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AAAAAA

neutrosophic mass in terms of reliability and respectively the importance of

the source.
We show that reliability and importance discounts commute when

dealing with classical masses.

pt YTOOTAOAETTS Let & = {&,, ,, ..., P,} be the frame of discernment,

where n > 2, and the set of FTAAI eleme 100;
F={A,A, .. A, form>1FcG® (1)
Let G® = (&,U,n, C) be the FOOETn ODAAA.
A TAOOOTOTPEEA TAOO is defined as follows:
m,:G - [0,1]3
forany x € G, m,(x) = (t(x),i(x), f(x)), (2)
where t(x) = believe that x will occur (truth);
i(x) = indeterminacy about occurence;

and f(x) = believe that x will not occur (falsity).
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Simply, we say in neutrosophic logic:
t(x) = believe in x;

i(x) = believe in neut(x)

[the neutral of x, i.e. neither x nor anti(x)];
and f(x) = believe in anti(x) [the opposite of x].
Of course, t(x), i(x), f(x) € [0,1], and
Yxeclt() +i(x) + f(x)] =1, (3)
while
my(¢) = (0,0,0). (4)

It is possible that according to some parameters (or data) a source is
able to predict the believe in a hypothesis x to occur, while according to other
parameters (or other data) the same source may be able to find the believe
in x not occuring, and upon a third category of parameters (or data) the
source may find some indeterminacy (ambiguity) about hypothesis

occurence.
An element x € G is called £TAAI if
ny,(x) # (0,0,0), (5)
le.t(x) >0ori(x) >0o0r f(x)>0.
Any ATAOOEAAl mAQO:
m:G® - [0,1] (6)
can be simply written as a neutrosophic mass as:

m(4) = (m(4),0,0).(7)
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¢t SEOATOTOETC A NeuOOTOTPEEA —AOO due 0T RelfAAEIEOU of OEA
3TO0AAY
Let a = (ay, a,, a3) be the reliability coefficient of the source, a €
[0,1]3.
Then, for any x € Go\ 6,1},

where 6 = the empty set

and I; = total ignorance,

My (X)aq = (@1t(x), @i (x), a3f (x)), (8)

and

Mall)e = | D+ A=) > ),
x€GO\{¢.I¢}

)+0-a) ) i@fI+0-w) ) f@®
x€GO\{p .1} x€GO\ (.1}

(9),

and, of course,

mn(¢)a = (0' 0, 0)-

The missing mass of each element x, for x # ¢, x # I;, is transferred to

the mass of the total ignorance in the following way:
t(x) —a;t(x) = (1 — ay) - t(x) is transferred to t (1), (10)
i(x) —ayi(x) = (1 —a,) - i(x) is transferred to i(I;), (11)

and f(x) — asf(x) = (1 — a3) - f(x) is transferred to f(I;). (12)
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ot SEOATOTOETC A _AGOOTOTPEEA —Als AQe 0T 0EA ) TDTO0ATce TF OEA
3TO0AAY
Let B € [0, 1] be the importance coefficient of the source. This discounting

can be done in several ways.

a. Foranyx € G? \ {¢},

My () g, = (B t(x),i(x), f(x) + (1 = ) - t(x)), (13)

which means that t(x), the believe in x, is diminished to - t(x), and the
missing mass, t(x) — f - t(x) = (1 — B) - t(x), is transferred to the believe in
anti(x).

b. Another way:

Forany x € G% \ {¢},

My (X) g, = (B t(x), i(x) + (1= B) - t(x), f (%)), (14)
which means that t(x), the believe in x, is similarly diminished to g - t(x),
and the missing mass (1 — ) - t(x) is now transferred to the believe in
neut(x).
c. The third way is the most general, putting together the first and second

ways.
Forany x € G% \ {¢},

Mp(x)g, = (B-t(x),i(x) + (1 =) - t(x) -y, f() + (1 = B) - t(x) -
(1-7)), (15)

where y € [0, 1] is a parameter that splits the missing mass (1 — ) - t(x) a
part to i(x) and the other part to f(x).

For y = 0, one gets the first way of distribution, and when y = 1, one

gets the second way of distribution.
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8 SEOATOTOETC T 2AIEAALIEDy ATA ) IDT0tance Tf 3100ces En " ATAQAI
$1 Not Co T T O0As
a. Reliability first, Importance second.

For any x € G% \ {¢, I,}, one has after reliability a discounting, where

a = (ay, az, a3):
mn(x)a = (al ) t(X), a; - t(X), as - f(X)), (16)

and Moo=t +A—a)- D t00,i0)+(1-ay)
x€GO\{¢.I¢}

Y i@+ Y f
x€GO\{,I;} x€GO\{,I+}

© (T, 11, Fi, ). (17)

Now we do the importance  discounting method, the third importance

discounting way which is the most general:
My (X ap, = (Bart(x), azi(x) + (1 = Bagt(x)y, asf (x)
+ (1= Bast(x)(1—y)) (18)

and

Mo dap,= (B Tip I+ (L= BT1- v, Fr+ (1= BT, (1= 1)). (19)
b. Importance first, Reliability second.

For any x € G%\ {¢, I,}, one has after importance B discounting (third way):

ma(x)g, = (B (), i(x) + (1 — Ay, f(0) + (1 — P (L — 1)) (20)
and
ma(l)g, = (B (1) i0,) + (A= Py, FU) + (A = BUIA—1)).
(21)
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Now we do the reliability @« = (a4, @,, a3) discounting, and one gets:
My () g0 = (o - B~ t(x), a7 - i(x) + ay (1 — PIt(x)y, a3 - f(x) + a3 -
(1-PRtx)A -v)) (22)

and
mn(lt)ﬁ3a = (“1 Bt(dy), ap - (L) + a,(1 = B)t(l)y, as - f(Iy) +
asz(1 = Bt)(1-y)). (23)

2emark.

We see that (a) and (b) are in general different, so reliability of sources

does not commute with the importance of sources.
vs OAOOFAQIAr #Ase <Een 2AIEAAEIEty ATd ) TDTOOATAA SEOATOTOETg Tk
—AOOAO Co T T O0AS
Let’s consider a classical mass ~ m: G% - [0,1] (24)
and the focal set F ¢ G9, F ={A;,A,,..,A,},m>1,(25)
and of course m(4;) > 0,for1 <i <m.
Suppose m(4;) = a; € (0,1].(26)
a. Reliability first, Importance second.
Let a € [0, 1] be the reliability coefficient of m (+).
Forx € G? \ {¢,I,},onehas m(x), = a - m(x), (27)
andm(l;) =a-m(l;) + 1 — a.(28)
Let B € [0, 1] be the importance coefficient of m (+).
Then, forx € G% \ {9, 1,},
M(X) e = (Bam(x), am(x) — fam(x)) = a - m(x) - (B, 1~ B), (29)

considering only two components: believe that x occurs and, respectively,

believe that x does not occur.

Further on,
m(lt)aﬁ = (Bam(ly) + p — Ba,am(ly) + 1 —a — fam(ly) — B + fa) =
[am(l)) + 1 —a]-(B,1—5).(30)
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b. Importance first, Reliability second.
Forx € G% \ {¢,I,}, one has
m(x)g = (B-m@x),mx) — B-m(x)) =m(x) - (8,1 - p), (31)
and m(l,)g = (Bm(,),m(l,) — pm(I)) = m(l) - (B, 1 — B). (32)
Then, for the reliability discounting scaler a one has:
m(x)ge = am(x)(B,1 = B) = (am(x)B, am(x) — afm(m)) (33)

and m(l)ge = a - mU)(B,1-p)+ (1 —a)(B,1 =) =[am() +1—a]-
(B,1—B) = (am()B,am(ly) —am(I)B) + (B —aB,1—a—f+af) =
(apm(l) + B —af,am(l) —apm(l) + 1 —a — f —af). (34)

Hence (a) and (b) are equal in this case.
08 %PA I DIAGS

1. Classical mass.
The following classical is given on 6 = {4, B} :

A B AUB

m 0.4 0.5 0.1
(35)

Let @ = 0.8 be the reliability coefficientand § = 0.7 be the importance

coefficient.

a. Reliability first, Importance second.

A B AUB
My 0.32 0.40 0.28
Map (0.224,0.096)  (0.280,0.120)  (0.196,0.084)

(36)
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We have computed in the following way:
mq(4) = 0.8m(4) = 0.8(0.4) = 0.32, (37)
m,(B) = 0.8m(B) = 0.8(0.5) = 0.40, (38)
mq(AUB) = 0.8(AUB) + 1 — 0.8 = 0.8(0.1) + 0.2 = 0.28, (39)
and Mgp(B) = (0.7my(4), my(4) — 0.7m,(4)) = (0.7(0.32),0.32 —
0.7(0.32)) = (0.224,0.096), (40)
Map(B) = (0.7m,(B), my(B) — 0.7m,(B)) = (0.7(0.40), 0.40 —
0.7(0.40)) = (0.280,0.120), (41)
map(AUB) = (0.7m,(AUB), m,(AUB) — 0.7m,(AUB)) =
(0.7(0.28),0.28 — 0.7(0.28) ) = (0.196,0.084). (42)

b. Importance first, Reliability second.

A B AUB
m 0.4 0.5 0.1
mg (0.28,0.12) (0.35,0.15) (0.07,0.03)
Mga (0.224,0.096  (0.280,0.120)  (0.196,0.084)
(43)

We computed in the following way:
mg(4) = (Bm(4), (1 — p)m(4)) = (0.7(0.4), (1 — 0.7)(0.4)) =
(0.280,0.120), (44)
mg(B) = (Bm(B), (1 — B)m(B)) = (0.7(0.5), (1 — 0.7)(0.5)) =

(0.35,0.15), (45)
mg(AUB) = (Bm(AUB), (1 — B)m(AUB)) = (0.7(0.1), (1 — 0.1)(0.1)) =

(0.07,0.03), (46)
and mg, (A) = amp(A) = 0.8(0.28,0.12) = (0.8(0.28),0.8(0.12)) =

(0.224,0.096), (47)
mgq(B) = amp(B) = 0.8(0.35,0.15) = (0.8(0.35),0.8(0.15)) =
(0.280,0.120), (48)
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Mg (AUB) = am(AUB)(8,1 - B) + (1 — a)(8,1— ) = 0.8(0.1)(0.7,1 —
0.7) + (1 — 0.8)(0.7,1 — 0.7) = 0.08(0.7,0.3) + 0.2(0.7,0.3) =
(0.056,0.024) + (0.140,0.060) = (0.056 + 0.140,0.024 + 0.060) =
(0.196,0.084). (49)

Therefore reliability discount commutes with importance discount of

sources when one has classical masses.

The result is interpreted this way: believe in A is 0.224 and believe in
nond is 0.096, believe in B is 0.280 and believe in nonB is 0.120, and believe

in total ignorance AUB is 0.196, and believe in non-ignorance is 0.084.

) TDTO0ATAA of 3TO0AALS

Let’s consider the third way of redistribution of masses related to
importance coefficient of sources. f = 0.7, but y = 0.4, which means that
40% of B is redistributed to i(x) and 60% of £ is redistributed to f(x) for
eachx € G? \ {¢};and a = 0.8.

a. Reliability first, Importance second.

A B AUB
m 0.4 0.5 0.1
My 0.32 0.40 0.28
Map (0.2240,0.0384, (0.2800,0.0480, (0.1960,0.0336,
0.0576) 0.0720) 0.0504).

(50)
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We computed m,, in the same way.

But:

Map(A) = (B me(A),ig(A) + (1 = BIme(A) v, f(A) +
(1—B)m,(A)(1—7v)) =(0.7(0.32),0 + (1 — 0.7)(0.32)(0.4),0 +
(1-0.7)(0.32)(1 — 0.4)) = (0.2240,0.0384,0.0576). (51)

Similarly for m,z(B) and myz (AUB).

b. Importance first, Reliability second.

A B AUB
m 0.4 0.5 0.1
mg (0.280,0.048,  (0.350,0.060,  (0.070,0.012,
0.072) 0.090) 0.018)
mga (0.2240,0.0384, (0.2800, 0.0480, (0.1960, 0.0336,
0.0576) 0.0720) 0.0504).

(52)

We computed mg (*) in the following way:

mg(A) = (B - t(A),i(A) + (1 - Pt(A) -y, f(A) + (1 - Pt(A)(1 -
¥)) = (0.7(0.4),0 + (1 — 0.7)(0.4)(0.4),0 + (1 — 0.7)0.4(1 — 0.4)) =
(0.280,0.048,0.072). (53)

Similarly for mgz(B) and mg (AUB).
To compute mg, (), we take a; = a, = az = 0.8, (54)

in formulas (8) and (9).
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Mgq(4) = a - mg(A4) = 0.8(0.280,0.048,0.072)
= (0.8(0.280), 0.8(0.048),0.8(0.072))
= (0.2240,0.0384,0.0576). (55)

Similarly mg, (B) = 0.8(0.350,0.060,0.090) =
(0.2800, 0.0480,0.0720). (56)

For mg, (AUB) we use formula (9):

Mg (AUB) = (t3(AUB) + (1 — a)|tz(A) + tz(B)], iz(AUB)
+ (1 — a)]ig(4) + ig(B)],
f3(AUB) + (1 = &)[f3(4) + f3(B)])
= (0.070 + (1 — 0.8)[0.280 + 0.350],0.012

+ (1 — 0.8)[0.048 + 0.060],0.018 + (1 — 0.8)[0.072 + 0.090])
= (0.1960, 0.0336,0.0504).

Again, the reliability discount and importance discount commute.

~N 7 s ma—

W§ #TTAIOOETTS

In this paper we have defined a new way of discounting a classical and
neutrosophic mass with respect to its importance. We have also defined the

discounting of a neutrosophic source with respect to its reliability.

In general, the reliability discount and importance discount do not
commute. But if one uses classical masses, they commute (as in Examples 1

and 2).
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