process we also use the absorption rule as described in equation (15.8) which
is derived from the fact that (θ1θ2) ⊆ θ1. Using that rule, we can see how came the two last
rows of table 15.10 by looking at the process detailed in equations (15.9) and (15.10).

θ1 + θ1θ2 = θ1 (15.8)

(θ1 ∪ θ2) ∩ (θ2 ∪ θ3) = (θ1 + θ2) (θ2 + θ3) = θ1θ2 + θ1θ3 + θ2 + θ2θ3 = θ1θ3 + θ2 (15.9)

(θ1 ∩ θ2) ∪ (θ2 ∩ θ3) = θ1θ2 + θ2θ3 = θ2 (θ1 + θ3) (15.10)

However, in the programmed MatlabTM code, the following procedure is used and works for
any case. It’s based on the use of DeMorgan’s laws as seen in equations (15.11) and (15.12).
Going through DeMorgan twice let’s us avoid the use of negative sets. Hence, we will still
respect DSm theory even with the use of this mathematical law. The use of absorption rule, as
described in equation (15.8) also helps us achieve better simplification.

A B = A + B (15.11)

A + B = AB (15.12)

Here’s how we proceed for the case of conversion from a set in sum of products to a set in
product of sums notation. It’s quite simple actually, we begin with an inversion of operators
(changing additions (∪) for multiplications (∩) and multiplications for additions), followed by
distribution of products and a simplification step. We then end it with a second inversion
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of operators. Since we have used the inversion two times, we don’t have to indicate the not

operator, (A = A).

Let’s now proceed with a short example. Suppose we want to convert the set shown in
equation (15.13) to a set in product of sums notation. We proceed first as said, with an inversion
of operators, which gives the set in equation (15.14). We then distribute the multiplication as
we did to get the set in equation (15.15). This is then followed by a simplification giving us
equation (15.16), and a final inversion of operators gives us the set in equation (15.17). The
set in equation (15.17) represents the product of sums notation version of the set in equation
(15.13), which is in sum of products. A simple distribution of products and simplification can
get us back from (15.17) to (15.13).

θ1 + θ2θ3 + θ2θ4 (15.13)

(θ1)
(
θ2 + θ3

) (
θ2 + θ4

)
(15.14)

θ1 θ2 + θ1 θ2 θ4 + θ1 θ2 θ3 + θ1 θ3 θ4 (15.15)

θ1 θ2 + θ1 θ3 θ4 (15.16)

(θ1 + θ2) (θ1 + θ3 + θ4) (15.17)

15.3.3 How simple can it be

We have completed conception of a MatlabTM code for the dynamic case. We’ve tried to
optimize the code but some work is still necessary. It’s now operational for a restricted body
of evidence and well behaved. Here’s an example of the input required by the system with the
events from table 15.11. We will also proceed with θ2 as a constraint making the following
constraints too:

• θ1 ∩ θ2 ∩ θ3

• θ1 ∩ θ2

• θ2 ∩ θ3

• (θ1 ∪ θ3) ∩ θ2

Note that having θ2 as a constraint, has an impact on more cases than the enumerated ones
above. In fact, if we obtain cases like θ1 ∪ θ2 for instance, since θ2 is a constraint, the resulting
case would then be θ1. We will have to consider this when evaluating final bba for the result.

As we can see, only focal elements are transmitted to and received from the system. More-
over, these focal elements are all in sum of products. The output also include Belief and Plau-
sibility values of the result.

Notice also that we have dynamic constraints capability, meaning that we can put constraints
on each step of the combination. They can also differ at each step of the calculation. Instead
of considering constraints only at the final step of combination, this system is thus able to
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(
DΘ
)

m1 (A) m2 (A) m3 (A)

{θ1} 0.7 0.0 0.1

{θ2} 0.0 0.6 0.1

{θ3} 0.2 0.0 0.5

{θ1 ∪ θ2} 0.0 0.0 0.3

{θ1 ∪ θ3} 0.0 0.2 0.0

{θ2 ∪ θ3} 0.0 0.2 0.0

{θ2 ∩ θ3} 0.1 0.0 0.0

Table 15.11: Information from three sources

reproduce real data fusion conditions where constraints may vary. Three different cases are
presented here, keeping the same input information but varying the constraints conditions.

Complete commented listing of the produced MatlabTM code is available in the appendix.
For the present section, only the parameters required in input and the output are displayed.

% Example with dynamic constraints kept stable

% INPUT FOR THE MATLAB PROGRAM

number_sources = 3; kind = [’dynamic’];

info(1).elements = {[1],[3], [2, MULT, 3]}; info(1).masses = [0.7, 0.2, 0.1];

info(2).elements = {[2],[1, ADD, 3], [2, ADD, 3]}; info(2).masses = [0.6, 0.2, 0.2];

info(3).elements = {[1], [2], [3], [1, ADD, 2]}; info(3).masses = [0.1, 0.1, 0.5, 0.3];

constraint{1} = {[2], [1, MULT, 2], [2, MULT, 3],...

[1, MULT, 2, ADD, 3, MULT, 2], [1, MULT, 2, MULT, 3]};

constraint{2} = {[2], [1, MULT, 2], [2, MULT, 3],...

[1, MULT, 2, ADD, 2, MULT, 3], [1, MULT, 2, MULT, 3]};

% OUTPUT OF THE MATLAB PROGRAM

DSm hybrid Plausibility Belief

1 : m=0.28800000 1 : m=1.00000000 1 : m=0.82000000

1 MULT 3 : m=0.53200000 1 MULT 3 : m=1.00000000 1 MULT 3 : m=0.53200000

3 : m=0.17800000 3 : m=1.00000000 3 : m=0.71000000

1 ADD 3 : m=0.00200000 1 ADD 3 : m=1.00000000 1 ADD 3 : m=1.00000000

% Example with dynamic constraints applied only once at the end

% CONSTRAINTS INPUT FOR THE MATLAB PROGRAM

constraint{1} = {};

constraint{2} = {[2], [1, MULT, 2], [2, MULT, 3],...

[1, MULT, 2, ADD, 2, MULT, 3], [1, MULT, 2, MULT, 3]};

% OUTPUT OF THE MATLAB PROGRAM

DSm hybrid Plausibility Belief

1 : m=0.36800000 1 : m=1.00000000 1 : m=0.61000000

1 MULT 3 : m=0.24200000 1 MULT 3 : m=1.00000000 1 MULT 3 : m=0.24200000

3 : m=0.39000000 3 : m=1.00000000 3 : m=0.63200000

% Example with dynamic constraints varying between steps of calculation

% CONSTRAINTS INPUT FOR THE MATLAB PROGRAM
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constraint{1} = {[2, MULT, 3], [2, ADD, 3]};

constraint{2} = {[2], [1, MULT, 2], [2, MULT, 3],...

[1, MULT, 2, ADD, 2, MULT, 3], [1, MULT, 2, MULT, 3]};

% OUTPUT OF THE MATLAB PROGRAM

DSm hybrid Plausibility Belief

1 : m=0.31200000 1 : m=1.00000000 1 : m=0.55400000

1 ADD 3 : m=0.14800000 1 ADD 3 : m=1.00000000 1 ADD 3 : m=1.00000000

1 MULT 3 : m=0.24200000 1 MULT 3 : m=1.00000000 1 MULT 3 : m=0.24200000

3 : m=0.29800000 3 : m=1.00000000 3 : m=0.54000000

15.3.4 Optimization in the calculation algorithm

15.3.4.1 How does it work

Being treated by a vectorial interpreter, our MatlabTM code had to be adapted in consequence.
We have also been avoiding, as much as we could, the use of for and while loops.

Our MatlabTM code was conceived with two main matrices, one containing intersections,
the other one containing unions. The input information is placed into a matrix identified as the
fusion matrix. When building this matrix, our program puts in a vector each unique objects
that will be used, hence defining total ignorance (It) for the case in input. Each elements of this
matrix is a structure having two fields: sets and masses. Note also that only the first row and
column of the matrix is filled with the input information. The rest of the matrix will contain
the result.

It is easier to proceed with the intersection between two sets A and B using product of sums
and to proceed with the union A∪B using sum of products. Because of that, we have chosen to
keep the intersection matrix in the product of sums notation and the union matrix in the sum
of products while working on these matrices separately.

To build the union matrix, we use information from the fusion matrix with the sum of
products notation. The intersection matrix uses the product of sums notation for its construction
with the information from the fusion matrix. However, once the intersection matrix is built, a
simple conversion to the sum of products notation is done as we have described earlier. This
way, data from this table can be compatible with those from the fusion and the union matrices.

Once the basis of the union matrix is defined, a calculation of the content is done by
evaluating the result of the union of focal elements combination m1 (Xi)m2 (Xj). The equivalent
is done with the intersection matrix, replacing the union with an intersection obviously. Once
the calculation of the content of the intersection matrix completed, it is converted to the sum
of product notation.

The next step consist to fill up the fusion matrix with the appropriate information depending
on the presence of constraints and following the procedure described earlier for the calculation
of the DSmH combination rule.

In the case we want to fuse information from more than two sources, we could choose to fuse
the information dynamically or statically. The first case is being done by fusing two sources at
a time. The latter case considers information from all sources at once. Note however that our
code is only able to proceed with the calculation dynamically for the time being. We will now
proceed step by step with a full example, interlaced with explanations on the procedure, using
the information from table 15.11 and the constraints described in section 15.3.3.
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Table 15.12 gives us the union result from each combination of focal elements from the
first two sources of evidence. The notation used in the case for union matrices is the sum of
products. In the case of table 15.13, the intersection matrix, it is first built in the product of
sums notation so the same calculation algorithm can be used to evaluate the intersection result
from each combination of focal elements from the first two sources of evidence as it was used in
the union matrix. As we’ll see, a conversion to the sum of products notation is done to be able
to obtain table 15.14.

m2

m1

[
2

]

0.6

[
1
3

]

0.2

[
2
3

]

0.2

[
1

]

0.7

[
1
2

]

0.42

[
1
3

]

0.14




1
2
3




0.14

[
3

]

0.2

[
2
3

]

0.12

[
1
3

]

0.04

[
2
3

]

0.04

[
2 3

]

0.1

[
2

]

0.06

[
1
3

]

0.02

[
2
3

]

0.02

Table 15.12: Union matrix with bba’s m1,m2 information from table 15.11 in sum of products
notation

m2

m1

[
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]

0.6

[
1 3

]

0.2

[
2 3

]

0.2
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]

0.7
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1
2

]
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]
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[
1
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]
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[
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]

0.2

[
2
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]
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[
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]

0.04

[
3

]

0.04

[
2
3

]

0.1

[
2
3

]

0.06

[
2
3

]

0.02

[
2
3

]

0.02

Table 15.13: Intersection matrix with bba’s m1,m2 information from table 15.11 in product of
sums notation
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We obtained θ2θ3 as a result in the second result cell in the last row of table 15.13 because
the intersection (θ2 · θ3) · (θ1 + θ3) gives us θ1θ2θ3 + θ2θ3 which, following absorption rule, gives
us θ2θ3. The same process occurs on the second result cell in the first row of the same table
where θ1 · (θ1 + θ3) = θ1 + θ1θ3 = θ1.

m2

m1

[
2

]

0.6

[
1
3

]

0.2

[
2
3

]

0.2

[
1

]

0.7
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1 2

]
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[
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]

0.14
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0.14
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[
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]
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[
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]

0.04

[
2 3

]

0.1

[
2 3

]

0.06

[
2 3

]

0.02

[
2 3

]

0.02

Table 15.14: Intersection matrix with bba’s m1,m2 information from table 15.11 in sum of
products notation

From the tables 15.12 and 15.14 we proceed with the DSmH and choose, according to con-
straints, from which table the result will come. We might also have to evaluate (u (X1) ∪ u (X2)),
or give the mass to the total ignorance if the intersection and union matrices’ sets are con-
strained. We’ve displayed the choice made in the fusion matrix in table 15.15 with these
symbols ∩ (intersection), ∪ (union), u (union of the sum of objects of combined sets), It (total
ignorance). As you will see, we have chosen a case where we have constraints applied at each
step of combination, e.g. when [m1,m2] and when [m1 ⊕m2,m3] are combined.

Table 15.16 is the simplified version of table 15.15 in which sets has been adapted to consider
constraints. It’s followed by table 15.17 which represents the results from the first combination.

As we can see in table 15.15, the first result cell from the first row was obtained from the
union matrix because θ1 ∩ θ2 is a constraint. Also, the first result cell from the last row was
obtained from the union of the sum of objects of the combined sets because θ2∩θ3 is a constraint
in the intersection table (table 15.14) at the same position, so is θ2 in the union table (table
15.12).
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m2

m1

[
2
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1
3
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0.2
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2
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]
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[
2 3

]

0.1

[
2
3

]
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u

[
1
3

]
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∪

[
2
3

]
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∪

Table 15.15: Fusion matrix with bba’s m1,m2 information from table 15.11 in sum of products
notation

m2

m1
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[
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]
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∪
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]
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∩

[
1 3

]

0.14
∩
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]
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]
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3

]
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∩

[
3

]
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∩

[
2 3

]

0.1

[
3

]

0.06
u

[
1
3

]

0.02
∪

[
3

]

0.02
∪

Table 15.16: Simplified fusion matrix with bba’s m1,m2 information from table 15.11 in sum
of products notation

On the first row of table 15.16, the first result giving us θ1 is obtained because θ1 ∪ θ2 = θ1
when θ2 is a constraint. The same process gave us θ1 ∩ θ3 in the last cell of the first row. In
that case, we obtained that result having θ1∩ θ2 as a constraint where θ1θ2 + θ1θ3 = θ1θ3. Since
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we have more than two sources and have chosen a dynamic methodology: once the first two
sources combined, we will have to proceed with a second combination. This time, we combine
the results from the first combination m1⊕m2 with the third event from source of evidence m3.

[1] [3] [1 ∪ 3] [1 ∩ 3]

0.56 0.28 0.02 0.14

Table 15.17: Result of the combination of m1 and m2 from table 15.11

Table 15.18 represents the union matrix from second combination.

m3

m1 ⊕m2
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]
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[
1
2

]

0.3

[
1

]

0.56

[
1

]
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[
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[
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[
1
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]
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[
1
3
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[
1
3

]
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1
2
3





0.006

Table 15.18: Union matrix with bba’s m1 ⊕m2,m3 information comes from tables 15.11 and
15.15 in sum of products notation

Table 15.19 and 15.20 are the intersection matrix with product of sums and sum of products
notation respectively.
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Table 15.19: Intersection matrix with bba’s m1 ⊕ m2,m3 information from tables 15.11 and
15.15 in product of sums notation

m3
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[
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Table 15.20: Intersection matrix with bba’s m1 ⊕ m2,m3 information from tables 15.11 and
15.15 in sum of products notation
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Finally we get table 15.21 which consists of the final fusion matrix, table 15.22 which is a
simplified version of 15.21, and table 15.23 which compiles equivalent results giving us the result
of the DSmH for the information from table 15.11 with same constraints applied at each step
of combination.
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[
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Table 15.21: Fusion matrix with bba’s m1 ⊕m2,m3 information from table 15.11 and 15.15 in
sum of products notation

15.3.5 Performances analysis

Since no other implementation of DSmT on DΘ is known, we don’t have the possibility of
comparing it. However, we are able to track the evolution of the execution time with the
growth in the number of objects or the number of sources. The same can be done with the
memory requirement. Until another implementation of the DSmH is written, it is the only
pertinent feasible performances analysis. The program usually gives us as output the DSmH
calculation results with plausibility and belief values. However, the tests we have realized were
done on the DSmH alone. The code, which can be found in the appendix, had also to be
modified to output time and size of variables which can undoubtedly affect time of execution
and probably size required by the program.

For the measurement of the time of execution, we have only used the tic toc MatlabTM

command between each tested cases. The clear command, which clears variables values, was
also used to prevent MatlabTM from altering execution time by using already existing variables.
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Table 15.22: Simplified fusion matrix version of table 15.21 in sum of products notation

[1] [3] [1 ∩ 3] [1 ∪ 3]

0.288 0.178 0.532 0.002

Table 15.23: Final result of DSmH for information from table 15.11

For the size of variable measurements, we have used the whos command at the end of the
file hybrid.m. The program is divided into 22 files, however the main variables are contained
in hybrid.m. Most of the functions of the programmed system calls very few other functions
one into another. We also assume that once MatlabTM leaves a function, it destroys all of its
variables. We considered hence the memory size values obtained within hybrid.m a good lower
estimate of the required memory size.

Note also that the tests were done on a Toshiba Satellite Pro 6100 station which has a
Pentium M 4 running at 1.69 GHz, 2x512 MB of RAM PC2700, and an 80 GB hard drive
running at 7200 rpm.
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15.3.5.1 Execution time vs |Θ|
Figure (15.1) shows us evolution of the execution time versus the cardinality of Θ for |Θ| going
from 3 to 9. Since there are large number of possible testing parameters, we have chosen to
perform the tests in a specific case. It consists of measuring the evolution of the execution time
versus |Θ| while keeping the number of sources to 5 with the same information provided by each
source for each point. Each source gives a bba with only six focal elements (|K| = 6).

We have chosen also to put only six constraints on each point. Moreover, the constraints
are dynamical and applied at each step of combination. As we can see on figure (15.1), time
evolves exponentially with |Θ|.
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Figure 15.1: Evolution of execution time (sec) vs the cardinality of Θ
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15.3.5.2 Execution time vs Number of sources

Figure (15.2) shows us the evolution of the execution time versus the number of sources going
from 3 to 9. Since there are large number of possible testing parameters, we have chosen to
perform the tests in a specific case. It consists of measuring the evolution of the execution time
versus the number of sources while keeping |Θ| to 5 with information varying for each source
for each point.

Each source gives a bba with only six focal elements (|K| = 6). We have chosen also to put
only six constraints on each point; moreover, the constraints are dynamical and applied at each
step of combination. As we can see on figure (15.2), time also evolves exponentially with the
number of sources.
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Figure 15.2: Evolution of execution time (sec) vs the number of sources
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15.3.5.3 Execution time vs |K|
Figure (15.2) shows us evolution of the execution time versus the core dimension or the number
of non-zero masses going from 3 to 9. In this case, we have chosen to perform the tests while
keeping |Θ| to 3 with a fixed number of sources of 5. We have chosen also to put only three
constraints on each step of combination. As we can see on figure (15.3), time evolves almost
linearly with the core dimension.
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Figure 15.3: Evolution of execution time (sec) vs the cardinality of K
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15.3.5.4 Memory size vs the number of sources or |Θ|
Figure (15.4) was realized under the same conditions as the input conditions for the execution
time performance tests. We note that even with an increasing memory requirement, memory
needs are still small. It is, of course, only the requirement for one of the many functions of our
system. However, subdivisions of the code in many functions, the memory management system
of MatlabTM and the fact that we only keep the necessary information to fuse helps keeping it
at low levels. Also, during the tests we have observed in the Windows XP Pro task manager
the amount of system memory used by MatlabTM. We’ve noted the memory use going from 79
MB before starting the test, to a peak usage of 86 MB.
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Figure 15.4: Evolution of memory size (KB) of hybrid.m workspace vs the number of sources
or |Θ|

We have also tried it once in static mode with a core dimension of 10 from five sources
and ten constraints with three objects in the frame of refinement to see how much memory it
would take. In that simple case, we went from 79 MB (before the test started) to 137 MB (a
peak memory usage during the test). A huge hunger for resources was predictable for the static
calculation mode with the enormous matrix it has to build with all the input information.
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15.3.5.5 Further optimization to be done

Our code’s algorithm is an optimization of the original DSmH calculation process. However,
certain parts of our program remains to be optimized. First of all, the possibility of rejecting
information and transferring it’s mass to total ignorance in the case it’s mass is too small or if we
have too many information should be added. Second point, at many stages of our calculation,
sorting is required. As we know, sorting is one of the most time consuming process in programs
and it’s also the case in our program. We’ve used two for loops for sorting within two other
for loops to go through all the elements of the matrix within the file ordre_grandeur.m. So
as the quantity of information grows, MatlabTM might eventually have problems sorting the
inputted information. The use of an optimized algorithm replacing this part is recommended.
There’s also the possibility of using the MatlabTM command sort with some adaptations to be
able to do the following sorting.

Our required sorting process in ordre_grandeur.m should be able to sort sets first according
to the sets’ size. Then, for equal sized sets, the sorting process should be able to sort in numerical
order of objects. So the following set : θ4 + θ1θ3θ4 + θ2θ3 + θ1θ3 should be ordered this way :
θ4 + θ1θ3 + θ2θ3 + θ1θ3θ4. A sorting process is also in use within the file tri.m which is able to
sort matrices or sets. However the sorting process should also be optimized there.

15.4 Conclusion

As we have seen, even with the apparent complexity of DSmH, it is still possible to engineer an
efficient procedure of calculation. Such a procedure enables us to conceive an efficient MatlabTM

code. We have conceived such a code that can perform within a reasonable amount of time
by limiting the number of for and while loops exploiting Matlab’sTM vectorial calculation
capabilities. However, even if we have obtained an optimal process of evaluating DSmH, there’s
still work to be done to optimize some parts of our code involving sorting.

Two avenues can be taken in the future. The first one would be to increase optimization
of the actual code, trying to reduce further the number of loops, particularly in sorting. The
second avenue would now be to explore how to optimize and program new combination rules
such as the adaptive combination rule (ACR) [1], and the proportional conflict redistribution
(PCR) rule [1].
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15.7 Appendix: MatlabTMcode listings

The code listed in this chapter is the property of the Government of Canada, DRDC Valcartier
and has been developed by M.-L. Gagnon and P. Djiknavorian under the supervision of Dominic
Grenier at Laval University, Quebec, Canada.

The code is available as is for educational purpose only. The authors can’t be held responsible
of any other usage. Users of the code use it at their own risks. For any other purpose, users of
the code should obtain an autorization from the authors.

15.7.1 File : aff ensemble.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function displaying elements and mass from a set

%

% info: elements and mass information to display

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function aff_ensemble(info)

%#inbounds

%#realonly

nI = length(info);

for k = 1 : nI

%% displays only the non empty elements

if ~isequal(info(k).elements,[])

disp([num2str(info(k).elements) ’ : m=’ num2str(info(k).masses,’%12.8f’)]);

end

end

disp(’ ’)

15.7.2 File : aff matrice.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function displaying elements and mass

%

% info: elements and mass information to display

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function aff_matrice(info)

%#inbounds

%#realonly

[m,n] = size(info);

%% go through all the objects

for k = 1 : m

for g = 1 : n

ensemble = info(k,g).elements

for h = 1 : length(ensemble)

disp([num2str(ensemble{h})]);
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end

disp ([ ’m : ’ num2str(info(k,g).masses,’%6.4f’) ]);

end

end

15.7.3 File : bon ordre.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function ordering vectors in sets

%

% ensembleN, ensembleM : two sets in which we have to see if some values

% are identical, if so, they must be put at the same position

%

% ensembleNOut, ensembleMOut : output vector

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ensembleMOut, ensembleNOut] = bon_ordre(ensembleM, ensembleN)

%#inbounds

%#realonly

ensembleMOut = {};

ensembleNOut = {};

ensemble1 = [];

ensemble2 = [];

ensemble_temp = [];

plus_grand = 1;

%% go through all the objects

if length(ensembleN) >= length(ensembleM)

ensemble1 = ensembleN;

ensemble2 = ensembleM;

plus_grand = 1;

else

ensemble1 = ensembleM;

ensemble2 = ensembleN;

plus_grand = 2;

end

%% check if there is two identical sets, otherwise check vectors

for g = 1 : length(ensemble2)

for h = 1 : length(ensemble1)

if isequal(ensemble1{h},ensemble2{g})

ensemble_temp = ensemble1{g};

ensemble1{g} = ensemble1{h};

ensemble1{h} = ensemble_temp;

end

end

end

if isequal(plus_grand,1)

ensembleMOut = ensemble2;

ensembleNOut = ensemble1;

elseif isequal(plus_grand,2)

ensembleNOut = ensemble2;

ensembleMOut = ensemble1;

end
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15.7.4 File : calcul DSm hybrid auto.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function to execute a DSm hybrid rule of combination

% in dynamic or static mode

%

% Output: displayed in sum of product

% sum for union

% product for intersection

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte)

%#inbounds

%#realonly

global ADD

global MULT

ADD = -2;

MULT = -1;

Iall = [];

Ihyb = [];

contraire = [];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% compute the product of sum

[contraire_complet, contraire] = faire_contraire(info);

%% case with two sources

if isequal(nombre_source,2)

Ihyb = hybride(info, contrainte{1},contraire,2,nombre_source,contraire_complet);

shafer = 0;

Iall = depart(Ihyb,2);

Ihyb = depart(Ihyb,1);

disp(’DSm hybride’);

aff_ensemble(Ihyb);

else

%% case with more than two sources : check the type ’sorte’ of DSmH

%% case dynamic

if isequal(sorte,’dynamique’)

Ihyb = hybride(info,contrainte{1},contraire,2,nombre_source,contraire_complet);

for g = 3 : nombre_source

Ihyb = depart(Ihyb,2);

ensemble_step = {};

masses_step = [];

disp(’DSm hybride’);

aff_ensemble(Ihyb)

for h = 1 : length(Ihyb)

ensemble_step{h} = Ihyb(h).elements;

masses_step(h) = Ihyb(h).masses;

end

info(1).elements = {}; info(1).masses = [];

info(2).elements = {}; info(2).masses = [];

info(1).elements = ensemble_step; info(1).masses = masses_step;

info(2) = info(g);

[contraire_complet, contraire] = faire_contraire(info);

clear Ihyb;

Ihyb = hybride(info,contrainte{g-1},contraire,2,nombre_source,contraire_complet);
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end

%% replace numerical value of ADD and MULT by the text ’ADD’,’MULT’

Iall = depart(Ihyb,2);

Ihyb = depart(Ihyb,1);

disp(’DSm hybride’);

aff_ensemble(Ihyb);

%% case static

else

Ihyb = hybride(info,contrainte{nombre_source -1},contraire,1, ...

nombre_source,contraire_complet);

%% replace numerical value of ADD and MULT by the text ’ADD’,’MULT’

Iall = depart(Ihyb,2);

Ihyb = depart(Ihyb,1);

disp(’DSm hybride’);

aff_ensemble(Ihyb);

end

end

%% compute belief and plausibility

Isel = Iall;

fboe = {’pl’ ’bel’};

for k=1:length(fboe)

switch fboe{k}

case ’pl’

Pds = plausibilite(Isel,contrainte);

disp(’Plausibilite’);

Pds = depart(Pds,1);

aff_ensemble(Pds);

case ’bel’

Bds = croyance(Isel);

disp(’Croyance’);

Bds = depart(Bds,1);

aff_ensemble(Bds);

end

end

15.7.5 File : calcul DSm hybride.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: main file to execute a DSm hybrid rule of combination

% in dynamic or static mode

%

% Output: displayed in sum of product

% sum for union

% product for intersection

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;

clc;

%#inbounds

%#realonly

global ADD

global MULT
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ADD = -2;

MULT = -1;

Iall = [];

Ihyb = [];

info = [];

contrainte = [];

contraire = [];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% WRITE EVENTS AND CONSTRAINTS IN SUM OF PRODUCT NOTATION %

% nombre_source = 2;

% info(1).elements = {[1], [1, ADD, 2], [1, ADD, 3], [2], [2, ADD, 3], [3]};

% info(1).masses = [0.2, 0.17, 0.33, 0.03, 0.17, 0.1];

% info(2).elements = {[1], [2], [3]};

% info(2).masses = [0.2, 0.4, 0.4];

%%contrainte{1} = {};

% %contrainte{1} = {[1, MULT, 2], [1, MULT, 3], [2, MULT, 3]};

% contrainte{1} = {[1, MULT, 2], [1, MULT, 3], [2, MULT, 3],...

% [1, MULT, 2,ADD, 1, MULT, 3]...

% [1, MULT, 2,ADD, 2, MULT, 3]...

% [1, MULT, 3,ADD, 2, MULT, 3]...

% [1, MULT, 2,ADD, 1, MULT, 3, ADD, 2, MULT, 3]};

% nombre_source = 3; sorte = [’dynamique’];

% info(1).elements = {[1],[3], [2, MULT, 3]};

% info(1).masses = [0.7, 0.2, 0.1];

% info(2).elements = {[2],[1, ADD, 3], [2, ADD, 3]};

% info(2).masses = [0.6, 0.2, 0.2];

% info(3).elements = {[1], [2], [3], [1, ADD, 2]};

% info(3).masses = [0.1, 0.1, 0.5, 0.3];

% contrainte{1} = {[2, MULT, 3], [2, ADD, 3]};

% contrainte{2} = {[2], [1, MULT, 2], [2, MULT, 3],...

% [1, MULT, 2, ADD, 2, MULT, 3], [1, MULT, 2, MULT, 3]};

nombre_source = 2;

info(1).elements = {[1, MULT, 2, ADD, 1, MULT, 3, ADD, 2, MULT, 3], [1]};

info(1).masses = [0.6, 0.4];

info(2).elements = {[1, MULT, 2, ADD, 1, MULT, 3, ADD, 2, MULT, 3], [1]};

info(2).masses = [0.4, 0.6];

contrainte{1} = {};

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% compute the product of sum

[contraire_complet, contraire] = faire_contraire(info);

%% case with two sources

if isequal(nombre_source,2)

Ihyb = hybride(info, contrainte{1},contraire,2,nombre_source,contraire_complet);

shafer = 0;

Iall = depart(Ihyb,2);

Ihyb = depart(Ihyb,1);

disp(’DSm hybride’);



15.7. APPENDIX: MATLABTMCODE LISTINGS 393

aff_ensemble(Ihyb);

else

%% case with more than two sources : check the type ’sorte’ of DSmH

%% case dynamic

if isequal(sorte,’dynamique’)

Ihyb = hybride(info,contrainte{1},contraire,2,nombre_source,contraire_complet);

for g = 3 : nombre_source

Ihyb = depart(Ihyb,2);

ensemble_step = {};

masses_step = [];

disp(’DSm hybride’);

aff_ensemble(Ihyb)

for h = 1 : length(Ihyb)

ensemble_step{h} = Ihyb(h).elements;

masses_step(h) = Ihyb(h).masses;

end

info(1).elements = {}; info(1).masses = [];

info(2).elements = {}; info(2).masses = [];

info(1).elements = ensemble_step; info(1).masses = masses_step;

info(2) = info(g);

[contraire_complet, contraire] = faire_contraire(info);

clear Ihyb;

Ihyb = hybride(info,contrainte{g-1},contraire,2,nombre_source, ...

contraire_complet);

end

%% replace numerical value of ADD and MULT by the text ’ADD’,’MULT’

Iall = depart(Ihyb,2);

Ihyb = depart(Ihyb,1);

disp(’DSm hybride’);

aff_ensemble(Ihyb);

%% case static

else

Ihyb = hybride(info,contrainte{nombre_source -1},contraire,1,...

nombre_source,contraire_complet);

%% replace numerical value of ADD and MULT by the text ’ADD’,’MULT’

Iall = depart(Ihyb,2);

Ihyb = depart(Ihyb,1);

disp(’DSm hybride’);

aff_ensemble(Ihyb);

end

end

%% compute belief and plausibility

Isel = Iall;

fboe = {’pl’ ’bel’};

for k=1:length(fboe)

switch fboe{k}

case ’pl’

Pds = plausibilite(Isel,contrainte);

disp(’Plausibilite’);

Pds = depart(Pds,1);

aff_ensemble(Pds);

case ’bel’

Bds = croyance(Isel);



394 REDUCING DSMT HYBRID RULE COMPLEXITY

disp(’Croyance’);

Bds = depart(Bds,1);

aff_ensemble(Bds);

end

end

15.7.6 File : croyance.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that computes belief

%

% I : final information for which we want to compute belief

%

% croyance_complet: output giving belief values and objects

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function croyance_complet = croyance(I)

%#inbounds

%#realonly

global ADD

global MULT

ADD = -2;

MULT = -1;

info = [];

matrice_monome = [];

ignorance = [];

nombreElement = 0;

ensemble = {};

vecteur1 = [];

vecteur2 = [];

f = 1;

j = 1;

%% separates objects, remove words ADD and MULT

for g = 1 : length(I)

if ~isempty(I(g).elements)

ensemble{f} = I(g).elements;

vecteur1(f) = I(g).masses;

vecteur2(f) = 1;

f = f + 1;

end

end

info(1).elements = ensemble;

info(1).masses = vecteur1;

info(2).elements = ensemble;

info(2).masses = vecteur2;

[matrice_monome,ignorance,nombreElement] = separation(info,1);

matrice_monome = ordre_grandeur(matrice_monome,2);

%% produces the union matrix

matrice_intersection_contraire = intersection_matrice(matrice_monome,1);

matrice_intersection_contraire = ordre_grandeur(matrice_intersection_contraire,2);

matrice_intersection_contraire = dedouble(matrice_intersection_contraire,2);

%% Those for which union equals the monome (by lines), we add their masses.

[m,n] = size(matrice_intersection_contraire);

for g = 2 : m
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for h = 2 : n

if isequal(matrice_intersection_contraire(g,h).elements,...

matrice_monome(g,1).elements)

resultat(j).elements = matrice_monome(g,1).elements;

resultat(j).masses = matrice_intersection_contraire(g,h).masses;

j = j + 1;

end

end

end

croyance_complet = dedouble(resultat,1);

15.7.7 File : dedouble.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that removes identical values and simplifies object

%

% matrice: matrix to simplify, can be a set

% sorte: indicates if input is a matrix or a set

%

% retour: output once simplified

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [retour] = dedouble(matrice,sorte)

%#inbounds

%#realonly

global REPETE

REPETE = 0;

%% case set

if isequal(sorte,1)

ensembleOut = [];

j = 1;

%% go through elements of the set

for g = 1 : length(matrice)

for h = g + 1 : length(matrice)

if isequal(matrice(h).elements,matrice(g).elements)

matrice(h).elements = REPETE;

matrice(g).masses = matrice(g).masses + matrice(h).masses;

end

end

if ~isequal(matrice(g).elements,REPETE) & ~isequal(matrice(g).masses,0)

ensembleOut(j).elements = matrice(g).elements;

ensembleOut(j).masses = matrice(g).masses;

j = j + 1;

end

end

retour = ensembleOut;

%% case matrix

else

[m,n] = size(matrice);

vecteur1 = [];

vecteur2 = [];

if m > 1

u = 2;

y = 2;
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else

u = 1;

y = 1;

end

%% go through elements of the matrix

for h = u : m

for g = y : n

ensemble = {};

ensemble = matrice(h,g).elements;

j = 1;

nouvel_ensemble = {};

%% go through all vectors of the matrix

for k = 1 : length(ensemble)

vecteur1 = ensemble{k};

if ~isempty(vecteur1)

for f = k + 1 : length(ensemble)

vecteur2 = ensemble{f};

%% check if there is two identical vectors

if ~isempty(vecteur2)

if isequal(vecteur1, vecteur2)

vecteur1 = REPETE;

else

%% check if a vector is included in another

%% 2 intersection 2union3 : remove 2union3

compris = 0;

for v = 1 : length(vecteur1)

for c = 1 : length(vecteur2)

if isequal(vecteur1(v),vecteur2(c))

compris = compris + 1;

end

end

end

if length(vecteur1) < length(vecteur2)

if isequal(compris, length(vecteur1))

vecteur2 = REPETE;

end

else

if isequal(compris, length(vecteur2))

vecteur1 = REPETE;

end

end

end

ensemble{f} = vecteur2;

end

end

ensemble{k} = vecteur1;

end

if ~isequal(ensemble{k},REPETE)

nouvel_ensemble{j} = ensemble{k};

j = j + 1;

end

end

matriceOut(h,g).elements = nouvel_ensemble;
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matriceOut(h,g).masses = matrice(h,g).masses;

end

end

matriceOut = tri(matriceOut,1);

retour = matriceOut;

end

15.7.8 File : depart.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function putting ADD and MULT

%

% ensemble_complet: set for which we want to add ADD and MULT

% each element is a cell including vectors

% each vector is a product and a change of vector is a sum

% sorte: to know if it has to be in numerical value or not

%

% ensemble_final: output with ADD and MULT

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ensemble_final] = depart(ensemble_complet,sorte)

%#inbounds

%#realonly

global A

global M

global ADDS

global MULTS

ADDS = ’ ADD ’;

MULTS = ’ MULT ’;

A = -2;

M = -1;

ensemble = [];

ensemble_final = [];

%% go through vectors of the set

for g = 1 : length(ensemble_complet)

ensemble = ensemble_complet(g).elements;

for k = 1 : length(ensemble)

%% first time

if isequal(k,1)

if isequal(length(ensemble{k}),1)

if isequal(sorte,1)

ensemble_final(g).elements = [num2str(ensemble{1})];

else

ensemble_final(g).elements = [ensemble{1}];

end

else

vecteur = ensemble{k};

for f = 1 : length(vecteur)

if isequal(f,1)

if isequal(sorte,1)

ensemble_final(g).elements = [num2str(vecteur(f))];

else

ensemble_final(g).elements = [vecteur(f)];

end
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else

if isequal(sorte,1)

ensemble_final(g).elements = [...

ensemble_final(g).elements, ...

MULTS, num2str(vecteur(f))];

else

ensemble_final(g).elements = [...

ensemble_final(g).elements, ...

M, vecteur(f)];

end

end

end

end

%% puts ’ ADD ’ since change of vector

else

if isequal(sorte,1)

ensemble_final(g).elements = ...

[ensemble_final(g).elements, ADDS];

else

ensemble_final(g).elements = ...

[ensemble_final(g).elements, A];

end

if isequal(length(ensemble{k}),1)

if isequal(sorte,1)

ensemble_final(g).elements = ...

[ensemble_final(g).elements, ...

num2str(ensemble{k})];

else

ensemble_final(g).elements = ...

[ensemble_final(g).elements, ...

ensemble{k}];

end

%% puts ’ MULT ’

else

premier = 1;

vecteur = ensemble{k};

for f = 1 : length(vecteur)

if premier == 1

if isequal(sorte,1)

ensemble_final(g).elements = ...

[ensemble_final(g).elements,...

num2str(vecteur(f))];

else

ensemble_final(g).elements = ...

[ensemble_final(g).elements, ...

vecteur(f)];

end

premier = 0;

else

if isequal(sorte,1)

ensemble_final(g).elements = ...

[ensemble_final(g).elements, ...
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MULTS, num2str(vecteur(f))];

else

ensemble_final(g).elements = ...

[ensemble_final(g).elements, ...

M, vecteur(f)];

end

end

end

end

end

end

ensemble_final(g).masses = ensemble_complet(g).masses;

end

15.7.9 File : DSmH auto.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% description: file from which we can call the function version of the DSmH

%

%%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

% The examples used in this file were available in :

%’’Advances and Applications of DSmT for Information Fusion’’

% written by par Jean Dezert and Florentin Smarandache, 2004

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all; clc;

info = [];

contrainte = [];

global ADD

global MULT

ADD = -2;

MULT = -1;

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

info = [];

contrainte = [];

disp(’Example 1, Page 21’);

nombre_source = 2;

sorte = [’dynamique’];

info(1).elements = {[1],[2],[3],[1, ADD, 2]};

info(1).masses = [0.1, 0.4, 0.2, 0.3];

info(2).elements = {[1],[2],[3],[1, ADD, 2]};

info(2).masses = [0.5, 0.1, 0.3, 0.1];

contrainte{1} = {[1, MULT, 2, MULT, 3],[1, MULT, 2],[2, MULT, 3],...

[1, MULT, 3],[3],[1, MULT, 3, ADD, 2, MULT, 3],...

[1, MULT, 2, ADD, 1, MULT, 3],[1, MULT, 2, ADD, 2, MULT, 3]};

calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte);
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%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

info = [];

contrainte = [];

disp(’Example 5, Page 86’);

nombre_source = 2;

info(1).elements = {[1, MULT, 3],[3],[1, MULT, 2],[2],[1],...

[1, ADD, 3],[1, ADD, 2]};

info(1).masses = [0.1, 0.3, 0.1, 0.2, 0.1, 0.1, 0.1];

info(2).elements = {[2, MULT, 3],[3],[1, MULT, 2],[2],[1],[1, ADD, 3]};

info(2).masses = [0.2, 0.1, 0.2, 0.1, 0.2, 0.2];

contrainte{1} = {[1, MULT, 3], [1, MULT, 2, MULT, 3],[1],...

[1, MULT, 2],[1, MULT, 2, ADD, 1, MULT, 3]};

calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte);

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

info = [];

contrainte = [];

disp(’Example 2, Page 90’);

nombre_source = 2;

info(1).elements = {[1, MULT, 2, MULT, 3],[2, MULT, 3],[1, MULT, 3],...

[1, MULT, 3, ADD, 2, MULT, 3],[3],[1, MULT, 2],[1, MULT, 2, ADD, 2, MULT, 3],...

[1, MULT, 2, ADD, 1, MULT, 3],[1, MULT, 2, ADD, 1, MULT, 3, ADD, 2, MULT, 3],...

[3, ADD, 1, MULT, 2],[2],[2, ADD, 1, MULT, 3],[2, ADD, 3],[1],...

[1, ADD, 2, MULT, 3],[1, ADD, 3],[1, ADD, 2],[1, ADD, 2, ADD, 3]};

info(1).masses = [0.01,0.04,0.03,0.01,0.03,0.02,0.02,0.03,0.04,...

0.04,0.02,0.01,0.2,0.01,0.02,0.04,0.03,0.4];

info(2).elements = {[1, MULT, 2, MULT, 3],[2, MULT, 3],[1, MULT, 3],...

[1, MULT, 3, ADD, 2, MULT, 3],[3],[1, MULT, 2],[1, MULT, 2, ADD, 2, MULT, 3],...

[1, MULT, 2, ADD, 1, MULT, 3],[1, MULT, 2, ADD, 1, MULT, 3, ADD, 2, MULT, 3],...

[3, ADD, 1, MULT, 2],[2],[2, ADD, 1, MULT, 3],[2, ADD, 3],[1],...

[1, ADD, 2, MULT, 3],[1, ADD, 3],[1, ADD, 2],[1, ADD, 2, ADD, 3]};

info(2).masses = [0.4,0.03,0.04,0.02,0.04,0.20,0.01,0.04,0.03,0.03,...

0.01,0.02,0.02,0.02,0.01,0.03,0.04,0.01];

contrainte{1} = {[1, MULT, 2], [1, MULT, 2, MULT, 3]};

calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte);

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

info = [];

contrainte = [];

disp(’Example 7, Page 90’);
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nombre_source = 2;

info(1).elements = {[1, MULT, 2, MULT, 3],[2, MULT, 3],[1, MULT, 3],...

[1, MULT, 3, ADD, 2, MULT, 3],[3],[1, MULT, 2],[1, MULT, 2, ADD, 2, MULT, 3],...

[1, MULT, 2, ADD, 1, MULT, 3],[1, MULT, 2, ADD, 1, MULT, 3, ADD, 2, MULT, 3],...

[3, ADD, 1, MULT, 2],[2],[2, ADD, 1, MULT, 3],[2, ADD, 3],[1],...

[1, ADD, 2, MULT, 3],[1, ADD, 3],[1, ADD, 2],[1, ADD, 2, ADD, 3]};

info(1).masses = [0.01,0.04,0.03,0.01,0.03,0.02,0.02,0.03,0.04,...

0.04,0.02,0.01,0.2,0.01,0.02,0.04,0.03,0.4];

info(2).elements = {[1, MULT, 2, MULT, 3],[2, MULT, 3],[1, MULT, 3],...

[1, MULT, 3, ADD, 2, MULT, 3],[3],[1, MULT, 2],[1, MULT, 2, ADD, 2, MULT, 3],...

[1, MULT, 2, ADD, 1, MULT, 3],[1, MULT, 2, ADD, 1, MULT, 3, ADD, 2, MULT, 3],...

[3, ADD, 1, MULT, 2],[2],[2, ADD, 1, MULT, 3],[2, ADD, 3],[1], ...

[1, ADD, 2, MULT, 3],[1, ADD, 3],[1, ADD, 2],[1, ADD, 2, ADD, 3]};

info(2).masses = [0.4,0.03,0.04,0.02,0.04,0.20,0.01,0.04,0.03,0.03,...

0.01,0.02,0.02,0.02,0.01,0.03,0.04,0.01];

contrainte{1} = {[1, MULT, 2, MULT, 3], [2, MULT, 3], [1, MULT, 3], ...

[1, MULT, 3, ADD, 2, MULT, 3], [3], [1, MULT, 2], ...

[1, MULT, 2, ADD, 2, MULT, 3], [1, MULT, 2, ADD, 1, MULT, 3], ...

[1, MULT, 2, ADD, 1, MULT, 3, ADD, 2, MULT, 3], [3, ADD, 1, MULT, 2]};

calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte);

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

info = [];

contrainte = [];

disp(’Example 3.2, Page 97’);

nombre_source = 3;

%sorte = [’dynamique’];

sorte = [’statique’];

info(1).elements = {[1],[2],[1, ADD, 2],[1, MULT, 2]};

info(1).masses = [0.1, 0.2, 0.3, 0.4];

info(2).elements = {[1],[2],[1, ADD, 2],[1, MULT, 2]};

info(2).masses = [0.5, 0.3, 0.1, 0.1];

info(3).elements = {[3],[1, MULT, 3],[2, ADD, 3]};

info(3).masses = [0.4, 0.3, 0.3];

contrainte{1} = {};

contrainte{2} = {[3],[1, MULT, 2, MULT, 3],[1, MULT, 3],...

[2, MULT, 3],[1, MULT, 3, ADD, 2, MULT, 3]};

calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte);

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

info = [];

contrainte = [];

disp(’Example 3.5, Pages 99-100’);
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nombre_source = 3;

sorte = [’dynamique’];

%sorte = [’statique’];

info(1).elements = {[1],[2]};

info(1).masses = [0.6, 0.4];

info(2).elements = {[1],[2]};

info(2).masses = [0.7, 0.3];

info(3).elements = {[1], [2], [3]};

info(3).masses = [0.5, 0.2, 0.3];

contrainte{1} = {};

contrainte{2} = {[3], [1, MULT, 3], [2, MULT, 3], ...

[1, MULT, 2, MULT, 3], [1, MULT, 3, ADD, 2, MULT, 3]};

calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte);

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

info = [];

contrainte = [];

disp(’Example 3.6, Page 100’);

nombre_source = 2;

info(1).elements = {[1], [2], [1, MULT, 2]};

info(1).masses = [0.5, 0.4 0.1];

info(2).elements = {[1], [2], [1, MULT, 3], [4]};

info(2).masses = [0.3, 0.2, 0.1, 0.4];

contrainte{1} = {[1, MULT, 3], [1, MULT, 2], [1, MULT, 3, MULT, 4],...

[1, MULT, 2, MULT, 3], [1, MULT, 2, MULT, 4],[1, MULT, 2, ADD, 1, MULT, 3]};

calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte);

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

info = [];

contrainte = [];

disp(’Example 5.2.1.3, Page 107’);

nombre_source = 3;

sorte = [’dynamique’];

%rep du livre = statique

sorte = [’statique’];

info(1).elements = {[1],[3]};

info(1).masses = [0.6, 0.4];

info(2).elements = {[2],[4]};

info(2).masses = [0.2, 0.8];

info(3).elements = {[2], [4]};

info(3).masses = [0.3, 0.7];

contrainte{1} = {};

contrainte{2} = {[1, MULT, 3],[1, MULT, 2],[1, MULT, 4],[2, MULT, 3],...
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[2, MULT, 4],[3, MULT, 4],[1, MULT, 2, MULT, 3],[1, MULT, 2, MULT, 4],...

[1, MULT, 3, MULT, 4],[2, MULT, 3, MULT, 4],[1, MULT, 2, MULT, 3, MULT, 4],...

[1, MULT, 3, ADD, 1, MULT, 4],[1, MULT, 2, ADD, 1, MULT, 3],...

[1, MULT, 2, ADD, 1, MULT, 4],[2, MULT, 3, ADD, 2, MULT, 4],...

[1, MULT, 2, ADD, 2, MULT, 4],[1, MULT, 2, ADD, 2, MULT, 3],...

[1, MULT, 3, ADD, 2, MULT, 3],[1, MULT, 3, ADD, 3, MULT, 4],...

[2, MULT, 3, ADD, 3, MULT, 4],[1, MULT, 4, ADD, 2, MULT, 4],...

[1, MULT, 4, ADD, 3, MULT, 4],[2, MULT, 4, ADD, 3, MULT, 4],...

[1, MULT, 2, MULT, 3, ADD, 1, MULT, 2, MULT, 4],...

[1, MULT, 3, ADD, 1, MULT, 4, ADD, 2, MULT, 3, ADD, 2, MULT, 4]};

calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte);

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

info = [];

contrainte = [];

disp(’Example 5.2.2.2, Page 109’);

nombre_source = 3;

sorte = [’dynamique’];

%sorte = [’statique’];

info(3).elements = {[1],[2],[1, ADD, 2]};

info(3).masses = [0.4, 0.5, 0.1];

info(2).elements = {[3],[4],[3, ADD, 4]};

info(2).masses = [0.3, 0.6, 0.1];

info(1).elements = {[1], [1, ADD, 2]};

info(1).masses = [0.8, 0.2];

contrainte{1} = {};

contrainte{2} = {[1, MULT, 3],[1, MULT, 2],[1, MULT, 4],...

[2, MULT, 3],[2, MULT, 4],[3, MULT, 4],[1, MULT, 2, MULT, 3],...

[1, MULT, 2, MULT, 4],[1, MULT, 3, MULT, 4],[2, MULT, 3, MULT, 4],...

[1, MULT, 2, MULT, 3, MULT, 4],[1, MULT, 3, ADD, 1, MULT, 4],...

[1, MULT, 2, ADD, 1, MULT, 3],[1, MULT, 2, ADD, 1, MULT, 4],...

[2, MULT, 3, ADD, 2, MULT, 4],[1, MULT, 2, ADD, 2, MULT, 4],...

[1, MULT, 2, ADD, 2, MULT, 3],[1, MULT, 3, ADD, 2, MULT, 3],...

[1, MULT, 3, ADD, 3, MULT, 4],[2, MULT, 3, ADD, 3, MULT, 4],...

[1, MULT, 4, ADD, 2, MULT, 4],[1, MULT, 4, ADD, 3, MULT, 4],...

[2, MULT, 4, ADD, 3, MULT, 4],[1, MULT, 2, MULT, 3, ADD, 1, MULT, 2, MULT, 4],...

[1, MULT, 3, ADD, 1, MULT, 4, ADD, 2, MULT, 3, ADD, 2, MULT, 4]};

calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte);

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

info = [];

contrainte = [];

disp(’Example 5.4.2, Page 116’);
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nombre_source = 3;

%sorte = [’dynamique’];

sorte = [’statique’];

info(1).elements = {[1],[4, ADD, 5]};

info(1).masses = [0.99, 0.01];

info(3).elements = {[2],[3],[4, ADD, 5]};

info(3).masses = [0.98, 0.01, 0.01];

info(2).elements = {[1], [2], [3], [4, ADD, 5]};

info(2).masses = [0.01, 0.01, 0.97, 0.01];

contrainte{1} = {};

contrainte{2} = {};

contrainte{2} = {[1, MULT, 3],[1, MULT, 2],[1, MULT, 4],[2, MULT, 3],...

[2, MULT, 4],[3, MULT, 4],[1, MULT, 2, MULT, 3],[1, MULT, 2, MULT, 4],...

[1, MULT, 3, MULT, 4],[2, MULT, 3, MULT, 4],[1, MULT, 2, MULT, 3, MULT, 4],...

[1, MULT, 3, ADD, 1, MULT, 4],[1, MULT, 2, ADD, 1, MULT, 3],...

[1, MULT, 2, ADD, 1, MULT, 4],[2, MULT, 3, ADD, 2, MULT, 4],...

[1, MULT, 2, ADD, 2, MULT, 4],[1, MULT, 2, ADD, 2, MULT, 3],...

[1, MULT, 3, ADD, 2, MULT, 3],[1, MULT, 3, ADD, 3, MULT, 4],...

[2, MULT, 3, ADD, 3, MULT, 4],[1, MULT, 4, ADD, 2, MULT, 4],...

[1, MULT, 4, ADD, 3, MULT, 4],[2, MULT, 4, ADD, 3, MULT, 4],...

[1, MULT, 2, MULT, 3, ADD, 1, MULT, 2, MULT, 4],...

[1, MULT, 3, ADD, 1, MULT, 4, ADD, 2, MULT, 3, ADD, 2, MULT, 4],...

[1, MULT, 5],[2, MULT, 5],[3, MULT, 5],[4, MULT, 5],[1, MULT, 2, MULT, 5],...

[1, MULT, 3, MULT, 5],[1, MULT, 4, MULT, 5],[2, MULT, 3, MULT, 5],...

[2, MULT, 4, MULT, 5],[3, MULT, 4, MULT, 5],[1, MULT, 2, MULT, 3, MULT, 5],...

[1, MULT, 2, MULT, 4, MULT, 5],[1, MULT, 3, MULT, 4, MULT, 5],...

[2, MULT, 3, MULT, 4, MULT, 5],[1, MULT, 2, MULT, 3, MULT, 4, MULT, 5],...

[1, MULT, 4, ADD, 1, MULT, 5],[2, MULT, 4, ADD, 2, MULT, 5],...

[3, MULT, 4, ADD, 3, MULT, 5],[1, MULT, 2, MULT, 4, ADD, 1, MULT, 2, MULT, 5],...

[1, MULT, 3, MULT, 4, ADD, 1, MULT, 3, MULT, 5],...

[2, MULT, 3, MULT, 4, ADD, 2, MULT, 3, MULT, 5],...

[1, MULT, 2, MULT, 3, MULT, 4, ADD, 1, MULT, 2, MULT, 3, MULT, 5]};

calcul_DSm_hybrid_auto(nombre_source, sorte, info, contrainte);

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

disp(’ ’);

15.7.10 File : enlever contrainte.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% description: function removing constraints in sets

%

% ensemble_complet: sets composed of S1, S2, S3

% contrainte_separe: constraints’ sets : divided in cells with vectors :

% each vector is a product, and a change of vector = sum

%

% ensemble_complet: final set

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ensemble_complet] = ...
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enlever_contrainte(ensemble_complet, contrainte_separe);

%#inbounds

%#realonly

global ENLEVE

ENLEVE = {};

ensemble_contrainte = {};

ensemble_elements = [];

ensemble_produit = [];

%go through contraints

for g = 1 : length(contrainte_separe)

ensemble_contrainte = contrainte_separe{g};

for h = 1 : length(ensemble_complet)

%si la contrainte est en entier dans l’ensemble complet, l’enlever

if isequal(ensemble_contrainte, ensemble_complet(h).elements)

ensemble_complet(h).elements = ENLEVE;

ensemble_complet(h).masses = 0;

end

end

end

%go through contraints

for g = 1 : length(contrainte_separe)

ensemble_contrainte = contrainte_separe{g};

%si elle est un singleton

if isequal(length(ensemble_contrainte),1) & ...

isequal(length(ensemble_contrainte{1}),1)

for h = 1 : length(ensemble_complet)

if ~isequal(ensemble_complet(h).elements, ENLEVE)

ensemble_elements = ensemble_complet(h).elements;

entre = 0;

for k = 1 : length(ensemble_elements)

%si une union, enleve

if isequal(ensemble_elements{k},ensemble_contrainte{1})

vecteur1 = ensemble_elements{k};

vecteur2 = ensemble_contrainte{1};

ensemble_elements{k} = setdiff(vecteur1, vecteur2);

entre = 1;

end

end

if isequal(entre, 1)

j = 1;

ensemble_elements_new = [];

for k = 1 : length(ensemble_elements)

if ~isequal(ensemble_elements{k},[]);

ensemble_elements_new{j} = ensemble_elements{k};

j = j + 1;

end

end

ensemble_elements = [];
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ensemble_elements = ensemble_elements_new;

end

ensemble_complet(h).elements = ensemble_elements;

end

end

%otherwise, its an intersection

elseif length(ensemble_contrainte) == 1

ensemble_produit = ensemble_complet;

for t = 1 : length(ensemble_produit)

ensemble = ensemble_produit(t).elements;

j = 1;

entre = 1;

nouvel_ensemble = {};

for h = 1 : length(ensemble)

for y = 1 : length(ensemble_contrainte)

if isequal(ensemble{h}, ensemble_contrainte{y})

ensemble{h} = [];

entre = 0;

else

nouvel_ensemble{j} = ensemble{h};

j = j + 1;

end

end

end

ensemble_produit(t).elements = nouvel_ensemble;

ensemble_complet(t).elements = ensemble_produit(t).elements;

end

end

end

%remove empty

for r = 1 : length(ensemble_complet)

ensemble1 = ensemble_complet(r).elements;

j = 1;

nouvel_ensemble = [];

for s = 1 : length(ensemble1)

if ~isequal(ensemble1{s},[])

nouvel_ensemble{j} = ensemble1{s};

j = j + 1;

end

end

ensemble_complet(r).elements = nouvel_ensemble;

end

%combines identical elements

ensemble_complet = dedouble(ensemble_complet,2);

ensemble_complet = dedouble(ensemble_complet,1);

15.7.11 File : ensemble.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Description: function regrouping equal structure from matrix

%

% matrice: the matrix to regroup

%

% ensembleOut: outputs the structure with sets of regrouped matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ensembleOut] = ensemble(matrice)

%#inbounds

%#realonly

ensembleOut = [];

[m,n] = size(matrice);

j = 1;

if ~(m < 2)

if isequal(matrice(2,2).elements, [])

u = 1;

y = 1;

else

u = 2;

y = 2;

end

else

u = 1;

y = 1;

end

%% go through all sets of the matrix, put the equal ones togheter and sum

%% their mass

for g = u : m

for h = y : n

if isequal(g,u) & isequal(h,y) & ~isequal(matrice(g,h).elements,[])

ensembleOut(j).elements = matrice(g,h).elements;

ensembleOut(j).masses = matrice(g,h).masses;

j = j + 1;

elseif ~isequal(matrice(g,h).elements,[])

compris = 0;

for f = 1 : length(ensembleOut)

if isequal(matrice(g,h).elements, ensembleOut(f).elements)

ensembleOut(f).masses = ...

ensembleOut(f).masses + matrice(g,h).masses;

compris = 1;

end

end

if isequal(compris,0)

ensembleOut(j).elements = matrice(g,h).elements;

ensembleOut(j).masses = matrice(g,h).masses;

j = j + 1;

end

end

end

end
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15.7.12 File : faire contraire.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that changes the sum of products in product of

% sums with ADD and MULT

%

% info: set that we want to modify

%

% ensembleOut: once in product of sums and in same format as the input

% contraire: only the first two information

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ensembleOut, contraire] = faire_contraire(info)

%#inbounds

%#realonly

ensembleOut = [];

j = 1;

f = 1;

temp = [];

flag = 3;

contraire = [];

%% puts the sets in product of sums

[temp, ignorance, nombre] = separation(info,2);

temp = produit_somme_complet(temp);

temp = depart(temp,2);

%% puts back the sets in one set

for g = 1 : length(nombre)

debut = 1;

d = 1;

ensembleElement = {};

for h = 1 : nombre(g)

if isequal(debut,1)

ensembleElement{d} = [temp(f).elements];

ensembleOut(j).masses = temp(f).masses;

debut = 0;

else

ensembleElement{d} = [temp(f).elements];

ensembleOut(j).masses = [ensembleOut(j).masses, temp(f).masses];

end

f = f + 1;

d = d + 1;

end

%% ensembleOut: output, once in product of sums

ensembleOut(j).elements = ensembleElement;

%% contraire: only the first two elements of output

if j < 3

contraire(j).elements = ensembleOut(j).elements;

contraire(j).masses = ensembleOut(j).masses;

end

j = j + 1;

end
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15.7.13 File : hybride.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that executes the three steps of the DSmH

%

% info: informations from the sources in product of sums

% contrainte: contraints in sum of product

% contraire: informations from sources in sum of products

%

% sorte: indicates the type of fusion: dynamic ou static

% nombre_source: number of source of evidence

% contraire_complet: All the information in product of sum

%

% ensemble_complet: final values (objects + masses)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ensemble_complet] = ...

hybride(info,contrainte,contraire,sorte,nombre_source,contraire_complet)

matrice_intersection = []; matrice_union = []; matrice_monome = [];

ensemble_step1 = []; ensemble_step2 = []; ensemble_step3 = [];

ensemble_complet = []; vecteur_singleton = []; contrainte_produit = [];

ignorance = []; ensemble_complet_temp = [];

%% case static

if isequal(sorte,1)

matrice_infos = [];

matrice_infos_contraire = [];

for g = 1 : nombre_source

[matrice_infos,ignorance,nombreElement] = ...

separation_unique(info(g),matrice_infos);

[matrice_infos_contraire,ignorance,nombreElement] = ...

separation_unique(contraire_complet(g),matrice_infos_contraire);

end

%% compute the intersection matrix

matrice_intersection = intersection_matrice(matrice_infos_contraire,2);

matrice_intersection = somme_produit_complet(matrice_intersection);

matrice_intersection = dedouble(matrice_intersection,2);

matrice_intersection = ordre_grandeur(matrice_intersection,1);

%% compute the union matrix

matrice_intersection_contraire = intersection_matrice(matrice_infos,2);

matrice_intersection_contraire = dedouble(matrice_intersection_contraire,2);

%% case dynamic

else

%% Separates products of each objects, also computes total ignorance

[matrice_monome,ignorance1,nombreElement] = separation(info,1);

[matrice_monome_contraire,ignorance2,nombreElement] = separation(contraire,1);

ignorance = [ignorance1];

%% compute the union matrix

matrice_intersection_contraire = intersection_matrice(matrice_monome,1);

matrice_intersection_contraire = ...

ordre_grandeur(matrice_intersection_contraire,2);

matrice_intersection_contraire = dedouble(matrice_intersection_contraire,2);

%% compute the intersection matrix

matrice_intersection = intersection_matrice(matrice_monome_contraire,1);

matrice_intersection = somme_produit_complet(matrice_intersection);
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matrice_intersection = dedouble(matrice_intersection,2);

end

%% separates objects in contraints: will help compare the with intersection

if ~isempty(contrainte)

[contrainte_separe, ignorance3, nombre] = separation(contrainte,3);

contrainte_separe = tri(contrainte_separe,2);

end

%% compute S1, S2, S3

%% If there is no constraints, simply take S1

if isempty(contrainte)

ensemble_complet = ensemble(matrice_intersection);

%% Otherwise, we have to go throught the three steps

else

%% Go through intersection matrix, if objects = contraints, take union,

%% if objects from union = contraints, take union of objects, if it’s a

%% contraints, take total ignorance.

j = 1; source = 1;

[m,n] = size(matrice_intersection);

ss = 1:m; s = 1;

gg = 1:n; g = 1;

%% Go through each line (s) of the matrix process by accessing each

%% objects, by column (g)

while s ~= (length(ss)+1)

while g ~= (length(gg)+1)

%% take value from intersection matrix

ensemble_step = matrice_intersection(s,g).elements;

%% if the flag is not active, set it to ’1’

if ~(source > 10)

source = 1;

end

%% Proceed if there is something at (s,g) matrix position

if ~isequal(ensemble_step, [])

intersection = 0;

for h = 1 : length(contrainte_separe)

%% If value from intersection matrix is equal to actual

%% constraint and if it hasn’t been equal to a previous

%% constraint, OR, if the flag was active, then proceed to

%% union matrix.

if (isequal(contrainte_separe{h},ensemble_step) &...

isequal(intersection,0)) | isequal(source,22)

intersection = 1; union = 0;

ensemble_step = [];

ensemble_step = matrice_intersection_contraire(s,g).elements;

%% if the flag is not active for the union of objects

%% or to total ignorance, set it to ’2’

if ~(source > 22)

source = 2;

end

for t = 1 : length(contrainte_separe)

%% If value from union matrix is equal to actual

%% constraint and if it hasn’t been equal to a

%% previous constraint, OR, if the flag was active,

%% then proceed to union of objects calculation.
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if (isequal(contrainte_separe{t},ensemble_step)&...

isequal(union,0)) | isequal(source,33)

union = 1; subunion = 0;

nouveau_vecteur = [];

ensemble_step = {};

ensemble1 = matrice_monome(s,1).elements;

ensemble2 = matrice_monome(1,g).elements;

b = 1;

for f = 1 : length(ensemble1)

vecteur = ensemble1{f};

for d = 1 : length(vecteur)

nouveau_vecteur{b} = [vecteur(d)];

b = b + 1;

end

end

for f = 1 : length(ensemble2)

vecteur = ensemble2{f};

for d = 1 : length(vecteur)

nouveau_vecteur{b} = [vecteur(d)];

b = b + 1;

end

end

%% remove repetition

for f = 1 : length(nouveau_vecteur)

for r = f + 1 : length(nouveau_vecteur)

if isequal(nouveau_vecteur{f},nouveau_vecteur{r})

nouveau_vecteur{r} = [];

end

end

end

y = 1;

for r = 1 : length(nouveau_vecteur)

if ~isequal(nouveau_vecteur{r},[])

ensemble_step{y} = nouveau_vecteur{r};

y = y + 1;

end

end

%% ordering

matrice = [];

matrice(1,1).elements = ensemble_step;

matrice(1,1).masses = 0;

matrice(2,2).elements = [];

matrice = ordre_grandeur(matrice,2);

ensemble_step = [];

ensemble_step = matrice(1,1).elements;

%% if the flag is not active for ignorance

if ~(source > 33)

source = 3;

end

for r = 1 : length(contrainte_separe)

%% If value from union of objects matrix is

%% equal to actual constraint and if it

%% hasn’t been equal to previous constraint
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%% OR, if the flag was active.

if (isequal(contrainte_separe{r}, ensemble_step)...

& isequal(subunion,0)) | isequal(source,44)

subunion = 1;

ensemble_step = {};

ensemble_step = ignorance;

source = 4;

end

end

end

end

end

end

ensemble_complet_temp = [];

ensemble_complet_temp(1).elements = ensemble_step;

ensemble_complet_temp(1).masses = matrice_intersection(s,g).masses;

%% remove constraints of composed objects, if there is any

ensemble_step_temp = ...

enlever_contrainte(ensemble_complet_temp,contrainte_separe);

%% once the contraints are all removed, check if the object are

%% empty. If not, increment output matrix position, if it is

%% empty, activate the flag following the position from where

%% the answer would have been taken and restart loop without

%% incrementing (s,g) intersection matrix position.

if ~isempty(ensemble_step_temp(1).elements)

ensemble_step = [];

ensemble_step = ensemble_step_temp(1).elements;

ensemble_complet(j).elements = ensemble_step;

ensemble_complet(j).masses = ...

matrice_intersection(s,g).masses;

ensemble_complet = tri(ensemble_complet,1);

j = j + 1;

else

switch (source)

%% CASE 4 is not used here. It’s the case where there

%% would be a constraint on total ignorance.

case 1

source = 22;

case 2

source = 33;

case 3

source = 44;

end

%% Will let the while loop repeat process for actual (s,g)

g = g - 1;

end

end %% ’end’ for the "if ~isequal(ensemble_step, [])" line

%% move forward in the intersection matrix

g = g + 1;

end %g = 1 : n (columns of intersection matrix)

%% move forward in the intersection matrix
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s = s + 1;

g = 1;

end %s = 1 : m (lines of intersection matrix)

end

g = 1; s = 1;

%% Sort the content of the output matrix

ensemble_complet = tri(ensemble_complet,1);

%% Filter the ouput matrix to merge equal cells

ensemble_complet = dedouble(ensemble_complet,1);

15.7.14 File : intersection matrice.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that computes the intersection matrix and masses

%

% sorte: type of fusion [static | dynamic]

% matrice_monome: initial information, once separated by objects with ADD

% and MULT removed. vector represents products, a change of vector the sum

% includes only the first line and column of the matrix

%

% matrice_intersection: return the result of intersections

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [matrice_intersection] = intersection_matrice(matrice_monome,sorte)

%% case dynamic

if isequal(sorte,1)

matrice_intersection = [];

[m,n] = size(matrice_monome);

ensembleN = {};

ensembleM = {};

%% go through the first line and column, fill the intersection matrix

for g = 2 : m

ensembleM = matrice_monome(g,1).elements;

for h = 2 : n

ensembleN = matrice_monome(1,h).elements;

matrice_intersection(g,h).elements = [ensembleN,ensembleM];

matrice_intersection(g,h).masses = ...

matrice_monome(g,1).masses * matrice_monome(1,h).masses;

end

end

matrice_intersection = dedouble(matrice_intersection,2);

matrice_intersection = ordre_grandeur(matrice_intersection,2);

%% case static

else

matrice_intersection = [];

matrice_intermediaire = [];

[m,n] = size(matrice_monome);

ensembleN = {};

ensembleM = {};

j = 1;

s = 1;

%% fill the intersection matrix by multipliying all at once

for g = 1 : n
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ensembleM = matrice_monome(1,g).elements;

if ~isequal(ensembleM,[])

for h = 1 : n

ensembleN = matrice_monome(2,h).elements;

if ~isequal(ensembleN,[])

matrice_intermediaire(j,s).elements = [ensembleN,ensembleM];

matrice_intermediaire(j,s).masses = ...

matrice_monome(2,h).masses * matrice_monome(1,g).masses;

s = s + 1;

end

end

end

end

[r,t] = size(matrice_intermediaire);

s = 1;

for g = 3 : m

for h = 1 : t

ensembleM = matrice_intermediaire(1,h).elements;

for u = 1 : n

ensembleN = matrice_monome(g,u).elements;

if ~isequal(ensembleN,[])

matrice_intersection(1,s).elements = [ensembleN,ensembleM];

matrice_intersection(1,s).masses = ...

matrice_intermediaire(1,h).masses * matrice_monome(g,u).masses;

s = s + 1;

end

end

end

matrice_intermediaire = matrice_intersection;

matrice_intersection = [];

[r,t] = size(matrice_intermediaire);

s = 1;

end

matrice_intersection = matrice_intermediaire;

matrice_intersection = dedouble(matrice_intersection,2);

end

15.7.15 File : ordre grandeur.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that orders vectors

%

% matrice: matrix in which we order the vectors in the sets

%

% matriceOut: output ordered matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [matriceOut] = ordre_grandeur(matrice,sorte)

[m,n] = size(matrice);

ensemble = {};

ensembleTemp = [];

%% case static

if isequal(sorte,1)

u = 1;
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y = 1;

%% case dynamic

else

essai = matrice(2,2).elements;

if isempty(essai)

u = 1;

y = 1;

else

u = 2;

y = 2;

end

end

%% Order by size vector of sets of matrix

for g = u : m

for h = y : n

ensemble = matrice(g,h).elements;

for f = 1 : length(ensemble)

for k = f + 1 : length(ensemble)

if length(ensemble{k}) < length(ensemble{f})

ensembleTemp = ensemble{f};

ensemble{f} = ensemble{k};

ensemble{k} = ensembleTemp;

elseif isequal(length(ensemble{k}), length(ensemble{f}))

vecteur1 = ensemble{k};

vecteur2 = ensemble{f};

changer = 0;

for t = 1 : length(vecteur1)

if (vecteur1(t) < vecteur2(t)) & isequal(changer,0)

ensembleTemp = ensemble{f};

ensemble{f} = ensemble{k};

ensemble{k} = ensembleTemp;

changer = 1;

break;

end

end

end

end

end

matriceOut(g,h).elements = ensemble;

matriceOut(g,h).masses = matrice(g,h).masses;

end

end

15.7.16 File : plausibilite.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that calculates plausibility

%

% I: final information for which we want plausibility

% contrainte: initial constraints

%

% plausibilite_complet: returns plausibility and masses

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function plausibilite_complet = plausibilite(I,contrainte)

%#inbounds

%#realonly

global ADD

global MULT

ADD = -2;

MULT = -1;

ensemble_complet = {};

contrainte_compare = {};

info = [];

matrice_monome = [];

ignorance = [];

ensemble_elements = [];

vecteur1 = [];

vecteur2 = [];

nombreElement = 0;

f = 1;

j = 1;

r = 1;

%% separates the objects, removes ADD and MULT

for g = 1 : length(I)

if ~isempty(I(g).elements)

ensemble_elements{f} = I(g).elements;

vecteur2(f) = I(g).masses;

vecteur1(f) = 1;

f = f + 1;

end

end

info(1).elements = ensemble_elements;

info(2).elements = ensemble_elements;

info(1).masses = vecteur1;

info(2).masses = vecteur2;

[matrice_monome,ignorance,nombreElement] = separation(info,1);

[contraire_complet, contraire] = faire_contraire(info);

[matrice_monome_contraire,ignorance,nombreElement] = separation(contraire,1);

%% creates the intersection matrix

matrice_intersection = intersection_matrice(matrice_monome_contraire,1);

matrice_intersection = somme_produit_complet(matrice_intersection);

matrice_intersection = dedouble(matrice_intersection,2);

%% takes the contraint in sum of products, however, if there’s none, do

%% nothing and put it all to ’1’

entre = 0;

s = 1;

for r = 1 : length(contrainte)

if ~isempty(contrainte) & ~isempty(contrainte{r}) & isequal(entre,0)

for g = 1 : length(contrainte)

if ~isequal(contrainte{g},{})

[contrainte_compare{s}, ignorance, nombre] = ...

separation(contrainte{g},3);

s = s + 1;

end

end

%% remove contraints on the intersection matrix
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[m,n] = size(matrice_intersection);

for g = 2 : n

ensemble_complet = [];

matrice_intersection_trafique = matrice_intersection(:,g);

matrice_intersection_trafique(2,2).elements = [];

ensemble_complet = ensemble(matrice_intersection_trafique);

ensemble_complet = tri(ensemble_complet,1);

ensemble_complet = dedouble(ensemble_complet,1);

for t = 1 : length(contrainte_compare)

ensemble_complet = enlever_contrainte(ensemble_complet,...

contrainte_compare{t});

end

resultat(j).masses = 0;

for t = 1 : length(ensemble_complet)

if ~isempty(ensemble_complet(t).elements)

resultat(j).masses = resultat(j).masses + ...

ensemble_complet(t).masses;

end

end

resultat(j).elements = matrice_monome(g,1).elements;

j = j + 1;

end

entre = 1;

%% if there’s no constraints, put it all to ’1’,

elseif isequal(length(contrainte),r) & isequal(entre,0)

[m,n] = size(matrice_monome);

for g = 1 : m

resultat(j).elements = matrice_monome(g,1).elements;

resultat(j).masses = 1;

j = j + 1;

end

end

end

plausibilite_complet = dedouble(resultat,1);

15.7.17 File : produit somme complet.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that converts input in product of sums

%

% ensemble_complet: matrix in sum of products

%

% ensemble_produit: matrix in product of sums

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ensemble_produit] = produit_somme_complet(ensemble_complet);

global ENLEVE

ENLEVE = {};

ensemble_elements = {}; ensemble_produit = {};

vecteur = []; matrice = [];

p = 1; y = 1;

%% go through all sets, puts them in product of sums

for g = 1 : length(ensemble_complet)

if ~isequal(ensemble_complet(g).elements, ENLEVE)
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ensemble_elements = ensemble_complet(g).elements;

if (length(ensemble_elements) >= 2)

i = 1;

ensemble_produit(p).elements = {};

changer = 0;

if length(ensemble_elements) >= 3

vecteur1 = ensemble_elements{1};

vecteur2 = ensemble_elements{2};

if ~(length(vecteur1) > 1 & length(vecteur2) > 1)

ensemble_produit(p).elements = ensemble_complet(g).elements;

ensemble_produit(p).masses = ensemble_complet(g).masses;

p = p + 1;

else

changer = 1 ;

end

else

changer = 1;

end

if isequal(changer, 1)

for k = 1 : length(ensemble_elements) - 1

if (k < 2)

if (k + 1) > length(ensemble_elements)

x = length(ensemble_elements);

else

x = k + 1;

end

for w = k : x

vecteur = ensemble_elements{w};

j = 1;

for f = 1 : length(vecteur)

if isequal(length(vecteur),1)

ensembleN{j} = [vecteur];

else

ensembleN{j} = [vecteur(f)];

j = j + 1;

end

end

if isequal(i,1)

matrice(1,2).elements = ensembleN;

matrice(1,2).masses = 0;

ensembleN = {};

i = 2;

elseif isequal(i,2)

matrice(2,1).elements = ensembleN;

matrice(2,1).masses = 0;

ensembleN = {};

i = 1;

end

end

elseif (k >= 2) & (length(ensemble_elements) > 2)

w = k + 1;

j = 1;

vecteur = ensemble_elements{w};
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for f = 1 : length(vecteur)

if isequal(length(vecteur),1)

ensembleN{j} = [vecteur];

else

ensembleN{j} = [vecteur(f)];

j = j + 1;

end

end

matrice(1,2).elements = ensemble_produit(p).elements;

matrice(1,2).masses = 0;

matrice(2,1).elements = ensembleN;

matrice(2,1).masses = 0;

ensembleN = {};

end

resultat = union_matrice(matrice);

[s,t] = size(resultat);

for r = 1 : s

for d = 1 : t

masse = resultat(r,d).masses;

if isequal(masse, 0)

ensemble_produit(p).elements = ...

resultat(r,d).elements;

ensemble_produit(p).masses = ...

ensemble_complet(g).masses;

end

end

end

end

p = p + 1;

end

elseif isequal(length(ensemble_elements),1)

for k = 1 : length(ensemble_elements)

vecteur = ensemble_elements{k};

j = 1;

for f = 1 : length(vecteur)

if isequal(length(vecteur),1)

ensembleN{j} = [vecteur];

else

ensembleN{j} = [vecteur(f)];

j = j + 1;

end

end

end

ensemble_produit(p).elements = ensembleN;

ensembleN = {};

ensemble_produit(p).masses = ensemble_complet(g).masses;

p = p + 1;

elseif ~isequal(ensemble_elements, [])

ensemble_produit(p).elements = ensemble_complet(g).elements;

ensemble_produit(p).masses = ensemble_complet(g).masses;

p = p + 1;

end

end
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end

15.7.18 File : separation.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: separates products in input data

%

% info: information from sources (initial data)

% sorte: type of separation

%

% retour: separated data (products)

% ignorance: total ignorance

% nombreElement:number of vectors in sets of each information

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [retour,ignorance_nouveau,nombreElement] = separation(info,sorte)

global ADD

global MULT

global SOURCE

ADD = -2;

MULT = -1;

SOURCE = 2;

nouvelle_info = []; %struc elements: set of vector

ensemble_monome = []; %cell (1,1) of matrix is empty

matrice_monome = []; %cell (1,1) of matrix is empty

retour = [];

ignorance_nouveau = [];

%% takes each elements of each sources and separates the products

[m,n] = size(info);

if ~isequal(sorte,3)

for g = 1 : n

nombreElement(g) = length(info(g).elements);

end

else

nombreElement(1) = 1;

end

%% case dynamic or two sources

if isequal(sorte,1)

%% variables

ligne = 1;

colonne = 2;

ignorance = [];

%% go through each sources

for g = 1 : n

ensemble = info(g).elements;

vecteur_masse = info(g).masses;

if isequal(g,SOURCE)

colonne = 1;

ligne = 2;

end

%% go through each set of elements

for h = 1 : length(ensemble)

vecteur = ensemble{h};

nouveau_vecteur = [];
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nouvel_ensemble = {};

k = 1;

%% go through each element of the vector

%% to separate the products and sums

for j = 1 : length(vecteur)

if ~isequal(vecteur(j), ADD)

if ~isequal(nouveau_vecteur, []) & ~isequal(vecteur(j), MULT)

nouveau_vecteur = [nouveau_vecteur, vecteur(j)];

if isequal(j,length(vecteur))

nouvel_ensemble{k} = nouveau_vecteur;

ignorance = [ignorance, nouveau_vecteur];

end

elseif ~isequal(vecteur(j), MULT)

nouveau_vecteur = [vecteur(j)];

if isequal(j,length(vecteur))

nouvel_ensemble{k} = nouveau_vecteur;

ignorance = [ignorance, nouveau_vecteur];

end

end

else

nouvel_ensemble{k} = nouveau_vecteur;

ignorance = [ignorance, nouveau_vecteur];

nouveau_vecteur = [];

k = k + 1;

end

end

nouvelle_info(g,h).elements = nouvel_ensemble;

nouvelle_info(g,h).masses = vecteur_masse(h);

if isequal(g,1)

matrice_monome(ligne,colonne).elements = nouvel_ensemble;

matrice_monome(ligne,colonne).masses = vecteur_masse(h);

colonne = colonne + 1;

elseif isequal(g,2)

matrice_monome(ligne,colonne).elements = nouvel_ensemble;

matrice_monome(ligne,colonne).masses = vecteur_masse(h);

ligne = ligne + 1;

end

end

end

ignorance = unique(ignorance);

for r = 1 : length(ignorance)

ignorance_nouveau{r} = ignorance(r);

end

retour = matrice_monome;

%% case static

elseif isequal(sorte,2)

%% variables

f = 1;

%% go through each sources

for g = 1 : n

ensemble = info(g).elements;

vecteur_masse = info(g).masses;

%% go through each set of elements
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for h = 1 : length(ensemble)

vecteur = ensemble{h};

nouveau_vecteur = [];

nouvel_ensemble = {};

k = 1;

%% go through each element of the vector

%% to separate the products and sums

for j = 1 : length(vecteur)

if ~isequal(vecteur(j), ADD)

if ~isequal(nouveau_vecteur, []) & ~isequal(vecteur(j), MULT)

nouveau_vecteur = [nouveau_vecteur, vecteur(j)];

if isequal(j,length(vecteur))

nouvel_ensemble{k} = nouveau_vecteur;

end

elseif ~isequal(vecteur(j), MULT)

nouveau_vecteur = [vecteur(j)];

if isequal(j,length(vecteur))

nouvel_ensemble{k} = nouveau_vecteur;

end

end

else

nouvel_ensemble{k} = nouveau_vecteur;

nouveau_vecteur = [];

k = k + 1;

end

end

ensemble_monome(f).elements = nouvel_ensemble;

ensemble_monome(f).masses = vecteur_masse(h);

f = f + 1;

end

end

ignorance = [];

retour = ensemble_monome;

%% case contraint

elseif isequal(sorte,3)

for g = 1 : length(info)

vecteur = info{g};

nouveau_vecteur = [];

nouvel_ensemble = {};

k = 1;

for h = 1 : length(vecteur)

if ~isequal(vecteur(h), ADD)

if ~isequal(nouveau_vecteur, []) & ~isequal(vecteur(h), MULT)

nouveau_vecteur = [nouveau_vecteur, vecteur(h)];

if isequal(h,length(vecteur))

nouvel_ensemble{k} = nouveau_vecteur;

end

elseif ~isequal(vecteur(h), MULT)

nouveau_vecteur = [vecteur(h)];

if isequal(h,length(vecteur))

nouvel_ensemble{k} = nouveau_vecteur;

end

end
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else

nouvel_ensemble{k} = nouveau_vecteur;

nouveau_vecteur = [];

k = k + 1;

end

end

nouvelle_contrainte{g} = nouvel_ensemble;

end

ignorance = [];

retour = nouvelle_contrainte;

end

15.7.19 File : separation unique.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: separates products in input data, one info. at a time

%

% info: information from sources (initial data)

% sorte: type of separation

%

% matrice_monome: separated data (products)

% ignorance: total ignorance

% nombreElement: number of vectors in sets of each information

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [matrice_monome,ignorance,nombreElement] = ...

separation_unique(info,matrice_monome)

%#inbounds

%#realonly

global ADD

global MULT

global SOURCE

ADD = -2;

MULT = -1;

SOURCE = 2;

nouvelle_info = []; %struc elements: set of vector

ignorance = [];

if isequal(matrice_monome, [])

ligne = 1;

colonne = 1;

else

[m,n] = size(matrice_monome);

ligne = m + 1;

colonne = 1;

end

%% takes each elements of each sources and separates the products

[m,n] = size(info);

for g = 1 : n

nombreElement(g) = length(info(g).elements);

end

%% go through each sources

for g = 1 : n

ensemble = info(g).elements;

vecteur_masse = info(g).masses;
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%% go through each set of elements

for h = 1 : length(ensemble)

vecteur = ensemble{h};

nouveau_vecteur = [];

nouvel_ensemble = {};

k = 1;

%% go through each elements of the vector

%% separates the products and sums

for j = 1 : length(vecteur)

if ~isequal(vecteur(j), ADD)

if ~isequal(nouveau_vecteur, []) & ~isequal(vecteur(j), MULT)

nouveau_vecteur = [nouveau_vecteur, vecteur(j)];

if isequal(j,length(vecteur))

nouvel_ensemble{k} = nouveau_vecteur;

ignorance = [ignorance, nouveau_vecteur];

end

elseif ~isequal(vecteur(j), MULT)

nouveau_vecteur = [vecteur(j)];

if isequal(j,length(vecteur))

nouvel_ensemble{k} = nouveau_vecteur;

ignorance = [ignorance, nouveau_vecteur];

end

end

else

nouvel_ensemble{k} = nouveau_vecteur;

ignorance = [ignorance, nouveau_vecteur];

nouveau_vecteur = [];

k = k + 1;

end

end

nouvelle_info(g,h).elements = nouvel_ensemble;

nouvelle_info(g,h).masses = vecteur_masse(h);

matrice_monome(ligne,colonne).elements = nouvel_ensemble;

matrice_monome(ligne,colonne).masses = vecteur_masse(h);

colonne = colonne + 1;

end

end

ignorance = unique(ignorance);

15.7.20 File : somme produit complet.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that converts input in sum of products

%

% matrice_contraire: matrix in product of sums

%

% matrice_complet: matrix in sum of products

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [matrice_complet] = somme_produit_complet(matrice_contraire);

%#inbounds

%#realonly

ensemble_elements = {};

vecteur = [];
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matrice = [];

matrice_complet = [];

p = 1;

ensembleN = {};

[m,n] = size(matrice_contraire);

if ~isempty(matrice_contraire(1,1).elements)

u = 1;

v = 1;

else

u = 2;

v = 2;

end

%% go through the sets and puts them in sum of product

for g = u : m

for t = v : n

ensemble_elements = matrice_contraire(g,t).elements;

if ~isequal(ensemble_elements, {})

matrice_complet(g,t).elements = {};

matrice_complet(g,t).masses = 0;

ensembleN = {};

if isequal(length(ensemble_elements), 1)

vecteur = ensemble_elements{1};

j = 1;

ensembleN{j} = [];

for f = 1 : length(vecteur)

ensembleN{j} = [vecteur(f)];

j = j + 1;

end

matrice_complet(g,t).elements = ensembleN;

matrice_complet(g,t).masses = matrice_contraire(g,t).masses;

elseif length(ensemble_elements) >= 2

matrice_complet(g,t).elements = [];

changer = 0;

if length(ensemble_elements) >= 3

vecteur1 = ensemble_elements{1};

vecteur2 = ensemble_elements{2};

%file produit_somme_complet.m needed an ’~’ for the IF

%here to work as it should be.

if (length(vecteur1) > 1 & length(vecteur2) > 1)

matrice_complet(g,t).elements = ...

matrice_contraire(g,t).elements;

matrice_complet(g,t).masses = ...

matrice_contraire(g,t).masses;

else

changer = 1 ;

end

else

changer = 1;

end

if isequal(changer,1);

matrice_complet(g,t).elements = {};

i = 1;
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for k = 1 : length(ensemble_elements) - 1

if (k < 2)

if (k + 1) > length(ensemble_elements)

x = length(ensemble_elements);

else

x = k + 1;

end

for w = k : x

vecteur = ensemble_elements{w};

j = 1;

for f = 1 : length(vecteur)

if isequal(length(vecteur),1)

ensembleN{j} = [vecteur];

else

ensembleN{j} = [vecteur(f)];

j = j + 1;

end

end

if isequal(i,1)

matrice(1,2).elements = ensembleN;

matrice(1,2).masses = 0;

ensembleN = {};

i = 2;

elseif isequal(i,2)

matrice(2,1).elements = ensembleN;

matrice(2,1).masses = 0;

ensembleN = {};

i = 1;

end

end

elseif (k >= 2) & (length(ensemble_elements) > 2)

w = k + 1;

j = 1;

vecteur = ensemble_elements{w};

for f = 1 : length(vecteur)

if isequal(length(vecteur),1)

ensembleN{j} = [vecteur];

else

ensembleN{j} = [vecteur(f)];

j = j + 1;

end

end

matrice(1,2).elements = matrice_complet(g,t).elements;

matrice(1,2).masses = 0;

matrice(2,1).elements = ensembleN;

matrice(2,1).masses = 0;

ensembleN = {};

end

matrice = ordre_grandeur(matrice,2);

resultat = union_matrice(matrice);
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matrice(2,1).elements = {};

matrice(1,2).elements = {};

[s,b] = size(resultat);

for r = 1 : s

for d = 1 : b

masse = resultat(r,d).masses;

if isequal(masse, 0)

matrice_complet(g,t).elements = ...

resultat(r,d).elements;

matrice_complet(g,t).masses = ...

matrice_contraire(g,t).masses;

end

end

end

end

end

elseif ~isequal(ensemble_elements, [])

matrice_complet(g,t).elements = matrice_contraire(g,t).elements;

matrice_complet(g,t).masses = matrice_contraire(g,t).masses;

end

end

end

end

if (g >= 2) & (t >= 2)

matrice_complet = ordre_grandeur(matrice_complet,2);

end

15.7.21 File : tri.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that sorts the elements

%

% matrice: matrix to sort, can be a set

% sorte: type of input [matrix | set]

%

% retour: matrix, or set, once the elements are sorted

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [retour] = tri(matrice,sorte)

%#inbounds

%#realonly

%% case matrix

if isequal(sorte,1)

[m,n] = size(matrice);

ensemble_temp = [];

if m > 1

u = 2;

v = 2;

else

u = 1;

v = 1;

end

%% go through each elements of the matrix, sort them
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for h = u : m

for g = v : n

ensemble = matrice(h,g).elements;

for f = 1 : length(ensemble)

for k = f + 1 : length(ensemble)

%% if they are the same length, look at each number, at

%% order them

if isequal(length(ensemble{f}),length(ensemble{k}))

if (ensemble{f} > ensemble{k})

ensemble_temp = ensemble{f};

ensemble{f} = ensemble{k};

ensemble{k} = ensemble_temp;

end

else

%% ifnot the same length, put at first, the smaller

if length(ensemble{f}) > length(ensemble{k})

ensemble_temp = ensemble{f};

ensemble{f} = ensemble{k};

ensemble{k} = ensemble_temp;

end

end

end

end

matriceOut(h,g).elements = ensemble;

matriceOut(h,g).masses = matrice(h,g).masses;

end

end

retour = matriceOut;

%% case set

else

ensemble_temp = [];

%% go through each elements of the set, sort them

for h = 1 : length(matrice)

ensemble_tri = matrice{h};

for f = 1 : length(ensemble_tri)

for k = f + 1 : length(ensemble_tri)

if isequal(length(ensemble_tri{f}),length(ensemble_tri{k}))

if (ensemble_tri{f} > ensemble_tri{k})

ensemble_temp = ensemble_tri{f};

ensemble_tri{f} = ensemble_tri{k};

ensemble_tri{k} = ensemble_temp;

end

else

if length(ensemble_tri{f}) > length(ensemble_tri{k})

ensemble_temp = ensemble_tri{f};

ensemble_tri{f} = ensemble_tri{k};

ensemble_tri{k} = ensemble_temp;

end

end

end

end

ensembleOut{h} = ensemble_tri;
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end

retour = ensembleOut;

end

15.7.22 File : union matrice.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description: function that computes the union matrix and masses

%

% matrice_monome: objects and masses once separated, on the 1st line/column

%

% matrice_union : returns the result of the union and masses

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [matrice_union] = union_matrice(matrice_monome)

%#inbounds

%#realonly

matrice_union = [];

[m,n] = size(matrice_monome);

ensembleN = {};

ensembleM = {};

vecteurN = [];

vecteurM = [];

ensemble1 = [];

ensemble2 = [];

%% go through the 1st line and column, fill the union matrix

for g = 2 : n

ensembleN = matrice_monome(1,g).elements;

if ~isequal(ensembleN,{})

for h = 2 : m

ensembleM = matrice_monome(h,1).elements;

if ~isequal(ensembleM,{})

if isequal(ensembleN, ensembleM)

matrice_union(h,g).elements = ensembleN;

matrice_union(h,g).masses = matrice_monome(1,g).masses *...

matrice_monome(h,1).masses;

else

%% put the identical ones (from same line) togheter

[ensembleM,ensembleN] = bon_ordre(ensembleM,ensembleN);

%% verifies which one is the higher

if length(ensembleM) >= length(ensembleN)

ensemble1 = ensembleN;

ensemble2 = ensembleM;

else

ensemble1 = ensembleM;

ensemble2 = ensembleN;

end

end

%% fill the union matrix

nouvel_ensemble = {};

j = 1;

for t = 1 : length(ensemble1)

for s = 1 : length(ensemble2)

if t <= length(ensemble2)
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if isequal(ensemble2{s},ensemble1{t})

nouvel_ensemble{j} = [ensemble1{t}];

else

vecteur = [ensemble2{s},ensemble1{t}];

nouvel_ensemble{j} = unique(vecteur);

end

else

if isequal(ensemble1{length(ensemble2)},ensemble1{t})

nouvel_ensemble{j} = [ensemble1{t}];

else

vecteur = ...

[ensemble1{length(ensemble2)},ensemble1{t}];

nouvel_ensemble{j} = unique(vecteur);

end

end

j = j + 1;

end

end

matrice_union(h,g).elements = nouvel_ensemble;

matrice_union(h,g).masses = matrice_monome(1,g).masses *...

matrice_monome(h,1).masses;

end

end

end

end

matrice_union = ordre_grandeur(matrice_union,2);




