
Florentin Smarandache: Nidus idearum, Vol. vii, third edition 

114 

Refined Neutrosophic Crisp Set (RNCS) 

Salama and Smarandache defined in 2014 and 2015 [1] the 

Neutrosophic Crisp Set as follows. 

Definition of Neutrosophic Crisp Set (NCS) 

Let X be a non-empty fixed space. A neutrosophic crisp 

set is an object D having the form  

D = <A, B, C>, where A, B, C are subsets of X. 

Types of Neutrosophic Crisp Sets 

       The object having the form D = <A, B, C> is called: 

(a) A neutrosophic crisp set of Type 1 (NCS-Type1) 

if it satisfies: 

A∩B = B∩C = C∩A = 𝜙 (empty set). 

(b) A neutrosophic crisp set of Type 2 (NCS-Type2) 

if it satisfies: 

A∩B = B∩C = C∩A = 𝜙 and A∪B∪C = X. 

(c) A neutrosophic crisp set of Type 3 (NCS-Type3) 

if it satisfies: 

A∩B∩C = 𝜙 and A∪B∪C = X. 

Of course, more types of Neutrosophic Crisp Sets may be 

defined by modifying the intersections and unions of 

the subsets A, B, and C. 
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Refined Neutrosophic Crisp Set 

In 2019, Smarandache extended for the first time the 

Neutrosophic Crisp Set to Refined Neutroosphic Crisp 

Set, based on his 2013 definition of Refined 

Neutrosophic Set / Logic / Probability [2], i.e. the truth 

T was refined/split into sub-truths such as T1, T2, …, Tp, 

similarly indeterminacy I was refined/split into sub-

indeterminacies I1, I2, …Ir, and the falsehood F was 

refined/split into sub-falsehoods F1, F2, …, Fs.  

Definition of Refined Neutrosophic Crisp Set (RNCS) 

Let X be a non-empty fixed space. And let D be a 

Neutrosophic Crisp Set, where  

D = <A, B, C>, with A, B, C as subsets of X. 

We refined/split D (and denote it by RD = Refined D) by 

refining/splitting A, B, C into sub-subsets as follows: 

RD = (A1, ..., Ap; B1, ..., Br; C1, ..., Cs), where p, r, s ≥ 1 are 

positive integers, 

and 
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Types of Refined Neutrosophic Crisp Set 

Similarly, we have: 

(a) A refined neutrosophic crisp set of Type 1 

(RNCS-Type1) if it satisfies: 

A∩B = B∩C = C∩A = 𝜙 (empty set). 

(b) A refined neutrosophic crisp set of Type 2 

(RNCS-Type2) if it satisfies:  

A∩B = B∩C = C∩A = 𝜙 and A∪B∪C = X. 
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(c) A refined neutrosophic crisp set of Type 3 

(RNCS-Type3) if it satisfies: 

A∩B∩C = 𝜙 and A∪B∪C = X. 

And, of course, more types of Refined Neutrosophic Crisp 

Sets may be defined: by modifying the intersections 

and unions of the subsets A, B, C, or the intersections 

and unions of their sub-subsets Ai, Bj, Ck, for i ∊ {1, 2, 

…, p}, j ∊ {1, 2, …, r}, and k ∊ {1, 2, …, s}. 
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