Refined Neutrosophic Crisp Set (RNCS)

Salama and Smarandache defined in 2014 and 2015 [1] the Neutrosophic Crisp Set as follows.

Definition of Neutrosophic Crisp Set (NCS)

Let *X* be a non-empty fixed space. A neutrosophic crisp set is an object *D* having the form $D = \langle A, B, C \rangle$, where *A*, *B*, *C* are subsets of *X*.

Types of Neutrosophic Crisp Sets

The object having the form $D = \langle A, B, C \rangle$ is called:

(a) A neutrosophic crisp set of Type 1 (NCS-Type1) if it satisfies:

 $A \cap B = B \cap C = C \cap A = \phi$ (empty set).

(b) A neutrosophic crisp set of Type 2 (NCS-Type2) if it satisfies:

 $A \cap B = B \cap C = C \cap A = \phi$ and $A \cup B \cup C = X$.

(c) A neutrosophic crisp set of Type 3 (NCS-Type3) if it satisfies:

 $A \cap B \cap C = \phi$ and $A \cup B \cup C = X$.

Of course, more types of Neutrosophic Crisp Sets may be defined by modifying the intersections and unions of the subsets *A*, *B*, and *C*.

Refined Neutrosophic Crisp Set

- In 2019, Smarandache extended for the first time the Neutrosophic Crisp Set to Refined Neutroosphic Crisp Set, based on his 2013 definition of Refined Neutrosophic Set / Logic / Probability [2], i.e. the truth *T* was refined/split into sub-truths such as *T*₁, *T*₂, ..., *T*_p,
- similarly indeterminacy *I* was refined/split into subindeterminacies *I*₁, *I*₂, ...,*I*_r, and the falsehood *F* was refined/split into sub-falsehoods *F*₁, *F*₂, ..., *F*_s.

Definition of Refined Neutrosophic Crisp Set (RNCS) Let *X* be a non-empty fixed space. And let *D* be a Neutrosophic Crisp Set, where

 $D = \langle A, B, C \rangle$, with A, B, C as subsets of X.

We refined/split *D* (and denote it by *RD* = *Refined D*) by refining/splitting *A*, *B*, *C* into sub-subsets as follows:

 $RD = (A_1, ..., A_p; B_1, ..., B_r; C_1, ..., C_s)$, where $p, r, s \ge 1$ are positive integers,

and

$$A = \bigcup_{i=1}^{p} A_{i}, \quad B = \bigcup_{j=1}^{r} B_{j}, \quad C = \bigcup_{k=1}^{s} C_{k}.$$

Types of Refined Neutrosophic Crisp Set

Similarly, we have:

- (a) A refined neutrosophic crisp set of Type 1
 (RNCS-Type1) if it satisfies:
 A∩B = B∩C = C∩A = Ø (empty set).
- (b) A refined neutrosophic crisp set of Type 2 (RNCS-Type2) if it satisfies:

 $A \cap B = B \cap C = C \cap A = \phi$ and $A \cup B \cup C = X$.

- (c) A refined neutrosophic crisp set of Type 3 (RNCS-Type3) if it satisfies: $A \cap B \cap C = \phi$ and $A \cup B \cup C = X$.
- And, of course, more types of Refined Neutrosophic Crisp Sets may be defined: by modifying the intersections and unions of the subsets *A*, *B*, *C*, or the intersections and unions of their sub-subsets A_i , B_j , C_k , for $i \in \{1, 2, ..., p\}$, $j \in \{1, 2, ..., r\}$, and $k \in \{1, 2, ..., s\}$.

References

[1] A.A. Salama, F. Smarandache, *Neutrosophic Crisp Set Theory*, Educational Publisher, Columbus, Ohio, USA, 2015;

http://fs.unm.edu/NeutrosophicCrispSetTheory.pdf

 [2] Florentin Smarandache, n-Valued Refined Neutrosophic Logic and Its Applications in Physics, Progress in Physics, 143-146, Vol. 4, 2013; <u>https://arxiv.org/ftp/arxiv/papers/1407/1407.1041.pdf</u> and <u>http://fs.unm.edu/n-ValuedNeutrosophicLogic-</u> PiP.pdf

This section, called "Refined Neutrosophic Crisp Set (RNCS)" http://fs.unm.edu/RefinedNeutrosophicCrispSet.pdf pp. 114-116, is extracted from the book:

Florentin Smarandache, Nidus Idearum, Vol. VII, third edition, 2019, Editions Pons, Brussels, Belgium; http://fs.unm.edu/NidusIdearum7-ed3.pdf.