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Preface

A Smarandache multi-space is a union of n different spaces equipped with some

different structures for an integer n ≥ 2, which can be used both for discrete or

connected spaces, particularly for geometries and spacetimes in theoretical physics.

We are used to the idea that our space has three dimensions: length, breadth

and height; with time providing the fourth dimension of spacetime by Einstein. In

the string or superstring theories, we encounter 10 dimensions. However, we do not

even know what the right degree of freedom is, as Witten said. In 21th century, the-

oretical physicists believe the 11-dimensional M-theory is the best candidate for the

Theory of Everything, i.e., a fundamental united theory of all physical phenomena,

but the bottleneck is that 21st century mathematics has not yet been discovered.

Today, we think the Smarandache multi-space theory is the best candidate for 21st

century mathematics and a new revolution for mathematics has come. Although it

is important, only a few books can be found in the libraries research about these

spaces and their relations with classical mathematics and theoretical physics. The

purpose of this book is to survey this theory, also to establish its relation with

physics and cosmology. Many results and materials included in this book are now

inspired by the Smarandache’s notion.

Now we outline the content of this book. Three parts are included in this book

altogether.

Part one consists of Chapters 1 and 2 except the Section 1.4, may be called

Algebraic multi-spaces. In Chapter 1, we introduce various algebraic Smarandache

multi-spaces including those such as multi-groups, multi-rings, multi-vector spaces,

multi-metric spaces, multi-operation systems and multi-manifolds and get some el-

ementary results on these multi-spaces.
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Chapter 2 concentrates on multi-spaces on graphs. In an algebraic view, each

multi-space is a directed graph and each graph is also a multi-space. Many new

conceptions are introduced in this chapter, such as multi-voltage graphs, graphs in

an n-manifold, multi-embeddings in an n-manifold, Cayley graphs of a multi-group

and many results in graph theory, combinatorial map theory are generalized. These

new conceptions and results enlarge the research fields of combinatorics. A graph

phase is introduced and discussed in Section 2.5, which is a generalization of a

particle and can be used to construct a model of p-branes in Chapter 6.

The second part of this book consists of Chapters 3-5 including the Section

1.4 concentrates on these multi-metric spaces, particularly, these Smarandache ge-

ometries. In fact, nearly all geometries, such as Finsler geometry, Riemann geom-

etry, Euclid geometry and Lobachevshy-Bolyai-Gauss geometry are particular case

of Smarandache geometries. In Chapter 3, we introduce a new kind geometry,

i.e., map geometries, which is a generalization of Iseri’s s-manifolds. By applying

map geometries with or without boundary, paradoxist geometries, non-geometries,

counter-projective geometries and anti-geometries are constructed. The enumeration

of map geometries with or without boundary underlying a graph are also gotten in

this chapter.

Chapter 4 is on planar map geometries. Those fundamental elements such as

points, lines, polygons, circles and line bundles are discussed. Since we can investi-

gate planar map geometries by means of Euclid plane geometry, some conceptions

for general map geometries are extend, which enables us to get some interesting

results. Those measures such as angles, curvatures, areas are also discussed.

Chapter 5 is a generalization of these planar map geometries. We introduce the

conception of pseudo-planes, which can be seen as the limitation case of planar map

geometries when the diameter of each face tends to zero but more general than planar

map geometries. On a pseudo-plane geometry, a straight line does not always exist

again. These pseudo-plane geometries also relate with differential equations and

plane integral curves. Conditions for existing singular points of differential equations

are gotten. In Section 5.4, we define a kind of even more general spaces called

metric pseudo-spaces or bounded metric pseudo-spaces. Applying these bounded or

unbounded metric pseudo-spaces, bounded pseudo-plane geometries, pseudo-surface

geometries, pseudo-space geometries and pseudo-manifold geometries are defined.
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By choice different smooth function ω, such as ω = a Finsler or a Riemann norm,

we immediately get the Finsler geometry or Riemann geometry.

For the further research of interested readers, each of the final sections of Chap-

ters 1 − 5 contains a number of open problems and conjectures which can be seen

as additional materials.

Part three only consists of Chapter 6 which is concentrated on applications

of multi-spaces to theoretical physics. The view that every observation of human

beings for cosmos is only a pseudo-face of our space is discussed in the first section

by a mathematical manner. A brief introduction to Einstein’s relative theory and

M-theory is in Section 6.2 and 6.3.1. By a view of multi-spaces, models for p-branes

and cosmos are constructed in Section 6.3. It is very interesting that the multi-

space model of cosmos contains the shelf structure as a special case. The later is a

fundamental structure in the modern algebraic geometry in recent years.

This book is began to write in the July, 2005 when I finished my post-doctor

report: On automorphisms of maps, surfaces and Smarandache geometries for the

Chinese Academy of Sciences. Many colleagues and friends of mine have given me

enthusiastic support and endless helps in preparing this book. Without their help,

this book will never appears today. Here I must mention some of them. On the

first, I would like to give my sincerely thanks to Dr.Perze for his encourage and

endless help. Without his encourage and suggestion, I would do some else works,

can not investigate multi-spaces and finish this book. Second, I would like to thank

Prof. Feng Tian, Yanpei Liu and Jiyi Yan for them interested in my post-doctor

report: On automorphisms of maps, surfaces and Smarandache geometries. Their

encourage and warmhearted support advance this book. Thanks are also given

to Professor Mingyao Xu, Xiaodong Hu, Yanxun Chang, Han Ren, Rongxia Hao,

Weili He and Erling Wei for their kindly helps and often discussing problems in

mathematics altogether. Of course, I am responsible for the correctness all of these

materials presented here. Any suggestions for improving this book and solutions for

open problems in this book are welcome.

L.F.Mao

AMSS, Beijing

February, 2006
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Chapter 1 Smarandache Multi-Spaces

The notion of multi-spaces was introduced by Smarandache in 1969, see his article

uploaded to arXiv [86] under his idea of hybrid mathematics: combining different

fields into a unifying field([85]), which is more closer to our real life world. Today,

this idea is widely accepted by the world of sciences. For mathematics, a definite or

an exact solution under a given condition is not the only object for mathematician.

New creation power has emerged and new era for mathematics has come now. Ap-

plying the Smarandache’s notion, this chapter concentrates on constructing various

multi-spaces by algebraic structures, such as those of groups, rings, fields, vector

spaces, · · ·,etc., also by metric spaces, which are more useful for constructing multi-

voltage graphs, maps and map geometries in the following chapters.

§1.1 Sets

1.1.1. Sets

A set Ξ is a collection of objects with some common property P , denoted by

Ξ = {x|x has property P},

where, x is said an element of the set Ξ, denoted by x ∈ Ξ. For an element y not

possessing the property P , i.e., not an element in the set Ξ, we denote it by y 6∈ Ξ.

The cardinality (or the number of elements if Ξ is finite ) of a set Ξ is denoted

by |Ξ|.
Some examples of sets are as follows.
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A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

B = {p| p is a prime number};

C = {(x, y)|x2 + y2 = 1};

D = {the cities in the world}.

The sets A and D are finite with |A| = 10 and |D| < +∞, but these sets B

and C are infinite.

Two sets Ξ1 and Ξ2 are said to be identical if and only if for ∀x ∈ Ξ1, we have

x ∈ Ξ2 and for ∀x ∈ Ξ2, we also have x ∈ Ξ1. For example, the following two sets

E = {1, 2,−2} and F = { x |x3 − x2 − 4x+ 4 = 0}

are identical since we can solve the equation x3−x2−4x+4 = 0 and get the solutions

x = 1, 2 or −2. Similarly, for the cardinality of a set, we know the following result.

Theorem 1.1.1([6]) For sets Ξ1,Ξ2, |Ξ1| = |Ξ2| if and only if there is an 1 − 1

mapping between Ξ1 and Ξ2.

According to this theorem, we know that |B| 6= |C| although they are infinite.

Since B is countable, i.e., there is an 1 − 1 mapping between B and the natural

number set N = {1, 2, 3, · · · , n, · · ·}, however C is not.

Let A1, A2 be two sets. If for ∀a ∈ A1 ⇒ a ∈ A2, then A1 is said to be a subset

of A2, denoted by A1 ⊆ A2. If a set has no elements, we say it an empty set, denoted

by ∅.

Definition 1.1.1 For two sets Ξ1,Ξ2, two operations�⋃�and�⋂�on Ξ1,Ξ2 are

defined as follows:

Ξ1

⋃
Ξ2 = {x|x ∈ Ξ1 or x ∈ Ξ2},

Ξ1

⋂
Ξ2 = {x|x ∈ Ξ1 and x ∈ Ξ2}



Chapter 1 Smarandache Multi-Spaces 3

and Ξ1 minus Ξ2 is defined by

Ξ1 \ Ξ2 = {x|x ∈ Ξ1 but x 6∈ Ξ2}.

For the sets A and E, calculation shows that

A
⋃
E = {1, 2,−2, 3, 4, 5, 6, 7, 8, 9, 10},

A
⋂
E = {1, 2}

and

A \ E = {3, 4, 5, 6, 7, 8, 9, 10},

E \ A = {−2}.

For a set Ξ and H ⊆ Ξ, the set Ξ\H is said the complement of H in Ξ, denoted

by H(Ξ). We also abbreviate it to H if each set considered in the situation is a

subset of Ξ = Ω, i.e., the universal set.

These operations defined in Definition 1.1.1 observe the following laws.

L1 Itempotent law. For ∀S ⊆ Ω,

A
⋃
A = A

⋂
A = A.

L2 Commutative law. For ∀U, V ⊆ Ω,

U
⋃
V = V

⋃
U ; U

⋂
V = V

⋂
U.

L3 Associative law. For ∀U, V,W ⊆ Ω,

U
⋃

(V
⋃
W ) = (U

⋃
V )

⋃
W ; U

⋂
(V

⋂
W ) = (U

⋂
V )

⋂
W.

L4 Absorption law. For ∀U, V ⊆ Ω,

U
⋂

(U
⋃
V ) = U

⋃
(U

⋂
V ) = U.
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L5 Distributive law. For ∀U, V,W ⊆ Ω,

U
⋃

(V
⋂
W ) = (U

⋃
V )

⋂
(U

⋃
W ); U

⋂
(V

⋃
W ) = (U

⋂
V )

⋃
(U

⋂
W ).

L6 Universal bound law. For ∀U ⊆ Ω,

∅
⋂
U = ∅, ∅

⋃
U = U ; Ω

⋂
U = U,Ω

⋃
U = Ω.

L7 Unary complement law. For ∀U ⊆ Ω,

U
⋂
U = ∅; U

⋃
U = Ω.

A set with two operations�⋂�and�⋃�satisfying the laws L1 ∼ L7 is said to

be a Boolean algebra. Whence, we get the following result.

Theorem 1.1.2 For any set U , all its subsets form a Boolean algebra under the

operations�⋂�and�⋃�.

1.1.2 Partially order sets

For a set Ξ, define its Cartesian product to be

Ξ× Ξ = {(x, y)|∀x, y ∈ Ξ}.

A subset R ⊆ Ξ×Ξ is called a binary relation on Ξ. If (x, y) ∈ R, we write xRy.

A partially order set is a set Ξ with a binary relation���such that the following

laws hold.

O1 Reflective law. For x ∈ Ξ, xRx.

O2 Antisymmetry law. For x, y ∈ Ξ, xRy and yRx⇒ x = y.

O3 Transitive law. For x, y, z ∈ Ξ, xRy and yRz ⇒ xRz.

A partially order set Ξ with a binary relation ��� is denoted by (Ξ,�).

Partially ordered sets with a finite number of elements can be conveniently repre-

sented by a diagram in such a way that each element in the set Ξ is represented by

a point so placed on the plane that a point a is above another point b if and only
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if b ≺ a. This kind of diagram is essentially a directed graph (see also Chapter 2

in this book). In fact, a directed graph is correspondent with a partially set and

vice versa. Examples for the partially order sets are shown in Fig.1.1 where each

diagram represents a finite partially order set.

Fig.1.1

An element a in a partially order set (Ξ,�) is called maximal (or minimal) if

for ∀x ∈ Ξ, a � x ⇒ x = a (or x � a ⇒ x = a). The following result is obtained

by the definition of partially order sets and the induction principle.

Theorem 1.1.3 Any finite non-empty partially order set (Ξ,�) has maximal and

minimal elements.

A partially order set (Ξ,�) is an order set if for any ∀x, y ∈ Ξ, there must be

x � y or y � x. It is obvious that any partially order set contains an order subset,

finding this fact in Fig.1.1.

An equivalence relation R ⊆ Ξ× Ξ on a set Ξ is defined by

R1 Reflective law. For x ∈ Ξ, xRx.

R2 Symmetry law. For x, y ∈ Ξ, xRy ⇒ yRx

R3 Transitive law. For x, y, z ∈ Ξ, xRy and yRz ⇒ xRz.

For a set Ξ with an equivalence relation R, we can classify elements in Ξ by R

as follows:

R(x) = {y| y ∈ Ξ and yRx }.

Then, we get the following useful result for the combinatorial enumeration.

Theorem 1.1.4 For a finite set Ξ with an equivalence R, ∀x, y ∈ Ξ, if there is an

bijection ς between R(x) and R(y), then the number of equivalence classes under R
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is

|Ξ|
|R(x)| ,

where x is a chosen element in Ξ.

Proof Notice that there is an bijection ς between R(x) and R(y) for ∀x, y ∈ Ξ.

Whence, |R(x)| = |R(y)|. By definition, for ∀x, y ∈ Ξ, R(x)
⋂
R(y) = ∅ or R(x) =

R(y). Let T be a representation set of equivalence classes, i.e., choice one element

in each class. Then we get that

|Ξ| =
∑

x∈T
|R(x)|

= |T ||R(x)|.

Whence, we know that

|T | =
|Ξ|
|R(x)| . ♮

1.1.3 Neutrosophic set

Let [0, 1] be a closed interval. For three subsets T, I, F ⊆ [0, 1] and S ⊆ Ω, define a

relation of an element x ∈ Ω with the subset S to be x(T, I, F ), i,e., the confidence

set for x ∈ S is T , the indefinite set is I and fail set is F . A set S with three

subsets T, I, F is said to be a neutrosophic set ([85]). We clarify the conception of

neutrosophic sets by abstract set theory as follows.

Let Ξ be a set and A1, A2, · · · , Ak ⊆ Ξ. Define 3k functions fx1 , f
x
2 , · · · , fxk by

fxi : Ai → [0, 1], 1 ≤ i ≤ k, where x = T, I, F . Denote by (Ai; f
T
i , f

I
i , f

F
i ) the subset

Ai with three functions fTi , f
I
i , f

F
i , 1 ≤ i ≤ k. Then

k⋃

i=1

(Ai; f
T
i , f

I
i , f

F
i )

is a union of neutrosophic sets. Some extremal cases for this union is in the following,

which convince us that neutrosophic sets are a generalization of classical sets.

Case 1 fTi = 1, f Ii = fFi = 0 for i = 1, 2, · · · , k.
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In this case,

k⋃

i=1

(Ai; f
T
i , f

I
i , f

F
i ) =

k⋃

i=1

Ai.

Case 2 fTi = f Ii = 0, fFi = 1 for i = 1, 2, · · · , k.

In this case,

k⋃

i=1

(Ai; f
T
i , f

I
i , f

F
i ) =

k⋃

i=1

Ai.

Case 3 There is an integer s such that fTi = 1 f Ii = fFi = 0, 1 ≤ i ≤ s but

fTj = f Ij = 0, fFj = 1 for s+ 1 ≤ j ≤ k.

In this case,

k⋃

i=1

(Ai, fi) =
s⋃

i=1

Ai
⋃ k⋃

i=s+1

Ai.

Case 4 There is an integer l such that fTl 6= 1 or fFl 6= 1.

In this case, the union is a general neutrosophic set. It can not be represented

by abstract sets.

If A
⋂
B = ∅, define the function value of a function f on the union set A

⋃
B

to be

f(A
⋃
B) = f(A) + f(B)

and

f(A
⋂
B) = f(A)f(B)

.

Then if A
⋂
B 6= ∅, we get that

f(A
⋃
B) = f(A) + f(B)− f(A)f(B).

Generally, by applying the Inclusion-Exclusion Principle to a union of sets, we

get the following formulae.
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f(
l⋂

i=1

Ai) =
l∏

i=1

f(Ai),

f(
k⋃

i=1

Ai) =
k∑

j=1

(−1)j−1
j∏

s=1

f(As).

§1.2 Algebraic Structures

In this section, we recall some conceptions and results without proofs in algebra, such

as, these groups, rings, fields, vectors · · ·, all of these can be viewed as a sole-space

system.

1.2.1. Groups

A set G with a binary operation�◦�, denoted by (G; ◦), is called a group if x◦y ∈ G
for ∀x, y ∈ G such that the following conditions hold.

(i) (x ◦ y) ◦ z = x ◦ (y ◦ z) for ∀x, y, z ∈ G;

(ii) There is an element 1G, 1G ∈ G such that x ◦ 1G = x;

(iii) For ∀x ∈ G, there is an element y, y ∈ G, such that x ◦ y = 1G.

A group G is abelian if the following additional condition holds.

(iv) For ∀x, y ∈ G, x ◦ y = y ◦ x.
A set G with a binary operation�◦�satisfying the condition (i) is called a

semigroup. Similarly, if it satisfies the conditions (i) and (iv), then it is called a

abelian semigroup.

Some examples of groups are as follows.

(1) (R ; +) and (R ; ·), where R is the set of real numbers.

(2) (U2; ·), where U2 = {1,−1} and generally, (Un; ·), where Un = {ei 2πkn , k =

1, 2, · · · , n}.
(3) For a finite set X, the set SymX of all permutations on X with respect to

permutation composition.

The cases (1) and (2) are abelian group, but (3) is not in general.

A subset H of a group G is said to be subgroup if H is also a group under the

same operation in G, denoted by H ≺ G. The following results are well-known.
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Theorem 1.2.1 A non-empty subset H of a group (G ; ◦) is a group if and only if

for ∀x, y ∈ H, x ◦ y ∈ H.

Theorem 1.2.2(Lagrange theorem) For any subgroup H of a finite group G, the

order |H| is a divisor of |G|.

For ∀x ∈ G, denote the set {xh|∀h ∈ H} by xH and {hx|∀h ∈ H} by Hx. A

subgroup H of a group (G ; ◦) is normal, denoted by H⊳G, if for ∀x ∈ G, xH = Hx.

For two subsets A,B of a group (G ; ◦), define their product A ◦B by

A ◦B = {a ◦ b| ∀a ∈ A, ∀b ∈ b }.

For a subgroup H,H ⊳ G, it can be shown that

(xH) ◦ (yH) = (x ◦ y)H and (Hx) ◦ (Hy) = H(x ◦ y).

for ∀x, y ∈ G. Whence, the operation ”◦” is closed in the sets {xH|x ∈ G} =

{Hx|x ∈ G}, denote this set by G/H . We know G/H is also a group by the facts

(xH ◦ yH) ◦ zH = xH ◦ (yH ◦ zH), ∀x, y, z ∈ G

and

(xH) ◦H = xH, (xH) ◦ (x−1H) = H.

For two groups G,G′, let σ be a mapping from G to G′. If

σ(x ◦ y) = σ(x) ◦ σ(y),

for ∀x, y ∈ G, then call σ a homomorphism from G to G′. The image Imσ and the

kernel Kerσ of a homomorphism σ : G→ G′ are defined as follows:

Imσ = Gσ = {σ(x)| ∀x ∈ G },

Kerσ = {x| ∀x ∈ G, σ(x) = 1G′ }.

A one to one homomorphism is called a monomorphism and an onto homomor-

phism an epimorphism. A homomorphism is called a bijection if it is one to one
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and onto. Two groups G,G′ are said to be isomorphic if there exists a bijective

homomorphism σ between them, denoted by G ∼= G′.

Theorem 1.2.3 Let σ : G→ G′ be a homomorphism of group. Then

(G, ◦)/Kerσ ∼= Imσ.

1.2.2. Rings

A set R with two binary operations�+�and�◦�, denoted by (R ; +, ◦), is said to

be a ring if x + y ∈ R, x ◦ y ∈ R for ∀x, y ∈ R such that the following conditions

hold.

(i) (R ; +) is an abelian group;

(ii) (R ; ◦) is a semigroup;

(iii) For ∀x, y, z ∈ R, x ◦ (y + z) = x ◦ y + x ◦ z and (x+ y) ◦ z = x ◦ z + y ◦ z.

Some examples of rings are as follows.

(1) (Z ; +, ·), where Z is the set of integers.

(2) (pZ ; +, ·), where p is a prime number and pZ = {pn|n ∈ Z}.
(3) (Mn(Z) ; +, ·), where Mn(Z) is a set of n × n matrices with each entry

being an integer, n ≥ 2.

For a ring (R ; +, ◦), if x◦y = y◦x for ∀x, y ∈ R, then it is called a commutative

ring. The examples of (1) and (2) are commutative, but (3) is not.

If R contains an element 1R such that for ∀x ∈ R, x ◦ 1R = 1R ◦ x = x, we call

R a ring with unit. All of these examples of rings in the above are rings with unit.

For (1), the unit is 1, (2) is Z and (3) is In×n.

The unit of (R ; +) in a ring (R ; +, ◦) is called zero, denoted by 0. For ∀a, b ∈ R,

if

a ◦ b = 0,

then a and b are called divisors of zero. In some rings, such as the (Z ; +, ·) and

(pZ ; +, ·), there must be a or b be 0. We call it only has a trivial divisor of zero.

But in the ring (pqZ ; +, ·) with p, q both being prime, since
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pZ · qZ = 0

and pZ 6= 0, qZ 6= 0, we get non-zero divisors of zero, which is called to have non-

trivial divisors of zero. The ring (Mn(Z); +, ·) also has non-trivial divisors of zero,

since



1 1 · · · 1

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0



·




0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

1 1 · · · 1




= On×n.

A division ring is a ring which has no non-trivial divisors of zero and an integral

domain is a commutative ring having no non-trivial divisors of zero.

A body is a ring (R ; +, ◦) with a unit, |R| ≥ 2 and (R \ {0}; ◦) is a group and

a field is a commutative body. The examples (1) and (2) of rings are fields. The

following result is well-known.

Theorem 1.2.4 Any finite integral domain is a field.

A non-empty subset R′ of a ring (R ; +, ◦) is called a subring if (R′ ; +, ◦) is also

a ring. The following result for subrings can be obtained immediately by definition.

Theorem 1.2.5 For a subset R′ of a ring (R ; +, ◦), if

(i) (R′ ; +) is a subgroup of (R ; +),

(ii) R′ is closed under the operation�◦�,

then (R′ ; +, ◦) is a subring of (R ,+.◦).

An ideal I of a ring (R ; +, ◦) is a non-void subset of R with properties:

(i) (I ; +) is a subgroup of (R ; +);

(ii) a ◦ x ∈ I and x ◦ a ∈ I for ∀a ∈ I, ∀x ∈ R.

Let (R ; +, ◦) be a ring. A chain

R ≻ R1 ≻ · · · ≻ Rl = {1◦}

satisfying that Ri+1 is an ideal of Ri for any integer i, 1 ≤ i ≤ l, is called an ideal

chain of (R ,+, ◦). A ring whose every ideal chain only has finite terms is called an

Artin ring. Similar to normal subgroups, consider the set x+I in the group (R ; +).
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Calculation shows that R/I = {x+ I| x ∈ R} is also a ring under these operations�+�and�◦�. Call it a quotient ring of R to I.

For two rings (R ; +, ◦), (R′ ; ∗, •), let ι be a mapping from R to R′. If

ι(x+ y) = ι(x) ∗ ι(y),

ι(x ◦ y) = ι(x) • ι(y),

for ∀x, y ∈ R, then ι is called a homomorphism from (R ; +, ◦) to (R′ ; ∗, •). Similar

to Theorem 2.3, we know that

Theorem 1.2.6 Let ι : R → R′ be a homomorphism from (R ; +, ◦) to (R′ ; ∗, •).
Then

(R ; +, ◦)/Kerι ∼= Imι.

1.2.3 Vector spaces

A vector space or linear space consists of the following:

(i) a field F of scalars;

(ii) a set V of objects, called vectors;

(iii) an operation, called vector addition, which associates with each pair of

vectors a,b in V a vector a + b in V , called the sum of a and b, in such a way that

(1) addition is commutative, a + b = b + a;

(2) addition is associative, (a + b) + c = a + (b + c);

(3) there is a unique vector 0 in V , called the zero vector, such that a + 0 = a

for all a in V ;

(4) for each vector a in V there is a unique vector−a in V such that a + (−a) = 0;

(iv) an operation�·�, called scalar multiplication, which associates with each

scalar k in F and a vector a in V a vector k · a in V , called the product of k with

a, in such a way that

(1) 1 · a = a for every a in V ;

(2) (k1k2) · a = k1(k2 · a);

(3) k · (a + b) = k · a + k · b;
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(4) (k1 + k2) · a = k1 · a + k2 · a.
We say that V is a vector space over the field F , denoted by (V ; +, ·).

Some examples of vector spaces are as follows.

(1) The n-tuple space Rn over the real number field R. Let V be the set

of all n-tuples (x1, x2, · · · , xn) with xi ∈ R, 1 ≤ i ≤ n. If ∀a = (x1, x2, · · · , xn),
b = (y1, y2, · · · , yn) ∈ V , then the sum of a and b is defined by

a + b = (x1 + y1, x2 + y2, · · · , xn + yn).

The product of a real number k with a is defined by

ka = (kx1, kx2, · · · , kxn).

(2) The space Qm×n of m× n matrices over the rational number field Q. Let

Qm×n be the set of all m× n matrices over the natural number field Q. The sum of

two vectors A and B in Qm×n is defined by

(A+B)ij = Aij +Bij,

and the product of a rational number p with a matrix A is defined by

(pA)ij = pAij.

A subspace W of a vector space V is a subset W of V which is itself a vector

space over F with the operations of vector addition and scalar multiplication on V .

The following result for subspaces is known in references [6] and [33].

Theorem 1.2.7 A non-empty subset W of a vector space (V ; +, ·) over the field F

is a subspace of (V ; +, ·) if and only if for each pair of vectors a,b in W and each

scalar k in F the vector k · a + b is also in W .

Therefore, the intersection of two subspaces of a vector space V is still a sub-

space of V . Let U be a set of some vectors in a vector space V over F . The subspace

spanned by U is defined by

〈U〉 = { k1 · a1 + k2 · a2 + · · ·+ kl · al | l ≥ 1, ki ∈ F, and aj ∈ S, 1 ≤ i ≤ l }.
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A subset W of V is said to be linearly dependent if there exist distinct vectors

a1, a2, · · · , an in W and scalars k1, k2, · · · , kn in F , not all of which are 0, such that

k1 · a1 + k2 · a2 + · · ·+ kn · an = 0.

For a vector space V , its basis is a linearly independent set of vectors in V

which spans the space V . Call a space V finite-dimensional if it has a finite basis.

Denoted by dimV the number of elements in a basis of V .

For two subspaces U,W of a space V , the sum of subspaces U,W is defined by

U +W = { u + w | u ∈ U, w ∈W }.

Then, we have results in the following ([6][33]).

Theorem 1.2.8 Any finite-dimensional vector space V over a field F is isomorphic

to one and only one space F n, where n = dimV .

Theorem 1.2.9 If W1 and W2 are finite-dimensional subspaces of a vector space

V , then W1 +W2 is finite-dimensional and

dimW1 + dimW2 = dim(W1

⋂
W2) + dim(W1 +W2).

§1.3 Algebraic Multi-Spaces

The notion of a multi-space was introduced by Smarandache in 1969 ([86]). Al-

gebraic multi-spaces had be researched in references [58] − [61] and [103]. Vas-

antha Kandasamy researched various bispaces in [101], such as those of bigroups,

bisemigroups, biquasigroups, biloops, bigroupoids, birings, bisemirings, bivectors,

bisemivectors, bilnear-rings, · · ·, etc., considered two operation systems on two dif-

ferent sets.

1.3.1. Algebraic multi-spaces

Definition 1.3.1 For any integers n, i, n ≥ 2 and 1 ≤ i ≤ n, let Ai be a set with

ensemble of law Li, and the intersection of k sets Ai1 , Ai2 , · · · , Aik of them constrains

the law I(Ai1 , Ai2, · · · , Aik). Then the union Ã
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Ã =
n⋃

i=1

Ai

is called a multi-space.

Notice that in this definition, each law may be contain more than one binary

operation. For a binary operation�×�, if there exists an element 1l× (or 1r×) such

that

1l× × a = a or a× 1r× = a

for ∀a ∈ Ai, 1 ≤ i ≤ n, then 1l× (1r×) is called a left (right) unit. If 1l× and 1r× exist

simultaneously, then there must be

1l× = 1l× × 1r× = 1r× = 1×.

Call 1× a unit of Ai.

Remark 1.3.1 In Definition 1.3.1, the following three cases are permitted:

(i) A1 = A2 = · · · = An, i.e., n laws on one set.

(ii) L1 = L2 = · · · = Ln, i.e., n set with one law

(iii) there exist integers s1, s2, · · · , sl such that I(sj) = ∅, 1 ≤ j ≤ l, i.e., some

laws on the intersections may be not existed.

We give some examples for Definition 1.3.1.

Example 1.3.1 Take n disjoint two by two cyclic groups C1, C2, · · · , Cn, n ≥ 2

with

C1 = (〈a〉 ; +1), C2 = (〈b〉 ; +2), · · · , Cn = (〈c〉 ; +n).

Where�+1,+2, · · · ,+n�are n binary operations. Then their union

C̃ =
n⋃

i=1

Ci

is a multi-space with the empty intersection laws. In this multi-space, for ∀x, y ∈ C̃,

if x, y ∈ Ck for some integer k, then we know x +k y ∈ Ck. But if x ∈ Cs, y ∈ Ct
and s 6= t, then we do not know which binary operation between them and what is

the resulting element corresponds to them.
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A general multi-space of this kind is constructed by choosing n algebraic systems

A1, A2, · · · , An satisfying that

Ai
⋂
Aj = ∅ and O(Ai)

⋂
O(Aj) = ∅,

for any integers i, j, i 6= j, 1 ≤ i, j ≤ n, where O(Ai) denotes the binary operation

set in Ai. Then

Ã =
n⋃

i=1

Ai

with O(Ã) =
n⋃
i=1

O(Ai) is a multi-space. This kind of multi-spaces can be seen as a

model of spaces with a empty intersection.

Example 1.3.2 Let (G ; ◦) be a group with a binary operation�◦�. Choose n

different elements h1, h2, · · · , hn, n ≥ 2 and make the extension of the group (G ; ◦)
by h1, h2, · · · , hn respectively as follows:

(G
⋃{h1};×1), where the binary operation×1 = ◦ for elements in G, otherwise,

new operation;

(G
⋃{h2};×2), where the binary operation×2 = ◦ for elements in G, otherwise,

new operation;

· · · · · · · · · · · · · · · · · · ;
(G

⋃{hn};×n), where the binary operation×n = ◦ for elements inG, otherwise,

new operation.

Define

G̃ =
n⋃

i=1

(G
⋃
{hi};×i).

Then G̃ is a multi-space with binary operations�×1,×2, · · · ,×n�. In this multi-

space, for ∀x, y ∈ G̃, unless the exception cases x = hi, y = hj and i 6= j, we know

the binary operation between x and y and the resulting element by them.

For n = 3, this multi-space can be shown as in Fig.1.2, in where the central

circle represents the group G and each angle field the extension of G. Whence, we

call this kind of multi-space a fan multi-space.
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Fig.1.2

Similarly, we can also use a ring R to get fan multi-spaces. For example, let

(R ; +, ◦) be a ring and let r1, r2, · · · , rs be two by two different elements. Make

these extensions of (R ; +, ◦) by r1, r2, · · · , rs respectively as follows:

(R
⋃{r1}; +1,×1), where binary operations +1 = +, ×1 = ◦ for elements in

R, otherwise, new operation;

(R
⋃{r2}; +2,×2), where binary operations +2 = +, ×2 = ◦ for elements in

R, otherwise, new operation;

· · · · · · · · · · · · · · · · · · ;
(R

⋃{rs}; +s,×s), where binary operations +s = +, ×s = ◦ for elements in

R, otherwise, new operation.

Define

R̃ =
s⋃

j=1

(R
⋃
{rj}; +j,×j).

Then R̃ is a fan multi-space with ring-like structure. Also we can define a fan

multi-space with field-like, vector-like, semigroup-like,· · ·, etc. structures.

These multi-spaces constructed in Examples 1.3.1 and 1.3.2 are not completed,

i.e., there exist some elements in this space not have binary operation between

them. In algebra, we wish to construct a completed multi-space, i.e., there is a

binary operation between any two elements at least and their resulting is still in this

space. The following example is a completed multi-space constructed by applying

Latin squares in the combinatorial design.

Example 1.3.3 Let S be a finite set with |S| = n ≥ 2. Constructing an n×n Latin

square by elements in S, i.e., every element just appears one time on its each row

and each column. Now choose k Latin squares M1,M2, · · · ,Mk, k ≤
n∏
s=1

s!.
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By a result in the reference [83], there are at least
n∏
s=1

s! distinct n × n Latin

squares. Whence, we can always choose M1,M2, · · · ,Mk distinct two by two. For a

Latin square Mi, 1 ≤ i ≤ k, define an operation�×i�as follows:

×i : (s, f) ∈ S × S → (Mi)sf .

The case of n = 3 is explained in the following. Here S = {1, 2, 3} and there

are 2 Latin squares L1, L2 as follows:

L1 =




1 2 3

2 3 1

3 1 2


 L2 =




1 2 3

3 1 2

2 3 1




.

Therefore, by the Latin square L1, we get an operation�×1�as in table 1.3.1.

×1 1 2 3

1 1 2 3

2 2 3 1

3 3 1 2

table 1.3.1

and by the Latin square L2, we also get an operation�×2�as in table 1.3.2.

×2 1 2 3

1 1 2 3

2 3 1 2

3 2 3 1

table 1.3.2

For ∀x, y, z ∈ S and two operations�×i�and�×j�, 1 ≤ i, j ≤ k, define

x×i y ×j z = (x×i y)×j z.

For example, in the case n = 3, we know that

1×1 2×2 3 = (1×2)×2 3 = 2×2 3 = 2;

and
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2×1 3×2 2 = (2×1 3)×2 2 = 1×2 3 = 3.

Whence S is a completed multi-space with k operations.

The following example is also a completed multi-space constructed by an alge-

braic system.

Example 1.3.4 For constructing a completed multi-space, let (S ; ◦) be an algebraic

system, i.e., a ◦ b ∈ S for ∀a, b ∈ S. Whence, we can take C,C ⊆ S being a cyclic

group. Now consider a partition of S

S =
m⋃

k=1

Gk

with m ≥ 2 such that Gi

⋂
Gj = C for ∀i, j, 1 ≤ i, j ≤ m.

For an integer k, 1 ≤ k ≤ m, assume Gk = {gk1, gk2, · · · , gkl}. We define an

operation�×k�on Gk as follows, which enables (Gk;×k) to be a cyclic group.

gk1 ×k gk1 = gk2,

gk2 ×k gk1 = gk3,

· · · · · · · · · · · · · · · · · · ,

gk(l−1) ×k gk1 = gkl,

and

gkl) ×k gk1 = gk1.

Then S =
m⋃
k=1

Gk is a completed multi-space with m+ 1 operations.

The approach used in Example 1.3.4 enables us to construct a complete multi-

spaces Ã =
n⋃
i=1

with k operations for k ≥ n+1, i.e., the intersection law I(A1, A2, · · · , An) 6=
∅.

Definition 1.3.2 A mapping f on a set X is called faithful if f(x) = x for ∀x ∈ X,

then f = 1X, the unit mapping on X fixing each element in X.
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Notice that if f is faithful and f1(x) = f(x) for ∀x ∈ X, then f−1
1 f = 1X , i.e.,

f1 = f .

For each operation�×�and a chosen element g in a subspace Ai, Ai ⊂ Ã, 1 ≤
i ≤ n, there is a left-mapping f lg : Ai → Ai defined by

f lg : a→ g × a, a ∈ Ai.

Similarly, we can also define the right-mapping f rg .

We adopt the following convention for multi-spaces in this book.

Convention 1.3.1 Each operation�×�in a subset Ai, Ai ⊂ Ã, 1 ≤ i ≤ n is faithful,

i.e., for ∀g ∈ Ai, ς : g → f lg ( or τ : g → f rg ) is faithful.

Define the kernel Kerς of a mapping ς by

Kerς = {g|g ∈ Ai and ς(g) = 1Ai}.

Then Convention 1.3.1 is equivalent to the next convention.

Convention 1.3.2 For each ς : g → f lg ( or ς : g → f rg ) induced by an operation�×�has kernel

Kerς = {1l×}

if 1l× exists. Otherwise, Kerς = ∅.

We have the following results for multi-spaces Ã.

Theorem 1.3.1 For a multi-space Ã and an operation�×�, the left unit 1l× and

right unit 1r× are unique if they exist.

Proof If there are two left units 1l×, I
l
× in a subset Ai of a multi-space Ã, then

for ∀x ∈ Ai, their induced left-mappings f l
1l×

and f l
Il×

satisfy

f l1l×
(x) = 1l× × x = x

and

f lIl×
(x) = I l× × x = x.
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Therefore, we get that f l
1l×

= f l
Il×

. Since the mappings ς1 : 1l× → f l
1l×

and

ς2 : I l× → f l
Il×

are faithful, we know that

1l× = I l×.

Similarly, we can also prove that the right unit 1r× is also unique. ♮

For two elements a, b of a multi-space Ã, if a × b = 1l×, then b is called a

left-inverse of a. If a × b = 1r×, then a is called a right-inverse of b. Certainly, if

a× b = 1×, then a is called an inverse of b and b an inverse of a.

Theorem 1.3.2 For a multi-space Ã, a ∈ Ã, the left-inverse and right-inverse of a

are unique if they exist.

Proof Notice that κa : x → ax is faithful, i.e., Kerκ = {1l×} for 1l× existing

now.

If there exist two left-inverses b1, b2 in Ã such that a× b1 = 1l× and a× b2 = 1l×,

then we know that

b1 = b2 = 1l×.

Similarly, we can also prove that the right-inverse of a is also unique. ♮

Corollary 1.3.1 If�×�is an operation of a multi-space Ã with unit 1×, then the

equation

a× x = b

has at most one solution for the indeterminate x.

Proof According to Theorem 1.3.2, we know there is at most one left-inverse

a1 of a such that a1 × a = 1×. Whence, we know that

x = a1 × a× x = a1 × b. ♮

We also get a consequence for solutions of an equation in a multi-space by this

result.

Corollary 1.3.2 Let Ã be a multi-space with a operation set O(Ã). Then the

equation
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a ◦ x = b

has at most o(Ã) solutions, where�◦�is any binary operation of Ã.

Two multi-spaces Ã1, Ã2 are said to be isomorphic if there is a one to one

mapping ζ : Ã1 → Ã2 such that for ∀x, y ∈ Ã1 with binary operation �×�,

ζ(x), ζ(y) in Ã2 with binary operation�◦�satisfying the following condition

ζ(x× y) = ζ(x) ◦ ζ(y).

If Ã1 = Ã2 = Ã, then an isomorphism between Ã1 and Ã2 is called an automorphism

of Ã. All automorphisms of Ã form a group under the composition operation between

mappings, denoted by AutÃ.

Notice that AutZn ∼= Z∗
n, where Z∗

n is the group of reduced residue class modn

under the multiply operation ( [108] ). It is known that |AutZn| = ϕ(n), where ϕ(n)

is the Euler function. We know the automorphism group of the multi-space C̃ in

Example 1.3.1 is

AutC̃ = Sn[Z
∗
n].

Whence, |AutC̃| = ϕ(n)nn!. For Example 1.3.3, determining its automorphism

group is a more interesting problem for the combinatorial design ( see also the final

section in this chapter).

1.3.2 Multi-Groups

The conception of multi-groups is a generalization of classical algebraic structures,

such as those of groups, fields, bodies, · · ·, etc., which is defined in the following

definition.

Definition 1.3.3 Let G̃ =
n⋃
i=1

Gi be a complete multi-space with an operation set

O(G̃) = {×i, 1 ≤ i ≤ n}. If (Gi;×i) is a group for any integer i, 1 ≤ i ≤ n and

for ∀x, y, z ∈ G̃ and ∀×, ◦ ∈ O(G̃), × 6= ◦, there is one operation, for example the

operation�×�satisfying the distribution law to the operation�◦�provided all of

these operating results exist , i.e.,
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x× (y ◦ z) = (x× y) ◦ (x× z),

(y ◦ z)× x = (y × x) ◦ (z × x),

then G̃ is called a multi-group.

Remark 1.3.2 The following special cases for n = 2 convince us that multi-groups

are a generalization of groups, fields and bodies, · · ·, etc..

(i) If G1 = G2 = G̃, then G̃ is a body.

(ii) If (G1;×1) and (G2;×2) are commutative groups, then G̃ is a field.

For a multi-group G̃ and a subset G̃1 ⊂ G̃, if G̃1 is also a multi-group under a

subset O(G̃1), O(G̃1) ⊂ O(G̃), then G̃1 is called a sub-multi-group of G̃, denoted by

G̃1 � G̃. We get a criterion for sub-multi-groups in the following.

Theorem 1.3.3 For a multi-group G̃ =
n⋃
i=1

Gi with an operation set O(G̃) = {×i|1 ≤
i ≤ n}, a subset G̃1 ⊂ G̃ is a sub-multi-group of G̃ if and only if (G̃1

⋂
Gk;×k) is a

subgroup of (Gk;×k) or G̃1
⋂
Gk = ∅ for any integer k, 1 ≤ k ≤ n.

Proof If G̃1 is a multi-group with an operation set O(G̃1) = {×ij |1 ≤ j ≤ s} ⊂
O(G̃), then

G̃1 =
n⋃

i=1

(G̃1

⋂
Gi) =

s⋃

j=1

G′
ij

where G′
ij
� Gij and (Gij ;×ij ) is a group. Whence, if G̃1

⋂
Gk 6= ∅, then there exist

an integer l, k = il such that G̃1
⋂
Gk = G′

il
, i.e., (G̃1

⋂
Gk;×k) is a subgroup of

(Gk;×k).
Now if (G̃1

⋂
Gk;×k) is a subgroup of (Gk;×k) or G̃1

⋂
Gk = ∅ for any integer

k, let N denote the index set k with G̃1
⋂
Gk 6= ∅, then

G̃1 =
⋃

j∈N
(G̃1

⋂
Gj)

and (G̃1
⋂
Gj,×j) is a group. Since G̃1 ⊂ G̃, O(G̃1) ⊂ O(G̃), the associative law and

distribute law are true for the G̃1. Therefore, G̃1 is a sub-multi-group of G̃. ♮

For finite sub-multi-groups, we get a criterion as in the following.
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Theorem 1.3.4 Let G̃ be a finite multi-group with an operation set O(G̃) = {×i|1 ≤
i ≤ n}. A subset G̃1 of G̃ is a sub-multi-group under an operation subset O(G̃1) ⊂
O(G̃) if and only if (G̃1;×) is complete for each operation�×�in O(G̃1).

Proof Notice that for a multi-group G̃, its each sub-multi-group G̃1 is complete.

Now if G̃1 is a complete set under each operation�×i�in O(G̃1), we know that

(G̃1
⋂
Gi;×i) is a group or an empty set. Whence, we get that

G̃1 =
n⋃

i=1

(G̃1

⋂
Gi).

Therefore, G̃1 is a sub-multi-group of G̃ under the operation set O(G̃1). ♮

For a sub-multi-group H̃ of a multi-group G̃, g ∈ G̃, define

gH̃ = {g × h|h ∈ H̃,× ∈ O(H̃)}.

Then for ∀x, y ∈ G̃,

xH̃
⋂
yH̃ = ∅ or xH̃ = yH̃.

In fact, if xH̃
⋂
yH̃ 6= ∅, let z ∈ xH̃ ⋂

yH̃, then there exist elements h1, h2 ∈ H̃ and

operations�×i�and�×j�such that

z = x×i h1 = y ×j h2.

Since H̃ is a sub-multi-group, (H̃
⋂
Gi;×i) is a subgroup. Whence, there exists

an inverse element h−1
1 in (H̃

⋂
Gi;×i). We get that

x×i h1 ×i h−1
1 = y ×j h2 ×i h−1

1 .

i.e.,

x = y ×j h2 ×i h−1
1 .

Whence,

xH̃ ⊆ yH̃.

Similarly, we can also get that
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xH̃ ⊇ yH̃.

Thereafter, we get that

xH̃ = yH̃.

Denote the union of two set A and B by A
⊕
B if A

⋂
B = ∅. Then the following

result is implied in the previous proof.

Theorem 1.3.5 For any sub-multi-group H̃ of a multi-group G̃, there is a repre-

sentation set T , T ⊂ G̃, such that

G̃ =
⊕

x∈T
xH̃.

For the case of finite groups, since there is only one binary operation�×�and

|xH̃| = |yH̃| for any x, y ∈ G̃, We get a consequence in the following, which is just

the Lagrange theorem for finite groups.

Corollary 1.3.3(Lagrange theorem) For any finite group G, if H is a subgroup of

G, then |H| is a divisor of |G|.

For a multi-group G̃ and g ∈ G̃, denote all the binary operations associative

with g by
−−→
O(g) and the elements associative with the binary operation �×�by

G̃(×). For a sub-multi-group H̃ of G̃, × ∈ O(H̃), if

g × h× g−1 ∈ H̃,

for ∀h ∈ H̃ and ∀g ∈ G̃(×), then we call H̃ a normal sub-multi-group of G̃, denoted

by H̃ ⊳ G̃. If H̃ is a normal sub-multi-group of G̃, similar to the normal subgroups

of groups, it can be shown that g× H̃ = H̃ × g, where g ∈ G̃(×). Thereby we get a

result as in the following.

Theorem 1.3.6 Let G̃ =
n⋃
i=1

Gi be a multi-group with an operation set O(G̃) =

{×i|1 ≤ i ≤ n}. Then a sub-multi-group H̃ of G̃ is normal if and only if (H̃
⋂
Gi;×i)

is a normal subgroup of (Gi;×i) or H̃
⋂
Gi = ∅ for any integer i, 1 ≤ i ≤ n.
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Proof We have known that

H̃ =
n⋃

i=1

(H̃
⋂
Gi).

If (H̃
⋂
Gi;×i) is a normal subgroup of (Gi;×i) for any integer i, 1 ≤ i ≤ n,

then we know that

g ×i (H̃
⋂
Gi)×i g−1 = H̃

⋂
Gi

for ∀g ∈ Gi, 1 ≤ i ≤ n. Whence,

g ◦ H̃ ◦ g−1 = H̃

for ∀◦ ∈ O(H̃) and ∀g ∈
−−→
G̃(◦). That is, H̃ is a normal sub-multi-group of G̃.

Now if H̃ is a normal sub-multi-group of G̃, by definition we know that

g ◦ H̃ ◦ g−1 = H̃

for ∀◦ ∈ O(H̃) and ∀g ∈ G̃(◦). Not loss of generality, we assume that ◦ = ×k, then

we get

g ×k (H̃
⋂
Gk)×k g−1 = H̃

⋂
Gk.

Therefore, (H̃
⋂
Gk;×k) is a normal subgroup of (Gk,×k). Since the operation�◦�is

chosen arbitrarily, we know that (H̃
⋂
Gi;×i) is a normal subgroup of (Gi;×i) or an

empty set for any integer i, 1 ≤ i ≤ n. ♮

For a multi-group G̃ with an operation set O(G̃) = {×i| 1 ≤ i ≤ n}, an order of

operations in O(G̃) is said to be an oriented operation sequence, denoted by
−→
O (G̃).

For example, if O(G̃) = {×1,×2×3}, then ×1 ≻ ×2 ≻ ×3 is an oriented operation

sequence and ×2 ≻ ×1 ≻ ×3 is also an oriented operation sequence.

For a given oriented operation sequence
−→
O (G̃), we construct a series of normal

sub-multi-group

G̃ ⊲ G̃1 ⊲ G̃2 ⊲ · · · ⊲ G̃m = {1×n}

by the following programming.

STEP 1: Construct a series



Chapter 1 Smarandache Multi-Spaces 27

G̃ ⊲ G̃11 ⊲ G̃12 ⊲ · · · ⊲ G̃1l1

under the operation�×1�.

STEP 2: If a series

G̃(k−1)l1 ⊲ G̃k1 ⊲ G̃k2 ⊲ · · · ⊲ G̃klk

has be constructed under the operation�×k�and G̃klk 6= {1×n}, then construct a

series

G̃kl1 ⊲ G̃(k+1)1 ⊲ G̃(k+1)2 ⊲ · · · ⊲ G̃(k+1)lk+1

under the operation�×k+1�.

This programming is terminated until the series

G̃(n−1)l1 ⊲ G̃n1 ⊲ G̃n2 ⊲ · · · ⊲ G̃nln = {1×n}

has be constructed under the operation�×n�.

The number m is called the length of the series of normal sub-multi-groups.

Call a series of normal sub-multi-group

G̃ ⊲ G̃1 ⊲ G̃2 ⊲ · · · ⊲ G̃n = {1×n}

maximal if there exists a normal sub-multi-group H̃ for any integer k, s, 1 ≤ k ≤
n, 1 ≤ s ≤ lk such that

G̃ks ⊲ H̃ ⊲ G̃k(s+1),

then H̃ = G̃ks or H̃ = G̃k(s+1). For a maximal series of finite normal sub-multi-

group, we get a result as in the following.

Theorem 1.3.7 For a finite multi-group G̃ =
n⋃
i=1

Gi and an oriented operation

sequence
−→
O (G̃), the length of the maximal series of normal sub-multi-group in G̃ is

a constant, only dependent on G̃ itself.

Proof The proof is by the induction principle on the integer n.
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For n = 1, the maximal series of normal sub-multi-groups of G̃ is just a com-

position series of a finite group. By the Jordan-Hölder theorem (see [73] or [107]),

we know the length of a composition series is a constant, only dependent on G̃.

Whence, the assertion is true in the case of n = 1.

Assume that the assertion is true for all cases of n ≤ k. We prove it is also true

in the case of n = k + 1. Not loss of generality, assume the order of those binary

operations in
−→
O (G̃) being ×1 ≻ ×2 ≻ · · · ≻ ×n and the composition series of the

group (G1,×1) being

G1 ⊲ G2 ⊲ · · · ⊲ Gs = {1×1}.

By the Jordan-Hölder theorem, we know the length of this composition series

is a constant, dependent only on (G1;×1). According to Theorem 3.6, we know

a maximal series of normal sub-multi-groups of G̃ gotten by STEP 1 under the

operation�×1�is

G̃ ⊲ G̃ \ (G1 \G2) ⊲ G̃ \ (G1 \G3) ⊲ · · · ⊲ G̃ \ (G1 \ {1×1}).

Notice that G̃ \ (G1 \ {1×1}) is still a multi-group with less or equal to k

operations. By the induction assumption, we know the length of the maximal series

of normal sub-multi-groups in G̃ \ (G1 \ {1×1}) is a constant only dependent on

G̃ \ (G1 \ {1×1}). Therefore, the length of a maximal series of normal sub-multi-

groups is also a constant, only dependent on G̃.

Applying the induction principle, we know that the length of a maximal series

of normal sub-multi-groups of G̃ is a constant under an oriented operations
−→
O (G̃),

only dependent on G̃ itself. ♮

As a special case of Theorem 1.3.7, we get a consequence in the following.

Corollary 1.3.4(Jordan-Hölder theorem) For a finite group G, the length of its

composition series is a constant, only dependent on G.

Certainly, we can also find other characteristics for multi-groups similar to group

theory, such as those to establish the decomposition theory for multi-groups similar

to the decomposition theory of abelian groups, to characterize finite generated multi-

groups, · · ·, etc.. More observations can be seen in the finial section of this chapter.
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1.3.3 Multi-Rings

Definition 1.3.4 Let R̃ =
m⋃
i=1

Ri be a complete multi-space with a double operation

set O(R̃) = {(+i,×i), 1 ≤ i ≤ m}. If for any integers i, j, i 6= j, 1 ≤ i, j ≤ m,

(Ri; +i,×i) is a ring and

(x+i y) +j z = x+i (y +j z), (x×i y)×j z = x×i (y ×j z)

for ∀x, y, z ∈ R̃ and

x×i (y +j z) = x×i y +j x×i z, (y +j z)×i x = y ×i x+j z ×i x

if all of these operating results exist, then R̃ is called a multi-ring. If (R; +i,×i) is

a field for any integer 1 ≤ i ≤ m, then R̃ is called a multi-field.

For a multi-ring R̃ =
m⋃
i=1

Ri, let S̃ ⊂ R̃ and O(S̃) ⊂ O(R̃), if S̃ is also a multi-

ring with a double operation set O(S̃) , then we call S̃ a sub-multi-ring of R̃. We

get a criterion for sub-multi-rings in the following.

Theorem 1.3.8 For a multi-ring R̃ =
m⋃
i=1

Ri, a subset S̃ ⊂ R̃ with O(S̃) ⊂ O(R̃) is

a sub-multi-ring of R̃ if and only if (S̃
⋂
Rk; +k,×k) is a subring of (Rk; +k,×k) or

S̃
⋂
Rk = ∅ for any integer k, 1 ≤ k ≤ m.

Proof For any integer k, 1 ≤ k ≤ m, if (S̃
⋂
Rk; +k,×k) is a subring of

(Rk; +k,×k) or S̃
⋂
Rk = ∅, then since S̃ =

m⋃
i=1

(S̃
⋂
Ri), we know that S̃ is a sub-

multi-ring by the definition of a sub-multi-ring.

Now if S̃ =
s⋃
j=1

Sij is a sub-multi-ring of R̃ with a double operation set O(S̃) =

{(+ij ,×ij ), 1 ≤ j ≤ s}, then (Sij ; +ij ,×ij ) is a subring of (Rij ; +ij ,×ij ). Therefore,

Sij = Rij

⋂
S̃ for any integer j, 1 ≤ j ≤ s. But S̃

⋂
Sl = ∅ for other integer

l ∈ {i; 1 ≤ i ≤ m} \ {ij; 1 ≤ j ≤ s}. ♮

Applying these criterions for subrings of a ring, we get a result in the following.

Theorem 1.3.9 For a multi-ring R̃ =
m⋃
i=1

Ri, a subset S̃ ⊂ R̃ with O(S̃) ⊂ O(R̃) is

a sub-multi-ring of R̃ if and only if (S̃
⋂
Rj ; +j) ≺ (Rj; +j) and (S̃;×j) is complete

for any double operation (+j,×j) ∈ O(S̃).
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Proof According to Theorem 1.3.8, we know that S̃ is a sub-multi-ring if and

only if (S̃
⋂
Ri; +i,×i) is a subring of (Ri; +i,×i) or S̃

⋂
Ri = ∅ for any integer

i, 1 ≤ i ≤ m. By a well known criterion for subrings of a ring (see also [73]), we know

that (S̃
⋂
Ri; +i,×i) is a subring of (Ri; +i,×i) if and only if (S̃

⋂
Rj; +j) ≺ (Rj ; +j)

and (S̃;×j) is a complete set for any double operation (+j ,×j) ∈ O(S̃). This

completes the proof. ♮

We use multi-ideal chains of a multi-ring to characteristic its structure proper-

ties. A multi-ideal Ĩ of a multi-ring R̃ =
m⋃
i=1

Ri with a double operation set O(R̃) is

a sub-multi-ring of R̃ satisfying the following conditions:

(i) Ĩ is a sub-multi-group with an operation set {+| (+,×) ∈ O(Ĩ)};
(ii) for any r ∈ R̃, a ∈ Ĩ and (+,×) ∈ O(Ĩ), r × a ∈ Ĩ and a × r ∈ Ĩ if all of

these operating results exist.

Theorem 1.3.10 A subset Ĩ with O(Ĩ), O(Ĩ) ⊂ O(R̃) of a multi-ring R̃ =
m⋃
i=1

Ri

with a double operation set O(R̃) = {(+i,×i)| 1 ≤ i ≤ m} is a multi-ideal if and only

if (Ĩ
⋂
Ri,+i,×i) is an ideal of the ring (Ri,+i,×i) or Ĩ

⋂
Ri = ∅ for any integer

i, 1 ≤ i ≤ m.

Proof By the definition of a multi-ideal, the necessity of these conditions is

obvious.

For the sufficiency, denote by R̃(+,×) the set of elements in R̃ with binary

operations�+�and�×�. If there exists an integer i such that Ĩ
⋂
Ri 6= ∅ and

(Ĩ
⋂
Ri,+i,×i) is an ideal of (Ri,+i,×i), then for ∀a ∈ Ĩ ⋂

Ri, ∀ri ∈ Ri, we know

that

ri ×i a ∈ Ĩ
⋂
Ri; a×i ri ∈ Ĩ

⋂
Ri.

Notice that R̃(+i,×i) = Ri. Thereafter, we get that

r ×i a ∈ Ĩ
⋂
Ri and a×i r ∈ Ĩ

⋂
Ri,

for ∀r ∈ R̃ if all of these operating results exist. Whence, Ĩ is a multi-ideal of R̃.

♮

A multi-ideal Ĩ of a multi-ring R̃ is said to be maximal if for any multi-ideal

Ĩ ′, R̃ ⊇ Ĩ ′ ⊇ Ĩ implies that Ĩ ′ = R̃ or Ĩ ′ = Ĩ. For an order of the double operations
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in the set O(R̃) of a multi-ring R̃ =
m⋃
i=1

Ri, not loss of generality, let the order be

(+1,×1) ≻ (+2,×2) ≻ · · · ≻ (+m,×m), we can define a multi-ideal chain of R̃ by

the following programming.

(i) Construct a multi-ideal chain

R̃ ⊃ R̃11 ⊃ R̃12 ⊃ · · · ⊃ R̃1s1

under the double operation (+1,×1), where R̃11 is a maximal multi-ideal of R̃ and

in general, R̃1(i+1) is a maximal multi-ideal of R̃1i for any integer i, 1 ≤ i ≤ m− 1.

(ii) If a multi-ideal chain

R̃ ⊃ R̃11 ⊃ R̃12 ⊃ · · · ⊃ R̃1s1 ⊃ · · · ⊃ R̃i1 ⊃ · · · ⊃ R̃isi

has been constructed for (+1,×1) ≻ (+2,×2) ≻ · · · ≻ (+i,×i), 1 ≤ i ≤ m− 1, then

construct a multi-ideal chain of R̃isi

R̃isi ⊃ R̃(i+1)1 ⊃ R̃(i+1)2 ⊃ · · · ⊃ R̃(i+1)s1

under the double operation (+i+1,×i+1), where R̃(i+1)1 is a maximal multi-ideal of

R̃isi and in general, R̃(i+1)(i+1) is a maximal multi-ideal of R̃(i+1)j for any integer

j, 1 ≤ j ≤ si− 1. Define a multi-ideal chain of R̃ under (+1,×1) ≻ (+2,×2) ≻ · · · ≻
(+i+1,×i+1) to be

R̃ ⊃ R̃11 ⊃ · · · ⊃ R̃1s1 ⊃ · · · ⊃ R̃i1 ⊃ · · · ⊃ R̃isi ⊃ R̃(i+1)1 ⊃ · · · ⊃ R̃(i+1)si+1
.

Similar to multi-groups, we get a result for multi-ideal chains of a multi-ring in

the following.

Theorem 1.3.11 For a multi-ring R̃ =
m⋃
i=1

Ri, its multi-ideal chain only has finite

terms if and only if the ideal chain of the ring (Ri; +i,×i) has finite terms, i.e., each

ring (Ri; +i,×i) is an Artin ring for any integer i, 1 ≤ i ≤ m.

Proof Let the order of these double operations in
−→
O (R̃) be

(+1,×1) ≻ (+2,×2) ≻ · · · ≻ (+m,×m)
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and let a maximal ideal chain in the ring (R1; +1,×1) be

R1 ≻ R11 ≻ · · · ≻ R1t1 .

Calculate

R̃11 = R̃ \ {R1 \R11} = R11

⋃
(
m⋃

i=2

Ri),

R̃12 = R̃11 \ {R11 \R12} = R12

⋃
(
m⋃

i=2

Ri),

· · · · · · · · · · · · · · · · · ·

R̃1t1 = R̃1t1 \ {R1(t1−1) \R1t1} = R1t1

⋃
(
m⋃

i=2

Ri).

According to Theorem 1.3.10, we know that

R̃ ⊃ R̃11 ⊃ R̃12 ⊃ · · · ⊃ R̃1t1

is a maximal multi-ideal chain of R̃ under the double operation (+1,×1). In general,

for any integer i, 1 ≤ i ≤ m− 1, assume

Ri ≻ Ri1 ≻ · · · ≻ Riti

is a maximal ideal chain in the ring (R(i−1)ti−1
; +i,×i). Calculate

R̃ik = Rik

⋃
(

m⋃

j=i+1

R̃ik

⋂
Ri).

Then we know that

R̃(i−1)ti−1
⊃ R̃i1 ⊃ R̃i2 ⊃ · · · ⊃ R̃iti

is a maximal multi-ideal chain of R̃(i−1)ti−1
under the double operation (+i,×i) by

Theorem 3.10. Whence, if the ideal chain of the ring (Ri; +i,×i) has finite terms

for any integer i, 1 ≤ i ≤ m, then the multi-ideal chain of the multi-ring R̃ only

has finite terms. Now if there exists an integer i0 such that the ideal chain of the
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ring (Ri0 ,+i0,×i0) has infinite terms, then there must also be infinite terms in a

multi-ideal chain of the multi-ring R̃. ♮.

A multi-ring is called an Artin multi-ring if its each multi-ideal chain only has

finite terms. We get a consequence by Theorem 1.3.11.

Corollary 1.3.5 A multi-ring R̃ =
m⋃
i=1

Ri with a double operation set O(R̃) =

{(+i,×i)| 1 ≤ i ≤ m} is an Artin multi-ring if and only if the ring (Ri; +i,×i)
is an Artin ring for any integer i, 1 ≤ i ≤ m.

For a multi-ring R̃ =
m⋃
i=1

Ri with a double operation set O(R̃) = {(+i,×i)| 1 ≤
i ≤ m}, an element e is an idempotent element if e2× = e× e = e for a double binary

operation (+,×) ∈ O(R̃). We define the directed sum Ĩ of two multi-ideals Ĩ1 and

Ĩ2 as follows:

(i) Ĩ = Ĩ1
⋃
Ĩ2;

(ii) Ĩ1
⋂
Ĩ2 = {0+}, or Ĩ1

⋂
Ĩ2 = ∅, where 0+ denotes an unit element under the

operation +.

Denote the directed sum of Ĩ1 and Ĩ2 by

Ĩ = Ĩ1
⊕

Ĩ2.

If Ĩ = Ĩ1
⊕
Ĩ2 for any Ĩ1, Ĩ2 implies that Ĩ1 = Ĩ or Ĩ2 = Ĩ, then Ĩ is called non-

reducible. We get the following result for Artin multi-rings similar to a well-known

result for Artin rings (see [107] for details).

Theorem 1.3.12 Any Artin multi-ring R̃ =
m⋃
i=1

Ri with a double operation set

O(R̃) = {(+i,×i)| 1 ≤ i ≤ m} is a directed sum of finite non-reducible multi-ideals,

and if (Ri; +i,×i) has unit 1×i for any integer i, 1 ≤ i ≤ m, then

R̃ =
m⊕

i=1

(
si⊕

j=1

(Ri ×i eij)
⋃

(eij ×i Ri)),

where eij , 1 ≤ j ≤ si are orthogonal idempotent elements of the ring Ri.

Proof Denote by M̃ the set of multi-ideals which can not be represented by

a directed sum of finite multi-ideals in R̃. According to Theorem 3.11, there is a

minimal multi-ideal Ĩ0 in M̃ . It is obvious that Ĩ0 is reducible.
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Assume that Ĩ0 = Ĩ1 + Ĩ2. Then Ĩ1 6∈ M̃ and Ĩ2 6∈ M̃ . Therefore, Ĩ1 and Ĩ2

can be represented by a directed sum of finite multi-ideals. Thereby Ĩ0 can be also

represented by a directed sum of finite multi-ideals. Contradicts that Ĩ0 ∈ M̃ .

Now let

R̃ =
s⊕

i=1

Ĩi,

where each Ĩi, 1 ≤ i ≤ s is non-reducible. Notice that for a double operation (+,×),

each non-reducible multi-ideal of R̃ has the form

(e× R(×))
⋃

(R(×)× e), e ∈ R(×).

Whence, we know that there is a set T ⊂ R̃ such that

R̃ =
⊕

e∈T, ×∈O(R̃)

(e× R(×))
⋃

(R(×)× e).

For any operation × ∈ O(R̃) and the unit 1×, assume that

1× = e1 ⊕ e2 ⊕ · · · ⊕ el, ei ∈ T, 1 ≤ i ≤ s.

Then

ei × 1× = (ei × e1)⊕ (ei × e2)⊕ · · · ⊕ (ei × el).

Therefore, we get that

ei = ei × ei = e2i and ei × ej = 0i for i 6= j.

That is, ei, 1 ≤ i ≤ l are orthogonal idempotent elements of R̃(×). Notice that

R̃(×) = Rh for some integer h. We know that ei, 1 ≤ i ≤ l are orthogonal idempotent

elements of the ring (Rh,+h,×h). Denote by ehi for ei, 1 ≤ i ≤ l. Consider all units

in R̃, we get that

R̃ =
m⊕

i=1

(
si⊕

j=1

(Ri ×i eij)
⋃

(eij ×i Ri)).

This completes the proof. ♮
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Corollary 1.3.6 Any Artin ring (R ; +,×) is a directed sum of finite ideals, and if

(R ; +,×) has unit 1×, then

R =
s⊕

i=1

Riei,

where ei, 1 ≤ i ≤ s are orthogonal idempotent elements of the ring (R; +,×).

Similarly, we can also define Noether multi-rings, simple multi-rings, half-simple

multi-rings, · · ·, etc. and find their algebraic structures.

1.3.4 Multi-Vector spaces

Definition 1.3.5 Let Ṽ =
k⋃
i=1

Vi be a complete multi-space with an operation set

O(Ṽ ) = {(+̇i, ·i) | 1 ≤ i ≤ m} and let F̃ =
k⋃
i=1

Fi be a multi-filed with a double

operation set O(F̃ ) = {(+i,×i) | 1 ≤ i ≤ k}. If for any integers i, j, 1 ≤ i, j ≤ k

and ∀a,b, c ∈ Ṽ , k1, k2 ∈ F̃ ,

(i) (Vi; +̇i, ·i) is a vector space on Fi with vector additive �+̇i�and scalar

multiplication�·i�;

(ii) (a+̇ib)+̇jc = a+̇i(b+̇jc);

(iii) (k1 +i k2) ·j a = k1 +i (k2 ·j a);

provided these operating results exist, then Ṽ is called a multi-vector space on the

multi-filed space F̃ with an double operation set O(Ṽ ), denoted by (Ṽ ; F̃ ).

For subsets Ṽ1 ⊂ Ṽ and F̃1 ⊂ F̃ , if (Ṽ1; F̃1) is also a multi-vector space, then

we call (Ṽ1; F̃1) a multi-vector subspace of (Ṽ ; F̃ ). Similar to the linear space theory,

we get the following criterion for multi-vector subspaces.

Theorem 1.3.13 For a multi-vector space (Ṽ ; F̃ ), Ṽ1 ⊂ Ṽ and F̃1 ⊂ F̃ , (Ṽ1; F̃1) is

a multi-vector subspace of (Ṽ ; F̃ ) if and only if for any vector additive�+̇�, scalar

multiplication�·�in (Ṽ1; F̃1) and ∀a,b ∈ Ṽ , ∀α ∈ F̃ ,

α · a+̇b ∈ Ṽ1

provided these operating results exist.

Proof Denote by Ṽ =
k⋃
i=1

Vi, F̃ =
k⋃
i=1

Fi. Notice that Ṽ1 =
k⋃
i=1

(Ṽ1
⋂
Vi). By
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definition, we know that (Ṽ1; F̃1) is a multi-vector subspace of (Ṽ ; F̃ ) if and only if

for any integer i, 1 ≤ i ≤ k, (Ṽ1
⋂
Vi; +̇i, ·i) is a vector subspace of (Vi, +̇i, ·i) and F̃1

is a multi-filed subspace of F̃ or Ṽ1
⋂
Vi = ∅.

According to a criterion for linear subspaces of a linear space ([33]), we know

that (Ṽ1
⋂
Vi; +̇i, ·i) is a vector subspace of (Vi, +̇i, ·i) for any integer i, 1 ≤ i ≤ k if

and only if for ∀a,b ∈ Ṽ1
⋂
Vi, α ∈ Fi,

α ·i a+̇ib ∈ Ṽ1

⋂
Vi.

That is, for any vector additive �+̇�, scalar multiplication�·�in (Ṽ1; F̃1) and

∀a,b ∈ Ṽ , ∀α ∈ F̃ , if α · a+̇b exists, then α · a+̇b ∈ Ṽ1. ♮

Corollary 1.3.7 Let (Ũ ; F̃1), (W̃ ; F̃2) be two multi-vector subspaces of a multi-vector

space (Ṽ ; F̃ ). Then (Ũ
⋂
W̃ ; F̃1

⋂
F̃2) is a multi-vector space.

For a multi-vector space (Ṽ ; F̃ ), vectors a1, a2, · · · , an ∈ Ṽ , if there are scalars

α1, α2, · · · , αn ∈ F̃ such that

α1 ·1 a1+̇1α2 ·2 a2+̇2 · · · +̇n−1αn ·n an = 0,

where 0 ∈ Ṽ is a unit under an operation�+�in Ṽ and +̇i, ·i ∈ O(Ṽ ), then these

vectors a1, a2, · · · , an are said to be linearly dependent. Otherwise, a1, a2, · · · , an are

said to be linearly independent.

Notice that there are two cases for linearly independent vectors a1, a2, · · · , an
in a multi-vector space:

(i) for scalars α1, α2, · · · , αn ∈ F̃ , if

α1 ·1 a1+̇1α2 ·2 a2+̇2 · · · +̇n−1αn ·n an = 0,

where 0 is a unit of Ṽ under an operation �+�in O(Ṽ ), then α1 = 0+1 , α2 =

0+2, · · · , αn = 0+n, where 0+i is the unit under the operation�+i�in F̃ for integer

i, 1 ≤ i ≤ n.

(ii) the operating result of α1 ·1 a1+̇1α2 ·2 a2+̇2 · · · +̇n−1αn ·n an does not exist.

Now for a subset Ŝ ⊂ Ṽ , define its linearly spanning set
〈
Ŝ

〉
to be

〈
Ŝ

〉
= { a | a = α1 ·1 a1+̇1α2 ·2 a2+̇2 · · · ∈ Ṽ , ai ∈ Ŝ, αi ∈ F̃ , i ≥ 1}.
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For a multi-vector space (Ṽ ; F̃ ), if there exists a subset Ŝ, Ŝ ⊂ Ṽ such that Ṽ =
〈
Ŝ

〉
,

then we say Ŝ is a linearly spanning set of the multi-vector space Ṽ . If these vectors

in a linearly spanning set Ŝ of the multi-vector space Ṽ are linearly independent,

then Ŝ is said to be a basis of Ṽ .

Theorem 1.3.14 Any multi-vector space (Ṽ ; F̃ ) has a basis.

Proof Assume Ṽ =
k⋃
i=1

Vi, F̃ =
k⋃
i=1

Fi and the basis of the vector space (Vi; +̇i, ·i)
is ∆i = {ai1, ai2, · · · , aini}, 1 ≤ i ≤ k. Define

∆̂ =
k⋃

i=1

∆i.

Then ∆̂ is a linearly spanning set for Ṽ by definition.

If these vectors in ∆̂ are linearly independent, then ∆̂ is a basis of Ṽ . Otherwise,

choose a vector b1 ∈ ∆̂ and define ∆̂1 = ∆̂ \ {b1}.
If we have obtained a set ∆̂s, s ≥ 1 and it is not a basis, choose a vector

bs+1 ∈ ∆̂s and define ∆̂s+1 = ∆̂s \ {bs+1}.
If these vectors in ∆̂s+1 are linearly independent, then ∆̂s+1 is a basis of Ṽ .

Otherwise, we can define a set ∆̂s+2 again. Continue this process. Notice that all

vectors in ∆i are linearly independent for any integer i, 1 ≤ i ≤ k. Therefore, we

can finally get a basis of Ṽ . ♮

Now we consider finite-dimensional multi-vector spaces. A multi-vector space

Ṽ is finite-dimensional if it has a finite basis. By Theorem 1.2.14, if the vector

space (Vi; +i, ·i) is finite-dimensional for any integer i, 1 ≤ i ≤ k, then (Ṽ ; F̃ ) is

finite-dimensional. On the other hand, if there is an integer i0, 1 ≤ i0 ≤ k such that

the vector space (Vi0; +i0 , ·i0) is infinite-dimensional, then (Ṽ ; F̃ ) is also infinite-

dimensional. This enables us to get a consequence in the following.

Corollary 1.3.8 Let (Ṽ ; F̃ ) be a multi-vector space with Ṽ =
k⋃
i=1

Vi, F̃ =
k⋃
i=1

Fi.

Then (Ṽ ; F̃ ) is finite-dimensional if and only if (Vi; +i, ·i) is finite-dimensional for

any integer i, 1 ≤ i ≤ k.

Theorem 1.3.15 For a finite-dimensional multi-vector space (Ṽ ; F̃ ), any two bases

have the same number of vectors.
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Proof Let Ṽ =
k⋃
i=1

Vi and F̃ =
k⋃
i=1

Fi. The proof is by the induction on k. For

k = 1, the assertion is true by Theorem 4 of Chapter 2 in [33].

For the case of k = 2, notice that by a result in linearly vector spaces (see also

[33]), for two subspaces W1,W2 of a finite-dimensional vector space, if the basis of

W1
⋂
W2 is {a1, a2, · · · , at}, then the basis of W1

⋃
W2 is

{a1, a2, · · · , at,bt+1,bt+2, · · · ,bdimW1 , ct+1, ct+2, · · · , cdimW2},

where, {a1, a2, · · · , at,bt+1,bt+2, · · · ,bdimW1} is a basis of W1 and {a1, a2, · · · , at,
ct+1, ct+2, · · · , cdimW2} a basis of W2.

Whence, if Ṽ = W1
⋃
W2 and F̃ = F1

⋃
F2, then the basis of Ṽ is also

{a1, a2, · · · , at,bt+1,bt+2, · · · ,bdimW1 , ct+1, ct+2, · · · , cdimW2}.

Assume the assertion is true for k = l, l ≥ 2. Now we consider the case of

k = l + 1. In this case, since

Ṽ = (
l⋃

i=1

Vi)
⋃
Vl+1, F̃ = (

l⋃

i=1

Fi)
⋃
Fl+1,

by the induction assumption, we know that any two bases of the multi-vector space

(
l⋃
i=1

Vi;
l⋃
i=1

Fi) have the same number p of vectors. If the basis of (
l⋃
i=1

Vi)
⋂
Vl+1 is

{e1, e2, · · · , en}, then the basis of Ṽ is

{e1, e2, · · · , en, fn+1, fn+2, · · · , fp, gn+1, gn+2, · · · , gdimVl+1
},

where {e1, e2, · · · , en, fn+1, fn+2, · · · , fp} is a basis of (
l⋃
i=1

Vi;
l⋃
i=1

Fi) and {e1, e2, · · · , en,
gn+1, gn+2, · · · , gdimVl+1

} is a basis of Vl+1. Whence, the number of vectors in a basis

of Ṽ is p+ dimVl+1 − n for the case n = l + 1.

Therefore, we know the assertion is true for any integer k by the induction

principle. ♮

The cardinal number of a basis of a finite dimensional multi-vector space Ṽ is

called its dimension, denoted by dimṼ .

Theorem 1.3.16(dimensional formula) For a multi-vector space (Ṽ ; F̃ ) with Ṽ =
k⋃
i=1

Vi and F̃ =
k⋃
i=1

Fi, the dimension dimṼ of Ṽ is
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dimṼ =
k∑

i=1

(−1)i−1
∑

{i1,i2,···,ii}⊂{1,2,···,k}
dim(Vi1

⋂
Vi2

⋂
· · ·

⋂
Vii).

Proof The proof is by the induction on k. For k = 1, the formula is turn to a

trivial case of dimṼ = dimV1. for k = 2, the formula is

dimṼ = dimV1 + dimV2 − dim(V1

⋂
dimV2),

which is true by the proof of Theorem 1.3.15.

Now we assume the formula is true for k = n. Consider the case of k = n + 1.

According to the proof of Theorem 1.3.15, we know that

dimṼ = dim(
n⋃

i=1

Vi) + dimVn+1 − dim((
n⋃

i=1

Vi)
⋂
Vn+1)

= dim(
n⋃

i=1

Vi) + dimVn+1 − dim(
n⋃

i=1

(Vi
⋂
Vn+1))

= dimVn+1 +
n∑

i=1

(−1)i−1
∑

{i1,i2,···,ii}⊂{1,2,···,n}
dim(Vi1

⋂
Vi2

⋂
· · ·

⋂
Vii)

+
n∑

i=1

(−1)i−1
∑

{i1,i2,···,ii}⊂{1,2,···,n}
dim(Vi1

⋂
Vi2

⋂
· · ·

⋂
Vii

⋂
Vn+1)

=
n∑

i=1

(−1)i−1
∑

{i1,i2,···,ii}⊂{1,2,···,k}
dim(Vi1

⋂
Vi2

⋂
· · ·

⋂
Vii).

By the induction principle, we know the formula is true for any integer k. ♮

As a consequence, we get the following formula.

Corollary 1.3.9(additive formula) For any two multi-vector spaces Ṽ1, Ṽ2,

dim(Ṽ1

⋃
Ṽ2) = dimṼ1 + dimṼ2 − dim(Ṽ1

⋂
Ṽ2).

§1.4 Multi-Metric Spaces

1.4.1. Metric spaces

A set M associated with a metric function ρ : M ×M → R+ = {x | x ∈ R, x ≥ 0}
is called a metric space if for ∀x, y, z ∈M , the following conditions for ρ hold:
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(1)(definiteness) ρ(x, y) = 0 if and only if x = y;

(ii)(symmetry) ρ(x, y) = ρ(y, x);

(iii)(triangle inequality) ρ(x, y) + ρ(y, z) ≥ ρ(x, z).

A metric space M with a metric function ρ is usually denoted by (M ; ρ). Any

x, x ∈M is called a point of (M ; ρ). A sequence {xn} is said to be convergent to x

if for any number ǫ > 0 there is an integer N such that n ≥ N implies ρ(xn, x) < 0,

denoted by lim
n
xn = x. We have known the following result in metric spaces.

Theorem 1.4.1 Any sequence {xn} in a metric space has at most one limit point.

For x0 ∈M and ǫ > 0, a ǫ-disk about x0 is defined by

B(x0, ǫ) = { x | x ∈M, ρ(x, x0) < ǫ}.

If A ⊂ M and there is an ǫ-disk B(x0, ǫ) ⊃ A, we say A is a bounded point set of

M .

Theorem 1.4.2 Any convergent sequence {xn} in a metric space is a bounded point

set.

Now let (M, ρ) be a metric space and {xn} a sequence in M . If for any number

ǫ > 0, ǫ ∈ R, there is an integer N such that n,m ≥ N implies ρ(xn, xm) < ǫ, we

call {xn} a Cauchy sequence. A metric space (M, ρ) is called to be completed if its

every Cauchy sequence converges.

Theorem 1.4.3 For a completed metric space (M, ρ), if an ǫ-disk sequence {Bn}
satisfies

(i) B1 ⊃ B2 ⊃ · · · ⊃ Bn ⊃ · · ·;
(ii) lim

n
ǫn = 0,

where ǫn > 0 and Bn = { x | x ∈ M, ρ(x, xn) ≤ ǫn} for any integer n, n = 1, 2, · · ·,
then

∞⋂
n=1

Bn only has one point.

For a metric space (M, ρ) and T : M → M a mapping on (M, ρ), if there exists

a point x∗ ∈M such that

Tx∗ = x∗,
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then x∗ is called a fixed point of T . If there exists a constant η, 0 < η < 1 such that

ρ(Tx, Ty) ≤ ηρ(x, y)

for ∀x, y ∈M , then T is called a contraction.

Theorem 1.4.4 (Banach) Let (M, ρ) be a completed metric space and let T : M →
M be a contraction. Then T has only one fixed point.

1.4.2. Multi-Metric spaces

Definition 1.4.1 A multi-metric space is a union M̃ =
m⋃
i=1

Mi such that each Mi is

a space with a metric ρi for ∀i, 1 ≤ i ≤ m.

When we say a multi-metric space M̃ =
m⋃
i=1

Mi, it means that a multi-metric

space with metrics ρ1, ρ2, · · · , ρm such that (Mi, ρi) is a metric space for any integer

i, 1 ≤ i ≤ m. For a multi-metric space M̃ =
m⋃
i=1

Mi, x ∈ M̃ and a positive number

R, a R-disk B(x,R) in M̃ is defined by

B(x,R) = { y | there exists an integer k, 1 ≤ k ≤ m such that ρk(y, x) < R, y ∈ M̃}

Remark 1.4.1 The following two extremal cases are permitted in Definition 1.4.1:

(i) there are integers i1, i2, · · · , is such that Mi1 = Mi2 = · · · = Mis , where

ij ∈ {1, 2, · · · , m}, 1 ≤ j ≤ s;

(ii) there are integers l1, l2, · · · , ls such that ρl1 = ρl2 = · · · = ρls , where

lj ∈ {1, 2, · · · , m}, 1 ≤ j ≤ s.

For metrics on a space, we have the following result.

Theorem 1.4.5 Let ρ1, ρ2, · · · , ρm be m metrics on a space M and let F be a function

on Rm such that the following conditions hold:

(i) F (x1, x2, · · · , xm) ≥ F (y1, y2, · · · , ym) for ∀i, 1 ≤ i ≤ m, xi ≥ yi;

(ii) F (x1, x2, · · · , xm) = 0 only if x1 = x2 = · · · = xm = 0;

(iii) for two m-tuples (x1, x2, · · · , xm) and (y1, y2, · · · , ym),

F (x1, x2, · · · , xm) + F (y1, y2, · · · , ym) ≥ F (x1 + y1, x2 + y2, · · · , xm + ym).
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Then F (ρ1, ρ2, · · · , ρm) is also a metric on M .

Proof We only need to prove that F (ρ1, ρ2, · · · , ρm) satisfies those of metric

conditions for ∀x, y, z ∈M .

By (ii), F (ρ1(x, y), ρ2(x, y), · · · , ρm(x, y)) = 0 only if ρi(x, y) = 0 for any integer

i. Since ρi is a metric on M , we know that x = y.

For any integer i, 1 ≤ i ≤ m, since ρi is a metric on M , we know that ρi(x, y) =

ρi(y, x). Whence,

F (ρ1(x, y), ρ2(x, y), · · · , ρm(x, y)) = F (ρ1(y, x), ρ2(y, x), · · · , ρm(y, x)).

Now by (i) and (iii), we get that

F (ρ1(x, y), ρ2(x, y), · · · , ρm(x, y)) + F (ρ1(y, z), ρ2(y, z), · · · , ρm(y, z))

≥ F (ρ1(x, y) + ρ1(y, z), ρ2(x, y) + ρ2(y, z), · · · , ρm(x, y) + ρm(y, z))

≥ F (ρ1(x, z), ρ2(x, z), · · · , ρm(x, z)).

Therefore, F (ρ1, ρ2, · · · , ρm) is a metric on M . ♮

Corollary 1.4.1 If ρ1, ρ2, · · · , ρm are m metrics on a space M , then ρ1+ρ2+· · ·+ρm
and ρ1

1+ρ1
+ ρ2

1+ρ2
+ · · ·+ ρm

1+ρm
are also metrics on M .

A sequence {xn} in a multi-metric space M̃ =
m⋃
i=1

Mi is said to be convergent to

a point x, x ∈ M̃ if for any number ǫ > 0, there exist numbers N and i, 1 ≤ i ≤ m

such that

ρi(xn, x) < ǫ

provided n ≥ N . If {xn} is convergent to a point x, x ∈ M̃ , we denote it by

lim
n
xn = x.

We get a characteristic for convergent sequences in a multi-metric space as in

the following.

Theorem 1.4.6 A sequence {xn} in a multi-metric space M̃ =
m⋃
i=1

Mi is convergent

if and only if there exist integers N and k, 1 ≤ k ≤ m such that the subsequence

{xn|n ≥ N} is a convergent sequence in (Mk, ρk).
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Proof If there exist integers N and k, 1 ≤ k ≤ m such that {xn|n ≥ N} is

a convergent sequence in (Mk, ρk), then for any number ǫ > 0, by definition there

exist an integer P and a point x, x ∈Mk such that

ρk(xn, x) < ǫ

if n ≥ max{N, P}.
Now if {xn} is a convergent sequence in the multi-space M̃ , by definition for

any positive number ǫ > 0, there exist a point x, x ∈ M̃ , natural numbers N(ǫ) and

integer k, 1 ≤ k ≤ m such that if n ≥ N(ǫ), then

ρk(xn, x) < ǫ.

That is, {xn|n ≥ N(ǫ)} ⊂ Mk and {xn|n ≥ N(ǫ)} is a convergent sequence in

(Mk, ρk). ♮

Theorem 1.4.7 Let M̃ =
m⋃
i=1

Mi be a multi-metric space. For two sequences {xn},
{yn} in M̃ , if lim

n
xn = x0, lim

n
yn = y0 and there is an integer p such that x0, y0 ∈Mp,

then lim
n
ρp(xn, yn) = ρp(x0, y0).

Proof According to Theorem 1.4.6, there exist integers N1 and N2 such that if

n ≥ max{N1, N2}, then xn, yn ∈Mp. Whence, we know that

ρp(xn, yn) ≤ ρp(xn, x0) + ρp(x0, y0) + ρp(yn, y0)

and

ρp(x0, y0) ≤ ρp(xn, x0) + ρp(xn, yn) + ρp(yn, y0).

Therefore,

|ρp(xn, yn)− ρp(x0, y0)| ≤ ρp(xn, x0) + ρp(yn, y0).

Now for any number ǫ > 0, since lim
n
xn = x0 and lim

n
yn = y0, there exist num-

bers N1(ǫ), N1(ǫ) ≥ N1 and N2(ǫ), N2(ǫ) ≥ N2 such that ρp(xn, x0) ≤ ǫ
2

if n ≥ N1(ǫ)

and ρp(yn, y0) ≤ ǫ
2

if n ≥ N2(ǫ). Whence, if we choose n ≥ max{N1(ǫ), N2(ǫ)},
then
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|ρp(xn, yn)− ρp(x0, y0)| < ǫ. ♮

Whether can a convergent sequence have more than one limiting points? The

following result answers this question.

Theorem 1.4.8 If {xn} is a convergent sequence in a multi-metric space M̃ =
m⋃
i=1

Mi, then {xn} has only one limit point.

Proof According to Theorem 1.4.6, there exist integers N and i, 1 ≤ i ≤ m

such that xn ∈Mi if n ≥ N . Now if

lim
n
xn = x1 and lim

n
xn = x2,

and n ≥ N , by definition,

0 ≤ ρi(x1, x2) ≤ ρi(xn, x1) + ρi(xn, x2).

Whence, we get that ρi(x1, x2) = 0. Therefore, x1 = x2. ♮

Theorem 1.4.9 Any convergent sequence in a multi-metric space is a bounded points

set.

Proof According to Theorem 1.4.8, we obtain this result immediately. ♮

A sequence {xn} in a multi-metric space M̃ =
m⋃
i=1

Mi is called a Cauchy sequence

if for any number ǫ > 0, there exist integers N(ǫ) and s, 1 ≤ s ≤ m such that for

any integers m,n ≥ N(ǫ), ρs(xm, xn) < ǫ.

Theorem 1.4.10 A Cauchy sequence {xn} in a multi-metric space M̃ =
m⋃
i=1

Mi is

convergent if and only if |{xn}
⋂
Mk| is finite or infinite but {xn}

⋂
Mk is convergent

in (Mk, ρk) for ∀k, 1 ≤ k ≤ m.

Proof The necessity of these conditions in this theorem is known by Theorem

1.4.6.

Now we prove the sufficiency. By definition, there exist integers s, 1 ≤ s ≤
m and N1 such that xn ∈ Ms if n ≥ N1. Whence, if |{xn}

⋂
Mk| is infinite

and lim
n
{xn}

⋂
Mk = x, then there must be k = s. Denote by {xn}

⋂
Mk =

{xk1, xk2, · · · , xkn, · · ·}.
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For any positive number ǫ > 0, there exists an integer N2, N2 ≥ N1 such that

ρk(xm, xn) < ǫ
2

and ρk(xkn, x) < ǫ
2

if m,n ≥ N2. According to Theorem 1.4.7, we

get that

ρk(xn, x) ≤ ρk(xn, xkn) + ρk(xkn, x) < ǫ

if n ≥ N2. Whence, lim
n
xn = x. ♮

A multi-metric space M̃ is said to be completed if its every Cauchy sequence is

convergent. For a completed multi-metric space, we obtain two important results

similar to Theorems 1.4.3 and 1.4.4 in metric spaces.

Theorem 1.4.11 Let M̃ =
m⋃
i=1

Mi be a completed multi-metric space. For an ǫ-disk

sequence {B(ǫn, xn)}, where ǫn > 0 for n = 1, 2, 3, · · ·, if the following conditions

hold:

(i) B(ǫ1, x1) ⊃ B(ǫ2, x2) ⊃ B(ǫ3, x3) ⊃ · · · ⊃ B(ǫn, xn) ⊃ · · ·;
(ii) lim

n→+∞
ǫn = 0,

then
+∞⋂
n=1

B(ǫn, xn) only has one point.

Proof First, we prove that the sequence {xn} is a Cauchy sequence in M̃ .

By the condition (i), we know that if m ≥ n, then xm ∈ B(ǫm, xm) ⊂ B(ǫn, xn).

Whence ρi(xm, xn) < ǫn provided xm, xn ∈Mi for ∀i, 1 ≤ i ≤ m.

Now for any positive number ǫ, since lim
n→+∞

ǫn = 0, there exists an integer N(ǫ)

such that if n ≥ N(ǫ), then ǫn < ǫ. Therefore, if xn ∈ Ml, then lim
m→+∞

xm = xn.

Thereby there exists an integer N such that if m ≥ N , then xm ∈ Ml by Theorem

1.4.6. Choice integers m,n ≥ max{N,N(ǫ)}, we know that

ρl(xm, xn) < ǫn < ǫ.

So {xn} is a Cauchy sequence.

By the assumption that M̃ is completed, we know that the sequence {xn}
is convergent to a point x0, x0 ∈ M̃ . By conditions of (i) and (ii), we get that

ρl(x0, xn) < ǫn if m→ +∞. Whence, x0 ∈
+∞⋂
n=1

B(ǫn, xn).

Now if there is a point y ∈
+∞⋂
n=1

B(ǫn, xn), then there must be y ∈ Ml. We get

that
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0 ≤ ρl(y, x0) = lim
n
ρl(y, xn) ≤ lim

n→+∞
ǫn = 0

by Theorem 1.4.7. Therefore, ρl(y, x0) = 0. By the definition of a metric function,

we get that y = x0. ♮

Let M̃1 and M̃2 be two multi-metric spaces and let f : M̃1 → M̃2 be a mapping,

x0 ∈ M̃1, f(x0) = y0. For ∀ǫ > 0, if there exists a number δ such that f(x) = y ∈
B(ǫ, y0) ⊂ M̃2 for ∀x ∈ B(δ, x0), i.e.,

f(B(δ, x0)) ⊂ B(ǫ, y0),

then we say that f is continuous at point x0. A mapping f : M̃1 → M̃2 is called a

continuous mapping from M̃1 to M̃2 if f is continuous at every point of M̃1.

For a continuous mapping f from M̃1 to M̃2 and a convergent sequence {xn}
in M̃1, lim

n
xn = x0, we can prove that

lim
n
f(xn) = f(x0).

For a multi-metric space M̃ =
m⋃
i=1

Mi and a mapping T : M̃ → M̃ , if there is

a point x∗ ∈ M̃ such that Tx∗ = x∗, then x∗ is called a fixed point of T . Denote

the number of fixed points of a mapping T in M̃ by #Φ(T ). A mapping T is called

a contraction on a multi-metric space M̃ if there are a constant α, 0 < α < 1 and

integers i, j, 1 ≤ i, j ≤ m such that for ∀x, y ∈Mi, Tx, Ty ∈ Mj and

ρj(Tx, Ty) ≤ αρi(x, y).

Theorem 1.4.12 Let M̃ =
m⋃
i=1

Mi be a completed multi-metric space and let T be a

contraction on M̃ . Then

1 ≤# Φ(T ) ≤ m.

Proof Choose arbitrary points x0, y0 ∈M1 and define recursively

xn+1 = Txn, yn+1 = Txn
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for n = 1, 2, 3, · · ·. By definition, we know that for any integer n, n ≥ 1, there exists

an integer i, 1 ≤ i ≤ m such that xn, yn ∈Mi. Whence, we inductively get that

0 ≤ ρi(xn, yn) ≤ αnρ1(x0, y0).

Notice that 0 < α < 1, we know that lim
n→+∞

αn = 0. Thereby there exists an

integer i0 such that

ρi0(limn
xn, lim

n
yn) = 0.

Therefore, there exists an integer N1 such that xn, yn ∈ Mi0 if n ≥ N1. Now if

n ≥ N1, we get that

ρi0(xn+1, xn) = ρi0(Txn, Txn−1)

≤ αρi0(xn, xn−1) = αρi0(Txn−1, Txn−2)

≤ α2ρi0(xn−1, xn−2) ≤ · · · ≤ αn−N1ρi0(xN1+1, xN1).

and generally, for m ≥ n ≥ N1,

ρi0(xm, xn) ≤ ρi0(xn, xn+1) + ρi0(xn+1, xn+2) + · · ·+ ρi0(xn−1, xn)

≤ (αm−1 + αm−2 + · · ·+ αn)ρi0(xN1+1, xN1)

≤ αn

1− αρi0(xN1+1, xN1)→ 0(m,n→ +∞).

Therefore, {xn} is a Cauchy sequence in M̃ . Similarly, we can also prove {yn} is a

Cauchy sequence.

Because M̃ is a completed multi-metric space, we know that

lim
n
xn = lim

n
yn = z∗.

Now we prove z∗ is a fixed point of T in M̃ . In fact, by ρi0(limn
xn, lim

n
yn) = 0,

there exists an integer N such that

xn, yn, Txn, T yn ∈Mi0

if n ≥ N + 1. Whence, we know that
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0 ≤ ρi0(z
∗, T z∗) ≤ ρi0(z

∗, xn) + ρi0(yn, T z
∗) + ρi0(xn, yn)

≤ ρi0(z
∗, xn) + αρi0(yn−1, z

∗) + ρi0(xn, yn).

Notice that

lim
n→+∞

ρi0(z
∗, xn) = lim

n→+∞
ρi0(yn−1, z

∗) = lim
n→+∞

ρi0(xn, yn) = 0.

We get ρi0(z
∗, T z∗) = 0, i.e., Tz∗ = z∗.

For other chosen points u0, v0 ∈M1, we can also define recursively

un+1 = Tun, vn+1 = Tvn

and get a limiting point lim
n
un = lim

n
vn = u∗ ∈Mi0 , Tu

∗ ∈Mi0 . Since

ρi0(z
∗, u∗) = ρi0(Tz

∗, Tu∗) ≤ αρi0(z
∗, u∗)

and 0 < α < 1, there must be z∗ = u∗.

Similarly consider the points in Mi, 2 ≤ i ≤ m, we get that

1 ≤# Φ(T ) ≤ m. ♮

As a consequence, we get the Banach theorem in metric spaces.

Corollary 1.4.2(Banach) Let M be a metric space and let T be a contraction on

M . Then T has just one fixed point.

§1.5 Remarks and Open Problems

The central idea of Smarandache multi-spaces is to combine different fields (spaces,

systems, objects, · · ·) into a unifying field and find its behaviors. Which is entirely

new, also an application of combinatorial approaches to classical mathematics but

more important than combinatorics itself. This idea arouses us to think why an

assertion is true or not in classical mathematics. Then combine an assertion with its

non-assertion and enlarge the filed of truths. A famous fable says that each theorem

in mathematics is an absolute truth. But we do not think so. Our thinking is that
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each theorem in mathematics is just a relative truth. Thereby we can establish new

theorems and present new problems boundless in mathematics. Results obtained in

Section 1.3 and 1.4 are applications of this idea to these groups, rings, vector spaces

or metric spaces. Certainly, more and more multi-spaces and their good behaviors

can be found under this thinking. Here we present some remarks and open problems

for multi-spaces.

1.5.1. Algebraic Multi-Spaces The algebraic multi-spaces are discrete repre-

sentations for phenomena in the natural world. They maybe completed or not in

cases. For a completed algebraic multi-space, it is a reflection of an equilibrium phe-

nomenon. Otherwise, a reflection of a non-equilibrium phenomenon. Whence, more

consideration should be done for algebraic multi-spaces, especially, by an analogous

thinking as in classical algebra.

Problem 1.5.1 Establish a decomposition theory for multi-groups.

In group theory, we know the following decomposition result([107][82]) for

groups.

Let G be a finite Ω-group. Then G can be uniquely decomposed as a direct

product of finite non-decomposition Ω-subgroups.

Each finite abelian group is a direct product of its Sylow p-subgroups.

Then Problem 1.5.1 can be restated as follows.

Whether can we establish a decomposition theory for multi-groups similar to the

above two results in group theory, especially, for finite multi-groups?

Problem 1.5.2 Define the conception of simple multi-groups. For finite multi-

groups, whether can we find all simple multi-groups?

For finite groups, we know that there are four simple group classes ([108]):

Class 1: the cyclic groups of prime order;

Class 2: the alternating groups An, n ≥ 5;

Class 3: the 16 groups of Lie types;

Class 4: the 26 sporadic simple groups.



50 Linfan Mao: Smarandache Multi-Spaces Theory

Problem 1.5.3 Determine the structure properties of multi-groups generated by

finite elements.

For a subset A of a multi-group G̃, define its spanning set by

〈A〉 = {a ◦ b|a, b ∈ A and ◦ ∈ O(G̃)}.

If there exists a subset A ⊂ G̃ such that G̃ = 〈A〉, then call G̃ is generated by A.

Call G̃ is finitely generated if there exist a finite set A such that G̃ = 〈A〉. Then

Problem 5.3 can be restated by

Can we establish a finite generated multi-group theory similar to the finite gen-

erated group theory?

Problem 1.5.4 Determine the structure of a Noether multi-ring.

Let R be a ring. Call R a Noether ring if its every ideal chain only has finite

terms. Similarly, for a multi-ring R̃, if its every multi-ideal chain only has finite

terms, it is called a Noether multi-ring. Whether can we find its structures similar

to Corollary 1.3.5 and Theorem 1.3.12?

Problem 1.5.5 Similar to ring theory, define a Jacobson or Brown-McCoy radical

for multi-rings and determine their contribution to multi-rings.

Notice that Theorem 1.3.14 has told us there is a similar linear theory for

multi-vector spaces, but the situation is more complex.

Problem 1.5.6 Similar to linear spaces, define linear transformations on multi-

vector spaces. Can we establish a matrix theory for these linear transformations?

Problem 1.5.7 Whether a multi-vector space must be a linear space?

Conjecture 1.5.1 There are non-linear multi-vector spaces in multi-vector spaces.

Based on Conjecture 1.5.1, there is a fundamental problem for multi-vector

spaces.

Problem 1.5.8 Can we apply multi-vector spaces to non-linear spaces?

1.5.2. Multi-Metric Spaces On a tradition notion, only one metric maybe con-

sidered in a space to ensure the same on all the time and on all the situation.
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Essentially, this notion is based on an assumption that all spaces are homogeneous.

In fact, it is not true in general.

Multi-metric spaces can be used to simplify or beautify geometrical figures and

algebraic equations. For an explanation, an example is shown in Fig.1.3, in where

the left elliptic curve is transformed to the right circle by changing the metric along

x, y-axes and an elliptic equation

x2

a2
+
y2

b2
= 1

to equation

x2 + y2 = r2

of a circle of radius r.

Fig.1.3

Generally, in a multi-metric space, we can simplify a polynomial similar to the

approach used in the projective geometry. Whether this approach can be contributed

to mathematics with metrics?

Problem 1.5.9 Choose suitable metrics to simplify the equations of surfaces or

curves in R3.

Problem 1.5.10 Choose suitable metrics to simplify the knot problem. Whether can

it be used for classifying 3-dimensional manifolds?

Problem 1.5.11 Construct multi-metric spaces or non-linear spaces by Banach

spaces. Simplify equations or problems to linear problems.
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1.5.3. Multi-Operation Systems By a complete Smarandache multi-space Ã with

an operation set O(Ã), we can get a multi-operation system Ã. For example, if Ã is

a multi-field F̃ =
n⋃
i=1

Fi with an operation set O(F̃ ) = {(+i,×i)| 1 ≤ i ≤ n}, then

(F̃ ; +1,+2, · · · ,+n), (F̃ ;×1,×2, · · · ,×n) and (F̃ ; (+1,×1), (+2,×2), · · · , (+n,×n))
are multi-operation systems. On this view, the classical operation system (R ; +)

and (R ;×) are only sole operation systems. For a multi-operation system Ã, we can

define these conceptions of equality and inequality, · · ·, etc.. For example, in the

multi-operation system (F̃ ; +1,+2, · · · ,+n), we define the equalities =1,=2, · · · ,=n

such as those in sole operation systems (F̃ ; +1), (F̃ ; +2), · · · , (F̃ ; +n), for example,

2 =1 2, 1.4 =2 1.4, · · · ,
√

3 =n

√
3 which is the same as the usual meaning and

similarly, for the conceptions ≥1,≥2, · · · ,≥n and ≤1,≤2, · · · ,≤n.
In a classical operation system (R ; +), the equation system

x+ 2 + 4 + 6 = 15

x+ 1 + 3 + 6 = 12

x+ 1 + 4 + 7 = 13

can not has a solution. But in the multi-operation system (F̃ ; +1,+2, · · · ,+n), the

equation system

x+1 2 +1 4 +1 6 =1 15

x+2 1 +2 3 +2 6 =2 12

x+3 1 +3 4 +3 7 =3 13

may have a solution x if

15 +1 (−1) +1 (−4) +1 (−16) = 12 +2 (−1) +2 (−3) +2 (−6)

= 13 +3 (−1) +3 (−4) +3 (−7).

in (F̃ ; +1,+2, · · · ,+n). Whence, an element maybe have different disguises in a

multi-operation system.

For the multi-operation systems, a number of open problems needs to research

further.
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Problem 1.5.12 Find necessary and sufficient conditions for a multi-operation

system with more than 3 operations to be the rational number field Q, the real number

field R or the complex number field C.

For a multi-operation system (N ; (+1,×1), (+2,×2), · · · , (+n,×n)) and integers

a, b, c ∈ N , if a = b ×i c for an integer i, 1 ≤ i ≤ n, then b and c are called factors

of a. An integer p is called a prime if there exist integers n1, n2 and i, 1 ≤ i ≤ n

such that p = n1 ×i n2, then p = n1 or p = n2. Two problems for primes of a

multi-operation system (N ; (+1,×1), (+2,×2), · · · , (+n,×n)) are presented in the

following.

Problem 1.5.13 For a positive real number x, denote by πm(x) the number of

primes ≤ x in (N ; (+1,×1), (+2,×2), · · · , (+n,×n)). Determine or estimate πm(x).

Notice that for the positive integer system, by a well-known theorem, i.e., Gauss

prime theorem, we have known that([15])

π(x) ∼ x

logx
.

Problem 1.5.14 Find the additive number properties for (N ; (+1,×1), (+2,×2), · · · ,
(+n,×n)), for example, we have weakly forms for Goldbach’s conjecture and Fermat’s

problem ([34]) as follows.

Conjecture 1.5.2 For any even integer n, n ≥ 4, there exist odd primes p1, p2 and

an integer i, 1 ≤ i ≤ n such that n = p1 +i p2.

Conjecture 1.5.3 For any positive integer q, the Diophantine equation xq+yq = zq

has non-trivial integer solutions (x, y, z) at least for an operation�+i�with 1 ≤ i ≤
n.

A Smarandache n-structure on a set S means a weak structure {w(0)} on S such

that there exists a chain of proper subsets P (n− 1) ⊂ P (n− 2) ⊂ · · · ⊂ P (1) ⊂ S

whose corresponding structures verify the inverse chain {w(n− 1)} ⊃ {w(n− 2)} ⊃
· · · ⊃ {w(1)} ⊃ {w(0)}, i.e., structures satisfying more axioms.

Problem 1.5.15 For Smarandache multi-structures, solves these Problems 1.5.1−
1.5.8.
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1.5.4. Multi-Manifolds Manifolds are important objects in topology, Riemann

geometry and modern mechanics. It can be seen as a local generalization of Euclid

spaces. By the Smarandache’s notion, we can also define multi-manifolds. To de-

termine their behaviors or structure properties will useful for modern mathematics.

In an Euclid space Rn, an n-ball of radius r is defined by

Bn(r) = {(x1, x2, · · · , xn)|x2
1 + x2

2 + · · ·+ x2
n ≤ r}.

Now we choose m n-balls Bn
1 (r1), B

n
2 (r2), · · · , Bn

m(rm), where for any integers

i, j, 1 ≤ i, j ≤ m, Bn
i (ri)

⋂
Bn
j (rj) = or not and ri = rj or not. An n-multi-ball is a

union

B̃ =
m⋃

k=1

Bn
k (rk).

Then an n-multi-manifold is a Hausdorff space with each point in this space has a

neighborhood homeomorphic to an n-multi-ball.

Problem 1.5.16 For an integer n, n ≥ 2, classifies n-multi-manifolds. Especially,

classifies 2-multi-manifolds.

For closed 2-manifolds, i.e., locally orientable surfaces, we have known a classi-

fication theorem for them.

Problem 1.5.17 If we replace the word�homeomorphic�by�points equivalent�or�isomorphic�, what can we obtain for n-multi-manifolds? Can we classify them?

Similarly, we can also define differential multi-manifolds and consider their con-

tributions to modern differential geometry, Riemann geometry or modern mechanics,

· · ·, etc..
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As a useful tool for dealing with relations of events, graph theory has rapidly grown

in theoretical results as well as its applications to real-world problems, for example

see [9], [11] and [80] for graph theory, [42]− [44] for topological graphs and combi-

natorial map theory, [7], [12] and [104] for its applications to probability, electrical

network and real-life problems. By applying the Smarandache’s notion, graphs are

models of multi-spaces and matters in the natural world. For the later, graphs are

a generalization of p-branes and seems to be useful for mechanics and quantum

physics.

§2.1 Graphs

2.1.1. What is a graph?

A graph G is an ordered 3-tuple (V,E; I), where V,E are finite sets, V 6= ∅ and

I : E → V ×V . Call V the vertex set and E the edge set of G, denoted by V (G) and

E(G), respectively. Two elements v ∈ V (G) and e ∈ E(G) are said to be incident

if I(e) = (v, x) or (x, v), where x ∈ V (G). If (u, v) = (v, u) for ∀u, v ∈ V , the graph

G is called a graph, otherwise, a directed graph with an orientation u→ v on each

edge (u, v). Unless Section 2.4, graphs considered in this chapter are non-directed.

The cardinal numbers of |V (G)| and |E(G)| are called the order and the size of

a graph G, denoted by |G| and ε(G), respectively.

We can draw a graph G on a plane
∑

by representing each vertex u of G by

a point p(u), p(u) 6= p(v) if u 6= v and an edge (u, v) by a plane curve connecting

points p(u) and p(v) on
∑

, where p : G→ P is a mapping from the graph G to P .

For example, a graphG = (V,E; I) with V = {v1, v2, v3, v4}, E = {e1, e2, e3, e4, e5,
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e6, e7, e8, e9, e10} and I(ei) = (vi, vi), 1 ≤ i ≤ 4; I(e5) = (v1, v2) = (v2, v1), I(e8) =

(v3, v4) = (v4, v3), I(e6) = I(e7) = (v2, v3) = (v3, v2), I(e8) = I(e9) = (v4, v1) =

(v1, v4) can be drawn on a plane as shown in Fig.2.1

Fig 2.1

In a graph G = (V,E; I), for ∀e ∈ E, if I(e) = (u, u), u ∈ V , then e is called

a loop. For ∀e1, e2 ∈ E, if I(e1) = I(e2) and they are not loops, then e1 and e2 are

called multiple edges of G. A graph is simple if it is loopless and without multiple

edges, i.e., ∀e1, e2 ∈ E(Γ), I(e1) 6= I(e2) if e1 6= e2 and for ∀e ∈ E, if I(e) = (u, v),

then u 6= v. In a simple graph, an edge (u, v) can be abbreviated to uv.

An edge e ∈ E(G) can be divided into two semi-arcs eu, ev if I(e) = (u, v). Call

u the root vertex of the semi-arc eu. Two semi-arc eu, fv are said to be v-incident

or e−incident if u = v or e = f . The set of all semi-arcs of a graph G is denoted by

X 1
2
(G).

A walk of a graph Γ is an alternating sequence of vertices and edges u1, e1, u2, e2,

· · · , en, un1 with ei = (ui, ui+1) for 1 ≤ i ≤ n. The number n is the length of the

walk. If u1 = un+1, the walk is said to be closed, and open otherwise. For example,

v1e1v1e5v2e6v3e3v3e7v2e2v2 is a walk in Fig.2.1. A walk is called a trail if all its edges

are distinct and a path if all the vertices are distinct. A closed path is said to be a

circuit.

A graph G = (V,E; I) is connected if there is a path connecting any two vertices

in this graph. In a graph, a maximal connected subgraph is called a component.

A graph G is k-connected if removing vertices less than k from G still remains a

connected graph. Let G be a graph. For ∀u ∈ V (G), the neighborhood NG(u) of
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the vertex u in G is defined by NG(u) = {v|∀(u, v) ∈ E(G)}. The cardinal number

|NG(u)| is called the valency of the vertex u in the graph G and denoted by ρG(u). A

vertex v with ρG(v) = 0 is called an isolated vertex and ρG(v) = 1 a pendent vertex.

Now we arrange all vertices valency ofG as a sequence ρG(u) ≥ ρG(v) ≥ · · · ≥ ρG(w).

Call this sequence the valency sequence of G. By enumerating edges in E(G), the

following result holds.

∑

u∈V (G)

ρG(u) = 2|E(G)|.

Give a sequence ρ1, ρ2, · · · , ρp of non-negative integers. If there exists a graph

whose valency sequence is ρ1 ≥ ρ2 ≥ · · · ≥ ρp, then we say that ρ1, ρ2, · · · , ρp is a

graphical sequence. We have known the following results (see [11] for details).

Theorem 2.1.1(Havel,1955 and Hakimi,1962) A sequence ρ1, ρ2, · · · , ρp of non-

negative integers with ρ1 ≥ ρ2 ≥ · · · ≥ ρp, p ≥ 2, ρ1 ≥ 1 is graphical if and only if

the sequence ρ2 − 1, ρ3 − 1, · · · , ρρ1+1 − 1, ρρ1+2, · · · , ρp is graphical.

Theorem 2.1.2(Erdös and Gallai,1960) A sequence ρ1, ρ2, · · · , ρp of non-negative

integers with ρ1 ≥ ρ2 ≥ · · · ≥ ρp is graphical if and only if
p∑
i=1

ρi is even and for each

integer n, 1 ≤ n ≤ p− 1,

n∑

i=1

ρi ≤ n(n− 1) +
p∑

i=n+1

min{n, ρi}.

A graph G with a vertex set V (G) = {v1, v2, · · · , vp} and an edge set E(G) =

{e1, e2, · · · , eq} can be also described by means of matrix. One such matrix is a p×q
adjacency matrix A(G) = [aij ]p×q, where aij = |I−1(vi, vj)|. Thus, the adjacency

matrix of a graph G is symmetric and is a 0, 1-matrix having 0 entries on its main

diagonal if G is simple. For example, the adjacency matrix A(G) of the graph in

Fig.2.1 is

A(G) =




1 1 0 2

1 1 2 0

0 2 1 1

2 0 1 1




Let G1 = (V1, E1; I1) and G2 = (V2, E2; I2) be two graphs. They are identical,

denoted by G1 = G2 if V1 = V2, E1 = E2 and I1 = I2. If there exists a 1 − 1
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mapping φ : E1 → E2 and φ : V1 → V2 such that φI1(e) = I2φ(e) for ∀e ∈ E1 with

the convention that φ(u, v) = (φ(u), φ(v)), then we say that G1 is isomorphic to

G2, denoted by G1
∼= G2 and φ an isomorphism between G1 and G2. For simple

graphs H1, H2, this definition can be simplified by (u, v) ∈ I1(E1) if and only if

(φ(u), φ(v)) ∈ I2(E2) for ∀u, v ∈ V1.

For example, let G1 = (V1, E1; I1) and G2 = (V2, E2; I2) be two graphs with

V1 = {v1, v2, v3},

E1 = {e1, e2, e3, e4},

I1(e1) = (v1, v2), I1(e2) = (v2, v3), I1(e3) = (v3, v1), I1(e4) = (v1, v1)

and

V2 = {u1, u2, u3},

E2 = {f1, f2, f3, f4},

I2(f1) = (u1, u2), I2(f2) = (u2, u3), I2(f3) = (u3, u1), I2(f4) = (u2, u2),

i.e., the graphs shown in Fig.2.2.

Fig 2.2
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Then they are isomorphic since we can define a mapping φ : E1
⋃
V1 → E2

⋃
V2 by

φ(e1) = f2, φ(e2) = f3, φ(e3) = f1, φ(e4) = f4

and φ(vi) = ui for 1 ≤ i ≤ 3. It can be verified immediately that φI1(e) = I2φ(e)

for ∀e ∈ E1. Therefore, φ is an isomorphism between G1 and G2.

If G1 = G2 = G, an isomorphism between G1 and G2 is said to be an automor-

phism of G. All automorphisms of a graph G form a group under the composition

operation, i.e., φθ(x) = φ(θ(x)), where x ∈ E(G)
⋃
V (G). We denote the automor-

phism group of a graph G by AutG.

For a simple graph G of n vertices, it is easy to verify that AutG ≤ Sn, the

symmetry group action on these n vertices of G. But for non-simple graph, the

situation is more complex. The automorphism groups of graphs Km, m = |V (Km)|
and Bn, n = |E(Bn)| in Fig.2.3 are AutKm = Sm and AutBn = Sn.

Fig 2.3

For generalizing the conception of automorphisms, the semi-arc automorphisms

of a graph were introduced in [53], which is defined in the following definition.

Definition 2.1.1 A one-to-one mapping ξ on X 1
2
(G) is called a semi-arc automor-

phism of a graph G if ξ(eu) and ξ(fv) are v−incident or e−incident if eu and fv are

v−incident or e−incident for ∀eu, fv ∈ X 1
2
(G).

All semi-arc automorphisms of a graph also form a group, denoted by Aut 1
2
G.

For example, Aut 1
2
Bn = Sn[S2].

For ∀g ∈ AutG, there is an induced action g| 12 : X 1
2
(G) → X 1

2
(G) on X 1

2
(G)

defined by



60 Linfan Mao: Smarandache Multi-Spaces Theory

∀eu ∈ X 1
2
(G), g(eu) = g(e)g(u).

All induced action of elements in AutG is denoted by AutG| 12 .
The graph Bn shows that Aut 1

2
G may be not the same as AutG| 12 . However,

we get a result in the following.

Theorem 2.1.3([56]) For a graph Γ without loops,

Aut 1
2
Γ = AutΓ| 12 .

Various applications of this theorem to graphs, especially, to combinatorial

maps can be found in references [55]− [56] and [66]− [67].

2.1.2. Subgraphs in a graph

A graph H = (V1, E1; I1) is a subgraph of a graph G = (V,E; I) if V1 ⊆ V , E1 ⊆ E

and I1 : E1 → V1 × V1. We denote that H is a subgraph of G by H ⊂ G. For

example, graphs G1, G2, G3 are subgraphs of the graph G in Fig.2.4.

Fig 2.4

For a nonempty subset U of the vertex set V (G) of a graph G, the subgraph

〈U〉 of G induced by U is a graph having vertex set U and whose edge set consists of

these edges of G incident with elements of U . A subgraph H of G is called vertex-

induced if H ∼= 〈U〉 for some subset U of V (G). Similarly, for a nonempty subset

F of E(G), the subgraph 〈F 〉 induced by F in G is a graph having edge set F and

whose vertex set consists of vertices of G incident with at least one edge of F . A

subgraph H of G is edge-induced if H ∼= 〈F 〉 for some subset F of E(G). In Fig.2.4,
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subgraphs G1 and G2 are both vertex-induced subgraphs 〈{u1, u4}〉, 〈{u2, u3}〉 and

edge-induced subgraphs 〈{(u1, u4)}〉, 〈{(u2, u3)}〉.
For a subgraphH ofG, if |V (H)| = |V (G)|, thenH is called a spanning subgraph

of G. In Fig.2.4, the subgraph G3 is a spanning subgraph of the graph G. Spanning

subgraphs are useful for constructing multi-spaces on graphs, see also Section 2.4.

A spanning subgraph without circuits is called a spanning forest. It is called a

spanning tree if it is connected. The following characteristic for spanning trees of a

connected graph is well-known.

Theorem 2.1.4 A subgraph T of a connected graph G is a spanning tree if and only

if T is connected and E(T ) = |V (G)| − 1.

Proof The necessity is obvious. For its sufficiency, since T is connected and

E(T ) = |V (G)| − 1, there are no circuits in T . Whence, T is a spanning tree. ♮

A path is also a tree in which each vertex has valency 2 unless the two pendent

vertices valency 1. We denote a path with n vertices by Pn and define the length of

Pn to be n− 1. For a connected graph G, x, y ∈ V (G), the distance d(x, y) of x to

y in G is defined by

dG(x, y) = min{ |V (P (x, y))| − 1 | P (x, y) is a path connecting x and y }.

For ∀u ∈ V (G), the eccentricity eG(u) of u is defined by

eG(u) = max{ dG(u, x) |x ∈ V (G)}.

A vertex u+ is called an ultimate vertex of a vertex u if d(u, u+) = eG(u). Not loss of

generality, we arrange these eccentricities of vertices inG in an order eG(v1), eG(v2), · · · ,
eG(vn) with eG(v1) ≤ eG(v2) ≤ · · · ≤ eG(vn), where {v1, v2, · · · , vn} = V (G).

The sequence {eG(vi)}1≤i≤s is called an eccentricity sequence of G. If {e1, e2, · · · ,
es} = {eG(v1), eG(v2), · · · , eG(vn)} and e1 < e2 < · · · < es, the sequence {ei}1≤i≤s is

called an eccentricity value sequence of G. For convenience, we abbreviate an integer

sequence {r − 1 + i}1≤i≤s+1 to [r, r + s].

The radius r(G) and the diameter D(G) of G are defined by

r(G) = min{eG(u)|u ∈ V (G)} and D(G) = max{eG(u)|u ∈ V (G)},
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respectively. For a given graph G, if r(G) = D(G), then G is called a self-centered

graph, i.e., the eccentricity value sequence of G is [r(G), r(G)]. Some characteristics

of self-centered graphs can be found in [47], [64] and [108].

For ∀x ∈ V (G), we define a distance decomposition {Vi(x)}1≤i≤eG(x) of G with

root x by

G = V1(x)
⊕

V2(x)
⊕
· · ·

⊕
VeG(x)(x)

where Vi(x) = { u |d(x, u) = i, u ∈ V (G)} for any integer i, 0 ≤ i ≤ eG(x). We get

a necessary and sufficient condition for the eccentricity value sequence of a simple

graph in the following.

Theorem 2.1.5 A non-decreasing integer sequence {ri}1≤i≤s is a graphical eccen-

tricity value sequence if and only if

(i) r1 ≤ rs ≤ 2r1;

(ii) △(ri+1, ri) = |ri+1 − ri| = 1 for any integer i, 1 ≤ i ≤ s− 1.

Proof If there is a graph G whose eccentricity value sequence is {ri}1≤i≤s, then

r1 ≤ rs is trivial. Now we choose three different vertices u1, u2, u3 in G such that

eG(u1) = r1 and dG(u2, u3) = rs. By definition, we know that d(u1, u2) ≤ r1 and

d(u1, u3) ≤ r1. According to the triangle inequality for distances, we get that rs =

d(u2, u3) ≤ dG(u2, u1)+dG(u1, u3) = dG(u1, u2)+dG(u1, u3) ≤ 2r1. So r1 ≤ rs ≤ 2r1.

Assume {ei}1≤i≤s is the eccentricity value sequence of a graph G. Define△(i) =

ei+1 − ei, 1 ≤ i ≤ n − 1. We assert that 0 ≤ △(i) ≤ 1. If this assertion is

not true, then there must exists a positive integer I, 1 ≤ I ≤ n − 1 such that

△(I) = eI+1−eI ≥ 2. Choose a vertex x ∈ V (G) such that eG(x) = eI and consider

the distance decomposition {Vi(x)}0≤i≤eG(x) of G with root x.

Notice that it is obvious that eG(x) − 1 ≤ eG(u1) ≤ eG(x) + 1 for any vertex

u1 ∈ V1(G). Since △(I) ≥ 2, there does not exist a vertex with the eccentricity

eG(x) + 1. Whence, we get eG(u1) ≤ eG(x) for ∀u1 ∈ V1(x). If we have proved

that eG(uj) ≤ eG(x) for ∀uj ∈ Vj(x), 1 ≤ j < eG(x), we consider these eccentricity

values of vertices in Vj+1(x). Let uj+1 ∈ Vj+1(x). According to the definition of

{Vi(x)}0≤i≤eG(x), there must exists a vertex uj ∈ Vj(x) such that (uj, uj+1) ∈ E(G).

Now consider the distance decomposition {Vi(uj)}0≤j≤eG(u) of G with root uj. Notice

that uj+1 ∈ V1(uj). Thereby we get that



Chapter 2 Multi-Spaces on Graphs 63

eG(uj+1) ≤ eG(uj) + 1 ≤ eG(x) + 1.

Because we have assumed that there are no vertices with the eccentricity eG(x)+

1, so eG(uj+1) ≤ eG(x) for any vertex uj+1 ∈ Vj+1(x). Continuing this process, we

know that eG(y) ≤ eG(x) = eI for any vertex y ∈ V (G). But then there are no

vertices with the eccentricity eI+1, which contradicts the assumption that△(I) ≥ 2.

Therefore 0 ≤ △(i) ≤ 1 and △(ri+1, ri) = 1, 1 ≤ i ≤ s− 1.

For any integer sequence {ri}1≤i≤s with conditions (i) and (ii) hold, it can be

simply written as {r, r+1, · · · , r+ s−1} = [r, r+ s−1], where s ≤ r. We construct

a graph with the eccentricity value sequence [r, r + s− 1] in the following.

Case 1 s = 1

In this case, {ri}1≤i≤s = [r, r]. We can choose any self-centered graph with

r(G) = r, especially, the circuit C2r of order 2r. Then its eccentricity value sequence

is [r, r].

Case 2 s ≥ 2

Choose a self-centered graph H with r(H) = r, x ∈ V (H) and a path Ps =

u0u1 · · ·us−1. Define a new graph G = Ps
⊙
H as follows:

V (G) = V (Ps)
⋃
V (H) \ {u0},

E(G) = (E(Ps)
⋃{(x, u1)}

⋃
E(H) \ {(u1, u0)}

such as the graph G shown in Fig.2.5.

Fig 2.5

Then we know that eG(x) = r, eG(us−1) = r + s − 1 and r ≤ eG(x) ≤ r + s − 1

for all other vertices x ∈ V (G). Therefore, the eccentricity value sequence of G is

[r, r + s− 1]. This completes the proof. ♮
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For a given eccentricity value l, the multiplicity set NG(l) is defined by NG(l) =

{ x | x ∈ V (G), e(x) = l }. Jordan proved that the 〈NG(r(G))〉 in a tree is a vertex

or two adjacent vertices in 1869([11]). For a graph must not being a tree, we get

the following result which generalizes Jordan’s result for trees.

Theorem 2.1.6 Let {ri}1≤i≤s be a graphical eccentricity value sequence. If |NG(rI)|
= 1, then there must be I = 1, i.e., |NG(ri)| ≥ 2 for any integer i, 2 ≤ i ≤ s.

Proof Let G be a graph with the eccentricity value sequence {ri}1≤i≤s and

NG(rI) = {x0}, eG(x0) = rI . We prove that eG(x) > eG(x0) for any vertex x ∈
V (G) \ {x0}. Consider the distance decomposition {Vi(x0)}0≤i≤eG(x0) of G with root

x0. First, we prove that eG(v1) = eG(x0) + 1 for any vertex v1 ∈ V1(x0). Since

eG(x0) − 1 ≤ eG(v1) ≤ eG(x0) + 1 for any vertex v1 ∈ V1(x0), we only need to

prove that eG(v1) > eG(x0) for any vertex v1 ∈ V1(x0). In fact, since for any

ultimate vertex x+
0 of x0, we have that dG(x0, x

+
0 ) = eG(x0). So eG(x+

0 ) ≥ eG(x0).

Since NG(eG(x0)) = {x0}, x+
0 6∈ NG(eG(x0)). Therefore, eG(x+

0 ) > eG(x0). Choose

v1 ∈ V1(x0). Assume the shortest path from v1 to x+
0 is P1 = v1v2 · · · vsx+

0 and

x0 6∈ V (P1). Otherwise, we already have eG(v1) > eG(x0). Now consider the distance

decomposition {Vi(x+
0 )}0≤i≤eG(x+

0 ) of G with root x+
0 . We know that vs ∈ V1(x

+
0 ).

So we get that

eG(x+
0 )− 1 ≤ eG(vs) ≤ eG(x+

0 ) + 1.

Thereafter we get that eG(vs) ≥ eG(x+
0 )− 1 ≥ eG(x0). Because NG(eG(x0)) = {x0},

so vs 6∈ NG(eG(x0)). We finally get that eG(vs) > eG(x0).

Similarly, choose vs, vs−1, · · · , v2 to be root vertices respectively and consider

these distance decompositions of G with roots vs, vs−1, · · · , v2, we get that

eG(vs) > eG(x0),

eG(vs−1) > eG(x0),

· · · · · · · · · · · · · · · ,
and

eG(v1) > eG(x0).

Therefore, eG(v1) = eG(x0) + 1 for any vertex v1 ∈ V1(x0).

Now consider these vertices in V2(x0). For ∀v2 ∈ V2(x0), assume that v2 is

adjacent to u1, u1 ∈ V1(x0). We know that eG(v2) ≥ eG(u1) − 1 ≥ eG(x0). Since
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|NG(eG(x0))| = |NG(rI)| = 1, we get eG(v2) ≥ eG(x0) + 1.

Now assume that we have proved eG(vk) ≥ eG(x0)+1 for any vertex vk ∈ V1(x0)
⋃
V2(x0)

⋃ · · ·⋃Vk(x0) for 1 ≤ k < eG(x0). Let vk+1 ∈ Vk+1(x0) and assume that

vk+1 is adjacent to uk in Vk(x0). Then we know that eG(vk+1) ≥ eG(uk) − 1 ≥
eG(x0). Since |NG(eG(x0))| = 1, we get that eG(vk+1) ≥ eG(x0) + 1. Therefore,

eG(x) > eG(x0) for any vertex x, x ∈ V (G) \ {x0}. That is, if |NG(rI)| = 1, then

there must be I = 1. ♮

Theorem 2.1.6 is the best possible in some cases of trees. For example, the

eccentricity value sequence of a path P2r+1 is [r, 2r] and we have that |NG(r)| = 1

and |NG(k)| = 2 for r + 1 ≤ k ≤ 2r. But for graphs not being trees, we only found

some examples satisfying |NG(r1)| = 1 and |NG(ri)| > 2. A non-tree graph with

the eccentricity value sequence [2, 3] and |NG(2)| = 1 can be found in Fig.2 in the

reference [64].

For a given graph G and V1, V2 ∈ V (G), define an edge cut EG(V1, V2) by

EG(V1, V2) = { (u, v) ∈ E(G) | u ∈ V1, v ∈ V2}.

A graph G is hamiltonian if it has a circuit containing all vertices of G. This circuit

is called a hamiltonian circuit. A path containing all vertices of a graph G is called

a hamiltonian path. For hamiltonian circuits, we have the following characteristic.

Theorem 2.1.7 A circuit C of a graph G without isolated vertices is a hamil-

tonian circuit if and only if for any edge cut C, |E(C)
⋂
E(C)| ≡ 0(mod2) and

|E(C)
⋂
E(C)| ≥ 2.

Proof For any circuit C and an edge cut C, the times crossing C as we travel

along C must be even. Otherwise, we can not come back to the initial vertex. if C

is a hamiltonian circuit, then |E(C)
⋂
E(C)| 6= 0. Whence, |E(C)

⋂
E(C)| ≥ 2 and

|E(C)
⋂
E(C)| ≡ 0(mod2) for any edge cut C.

Now if a circuit C satisfies |E(C)
⋂
E(C)| ≥ 2 and |E(C)

⋂
E(C)| ≡ 0(mod2)

for any edge cut C, we prove that C is a hamiltonian circuit of G. In fact, if V (G) \
V (C) 6= ∅, choose x ∈ V (G) \ V (C). Consider an edge cut EG({x}, V (G) \ {x}).
Since ρG(x) 6= 0, we know that |EG({x}, V (G)\{x})| ≥ 1. But since V (C)

⋂
(V (G)\

V (C)) = ∅, we know that |EG({x}, V (G) \ {x}) ⋂
E(C)| = 0. Contradicts the fact
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that |E(C)
⋂
E(C)| ≥ 2 for any edge cut C. Therefore V (C) = V (G) and C is a

hamiltonian circuit of G. ♮

Let G be a simple graph. The closure of G, denoted by C(G), is a graph

obtained from G by recursively joining pairs of non-adjacent vertices whose valency

sum is at least |G| until no such pair remains. In 1976, Bondy and Chvátal proved

a very useful theorem for hamiltonian graphs.

Theorem 2.1.8([5][8]) A simple graph is hamiltonian if and only if its closure is

hamiltonian.

This theorem generalizes Dirac’s and Ore’s theorems simultaneously stated as

follows:

Dirac (1952): Every connected simple graph G of order n ≥ 3 with the minimum

valency≥ n
2

is hamiltonian.

Ore (1960): If G is a simple graph of order n ≥ 3 such that ρG(u) + ρG(v) ≥ n

for all distinct non-adjacent vertices u and v, then G is hamiltonian.

In 1984, Fan generalized Dirac’s theorem to a localized form ([41]). He proved

that

Let G be a 2-connected simple graph of order n. If Fan’s condition:

max{ρG(u), ρG(v)} ≥ n
2

holds for ∀u, v ∈ V (G) provided dG(u, v) = 2, then G is hamiltonian.

After Fan’s paper [17], many researches concentrated on weakening Fan’s con-

dition and found new localized conditions for hamiltonian graphs. For example,

those results in references [4], [48] − [50], [52], [63] and [65] are this type. The next

result on hamiltonian graphs is obtained by Shi in 1992 ([84]).

Theorem 2.1.9(Shi, 1992) Let G be a 2-connected simple graph of order n. Then

G contains a circuit passing through all vertices of valency≥ n
2
.

Proof Assume the assertion is false. Let C = v1v2 · · · vkv1 be a circuit containing

as many vertices of valency≥ n
2

as possible and with an orientation on it. For

∀v ∈ V (C), v+ denotes the successor and v− the predecessor of v on C. Set R =

V (G) \ V (C). Since G is 2-connected, there exists a path length than 2 connecting
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two vertices of C that is internally disjoint from C and containing one internal

vertex x of valency≥ n
2

at least. Assume C and P are chosen in such a way that

the length of P as small as possible. Let NR(x) = NG(x)
⋂
R, NC(x) = NG(x)

⋂
C,

N+
C (x) = {v|v− ∈ NC(x)} and N−

C (x) = {v|v+ ∈ NC(x)}.
Not loss of generality, we may assume v1 ∈ V (P )

⋂
V (C). Let vt be the other

vertex in V (P )
⋂
V (C). By the way C was chosen, there exists a vertex vs with

1 < s < t such that ρG(vs) ≥ n
2

and ρ(vi) <
n
2

for 1 < i < s.

If s ≥ 3, by the choice of C and P the sets

N−
C (vs) \ {v1}, NC(x), NR(vs), NR(x), {x, vs−1}

are pairwise disjoint, implying that

n ≥ |N−
C (vs) \ {v1}|+ |NC(x)|+ |NR(vs)|+ |NR(x)|+ |{x, vs−1}|

= ρG(vs) + ρG(x) + 1 ≥ n+ 1,

a contradiction. If s = 2, then the sets

N−
C (vs), NC(x), NR(vs), NR(x), {x}

are pairwise disjoint, which yields a similar contradiction. ♮

Three induced subgraphs used in the next result for hamiltonian graphs are

shown in Fig.2.6.

Fig 2.6

For an induced subgraph L of a simple graph G, a condition is called a localized

condition DL(l) if DL(x, y) = l implies that max{ρG(x), ρG(y)} ≥ |G|
2

for ∀x, y ∈
V (L). Then we get the following result.
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Theorem 2.1.10 Let G be a 2-connected simple graph. If the localized condition

DL(2) holds for induced subgraphs L ∼= K1.3 or Z2 in G, then G is hamiltonian.

Proof By Theorem 2.1.9, we denote by cn
2
(G) the maximum length of circuits

passing through all vertices≥ n
2
. Similar to Theorem 2.1.8, we know that for x, y ∈

V (G), if ρG(x) ≥ n
2
, ρG(y) ≥ n

2
and xy 6∈ E(G), then cn

2
(G

⋃{xy}) = cn
2
(G).

Otherwise, if cn
2
(G

⋃{xy}) > cn
2
(G), there exists a circuit of length cn

2
(G

⋃{xy}) and

passing through all vertices≥ n
2
. Let Cn

2
be such a circuit and Cn

2
= xx1x2 · · ·xsyx

with s = cn
2
(G

⋃{xy})− 2. Notice that

NG(x)
⋂

(V (G) \ V (Cn
2
(G

⋃
{xy}))) = ∅

and

NG(y)
⋂

(V (G) \ V (Cn
2
(G

⋃
{xy}))) = ∅.

If there exists an integer i, 1 ≤ i ≤ s, xxi ∈ E(G), then xi−1y 6∈ E(G). Otherwise,

there is a circuit C ′ = xxixi+1 · · ·xsyxi−1xi−2 · · ·x in G passing through all vertices≥
n
2

with length cn
2
(G

⋃{xy}). Contradicts the assumption that cn
2
(G

⋃{xy}) >

cn
2
(G). Whence,

ρG(x) + ρG(y) ≤ |V (G) \ V (C(Cn
2
))|+ |V (C(Cn

2
))| − 1 = n− 1,

also contradicts that ρG(x) ≥ n
2

and ρG(y) ≥ n
2
. Therefore, cn

2
(G

⋃{xy}) = cn
2
(G)

and generally, cn
2
(C(G)) = cn

2
(G).

Now let C be a maximal circuit passing through all vertices≥ n
2

in the closure

C(G) of G with an orientation
−→
C . According to Theorem 2.1.8, if C(G) is non-

hamiltonian, we can choose H be a component in C(G) \ C. Define NC(H) =

(
⋃
x∈H

NC(G)(x))
⋂
V (C). Since C(G) is 2-connected, we get that |NC(H)| ≥ 2. This

enables us choose vertices x1, x2 ∈ NC(H), x1 6= x2 and x1 can arrive at x2 along
−→
C . Denote by x1

−→
Cx2 the path from x1 to x2 on

−→
C and x2

←−
Cx1 the reverse. Let P

be a shortest path connecting x1, x2 in C(G) and

u1 ∈ NC(G)(x1)
⋂
V (H)

⋂
V (P ), u2 ∈ NC(G)(x2)

⋂
V (H)

⋂
V (P ).

Then
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E(C(G))
⋂

({x−1 x−2 , x+
1 x

+
2 }

⋃
EC(G)({u1, u2}, {x−1 , x+

1 , x
−
2 , x

+
2 })) = ∅

and

〈
{x−1 , x1, x

+
1 , u1}

〉
6∼= K1.3 or

〈
{x−2 , x2, x

+
2 , u2}

〉
6∼= K1.3.

Otherwise, there exists a circuit longer than C, a contradiction. To prove this

theorem, we consider two cases.

Case 1
〈
{x−1 , x1, x

+
1 , u1}

〉
6∼= K1.3 and

〈
{x−2 , x2, x

+
2 , u2}

〉
6∼= K1.3

In this case, x−1 x
+
1 ∈ E(C(G)) and x−2 x

+
2 ∈ E(C(G)). By the maximality of C

in C(G), we have two claims.

Claim 1.1 u1 = u2 = u

Otherwise, let P = x1u1y1 · · · ylu2. By the choice of P , there must be

〈
{x−1 , x1, x

+
1 , u1, y1}

〉 ∼= Z2 and
〈
{x−2 , x2, x

+
2 , u2, yl}

〉 ∼= Z2

Since C(G) also has the DL(2) property, we get that

max{ρC(G)(x
−
1 ), ρC(G)(u1)} ≥

n

2
, max{ρC(G)(x12

−), ρC(G)(u2)} ≥
n

2
.

Whence, ρC(G)(x
−
1 ) ≥ n

2
, ρC(G)(x

−
2 ) ≥ n

2
and x−1 x

−
2 ∈ E(C(G)), a contradiction.

Claim 1.2 x1x2 ∈ E(C(G))

If x1x2 6∈ E(C(G)), then
〈
{x−1 , x1, x

+
1 , u, x2}

〉 ∼= Z2. Otherwise, we get x2x
−
1 ∈

E(C(G)) or x2x
+
1 ∈ E(C(G)). But then there is a circuit

C1 = x+
2

−→
Cx−1 x2ux1

−→
Cx−2 x

+
2 or C2 = x+

2

−→
C x1ux2x

+
1

−→
Cx−2 x

+
2 .

Contradicts the maximality of C. Therefore, we know that

〈
{x−1 , x1, x

+
1 , u, x2}

〉 ∼= Z2.

By the property DL(2), we get that ρC(G)(x
−
1 ) ≥ n

2
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Similarly, consider the induced subgraph
〈
{x−2 , x2, x

+
2 , u, x2}

〉
, we get that ρC(G)(x

−
2 )

≥ n
2
. Whence, x−1 x

−
2 ∈ E(C(G)), also a contradiction. Thereby we know the struc-

ture of G as shown in Fig.2.7.

Fig 2.7

By the maximality of C in C(G), it is obvious that x−−
1 6= x+

2 . We construct

an induced subgraph sequence {Gi}1≤i≤m, m = |V (x−1
←−
Cx+

2 )| − 2 and prove there

exists an integer r, 1 ≤ r ≤ m such that Gr
∼= Z2.

First, we consider the induced subgraph G1 =
〈
{x1, u, x2, x

−
1 , x

−−
1 }

〉
. If G1

∼=
Z2, take r = 1. Otherwise, there must be

{x−1 x2, x
−−
1 x2, x

−−
1 u, x−−

1 x1}
⋂
E(C(G)) 6= ∅.

If x−1 x2 ∈ E(C(G)), or x−−
1 x2 ∈ E(C(G)), or x−−

1 u ∈ E(C(G)), there is

a circuit C3 = x−1
←−
C x+

2 x
−
2
←−
Cx1ux2x

−
1 , or C4 = x−−

1
←−
Cx+

2 x
−
2
←−
Cx+

1 x
−
1 x1ux2x

−−
1 , or

C5 = x−−
1
←−
Cx+

1 x
−
1 x1ux

−−
1 . Each of these circuits contradicts the maximality of

C. Therefore, x−−
1 x1 ∈ E(C(G)).

Now let x−1
←−
C x+

2 = x−1 y1y2 · · · ymx+
2 , where y0 = x−1 , y1 = x−−

1 and ym = x++
2 . If

we have defined an induced subgraph Gk for any integer k and have gotten yix1 ∈
E(C(G)) for any integer i, 1 ≤ i ≤ k and yk+1 6= x++

2 , then we define

Gk+1 = 〈{yk+1, yk, x1, x2, u}〉 .

If Gk+1
∼= Z2, then r = k + 1. Otherwise, there must be

{yku, ykx2, yk+1u, yk+1x2, yk+1x1}
⋂
E(C(G)) 6= ∅.

If yku ∈ E(C(G)), or ykx2 ∈ E(C(G)), or yk+1u ∈ E(C(G)), or yk+1x2 ∈
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E(C(G)), there is a circuit C6 = yk
←−
C x+

1 x
−
1
←−
C yk−1x1uyk, or C7 = yk

←−
Cx+

2 x
−
2
←−
C x+

1 x
−
1
←−
C

yk−1x1ux2yk, or C8 = yk+1
←−
Cx+

1 x
−
1
←−
C ykx1uyk+1, or C9 = yk+1

←−
C x+

2 x
−
2
←−
Cx+

1 x
−
1
←−
C ykx1u

x2yk+1. Each of these circuits contradicts the maximality of C. Thereby, yk+1x1 ∈
E(C(G)).

Continue this process. If there are no subgraphs in {Gi}1≤i≤m isomorphic to Z2,

we finally get x1x
++
2 ∈ E(C(G)). But then there is a circuit C10 = x−1

←−
Cx++

2 x1ux2x
+
2←−

C x+
1 x

−
1 in C(G). Also contradicts the maximality of C in C(G). Therefore, there

must be an integer r, 1 ≤ r ≤ m such that Gr
∼= Z2.

Similarly, let x−2
←−
Cx+

1 = x−2 z1z2 · · · ztx−1 , where t = |V (x−2
←−
Cx+

1 )| − 2, z0 =

x−2 , z
++
1 = x2, zt = x++

1 . We can also construct an induced subgraph sequence

{Gi}1≤i≤t and know that there exists an integer h, 1 ≤ h ≤ t such that Gh ∼= Z2 and

x2zi ∈ E(C(G)) for 0 ≤ i ≤ h− 1.

Since the localized condition DL(2) holds for an induced subgraph Z2 in C(G),

we get that max{ρC(G)(u), ρC(G)(yr−1)} ≥ n
2

and max{ρC(G)(u), ρC(G)(zh−1)} ≥ n
2
.

Whence ρC(G)(yr−1) ≥ n
2
, ρC(G)(zh−1) ≥ n

2
and yr−1zh−1 ∈ E(C(G)). But then there

is a circuit

C11 = yr−1
←−
Cx+

2 x
−
2

←−
C zh−2x2ux1yr−2

−→
C x−1 x

+
1

−→
C zh−1yr−1

in C(G), where if h = 1, or r = 1, x−2
←−
C zh−2 = ∅, or yr−2

−→
Cx−1 = ∅. Also contradicts

the maximality of C in C(G).

Case 2
〈
{x−1 , x1, x

+
1 , u1}

〉
6∼= K1.3,

〈
{x−2 , x2, x

+
2 , u2}

〉 ∼= K1.3 or
〈
{x−1 , x1, x

+
1 , u1}

〉 ∼=
K1.3,

〈
{x−2 , x2, x

+
2 , u2}

〉
6∼= K1.3

Not loss of generality, we assume that
〈
{x−1 , x1, x

+
1 , u1}

〉
6∼= K1.3,

〈
{x−2 , x2, x

+
2 , u2}

〉

∼= K1.3. Since each induced subgraph K1.3 in C(G) possesses DL(2), we get that

max{ρC(G)(u), ρC(G)(x
−
2 )} ≥ n

2
andmax{ρC(G)(u), ρC(G)(x

+
2 )} ≥ n

2
. Whence ρC(G)(x

−
2 )

≥ n
2
, ρC(G)(x

+
2 ) ≥ n

2
and x−2 x

+
2 ∈ E(C(G)). Therefore, the discussion of Case 1 also

holds in this case and yields similar contradictions.

Combining Case 1 with Case 2, the proof is complete. ♮

Let G, F1, F2, · · · , Fk be k + 1 graphs. If there are no induced subgraphs of

G isomorphic to Fi, 1 ≤ i ≤ k, then G is called {F1, F2, · · · , Fk}-free. we get a

immediately consequence by Theorem 2.1.10.

Corollary 2.1.1 Every 2-connected {K1.3, Z2}-free graph is hamiltonian.



72 Linfan Mao: Smarandache Multi-Spaces Theory

Let G be a graph. For ∀u ∈ V (G), ρG(u) = d, let H be a graph with d pendent

vertices v1, v2, · · · , vd. Define a splitting operator ϑ : G→ Gϑ(u) on u by

V (Gϑ(u)) = (V (G) \ {u})
⋃

(V (H) \ {v1, v2, · · · , vd}),

E(Gϑ(u)) = (E(G) \ {uxi ∈ E(G), 1 ≤ i ≤ d})
⋃

(E(H) \ {viyi ∈ E(H), 1 ≤ i ≤ d})
⋃
{xiyi, 1 ≤ i ≤ d}.

We call d the degree of the splitting operator ϑ and N(ϑ(u)) = H \ {xiyi, 1 ≤ i ≤ d}
the nucleus of ϑ . A splitting operator is shown in Fig.2.8.

Fig 2.9

Erdös and Rényi raised a question in 1961 ( [7]): in what model of random

graphs is it true that almost every graph is hamiltonian? Pósa and Korshuuov proved

independently that for some constant c almost every labelled graph with n vertices

and at least n log n edges is hamiltonian in 1974. Contrasting this probabilistic

result, there is another property for hamiltonian graphs, i.e., there is a splitting

operator ϑ such that Gϑ(u) is non-hamiltonian for ∀u ∈ V (G) of a graph G.

Theorem 2.1.11 Let G be a graph. For ∀u ∈ V (G), ρG(u) = d, there exists a

splitting operator ϑ of degree d on u such that Gϑ(u) is non-hamiltonian.

Proof For any positive integer i, define a simple graph Θi by V (Θi) = {xi, yi, zi,
ui} and E(Θi) = {xiyi, xizi, yizi, yiui, ziui}. For integers ∀i, j ≥ 1, the point product

Θi ⊙Θj of Θi and Θj is defined by

V (Θi ⊙Θj) = V (Θi)
⋃
V (Θj) \ {uj},
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E(Θi ⊙Θj) = E(Θi)
⋃
E(Θj)

⋃
{xiyj, xizj} \ {xjyj, xjzj}.

Now let Hd be a simple graph with

V (Hd) = V (Θ1 ⊙Θ2 ⊙ · · ·Θd+1)
⋃
{v1, v2, · · · , vd},

E(Hd) = E(Θ1 ⊙Θ2 ⊙ · · ·Θd+1)
⋃
{v1u1, v2u2, · · · , vdud}.

Then ϑ : G→ Gϑ(w) is a splitting operator of degree d as shown in Fig.2.10.

Fig 2.10

For any graph G and w ∈ V (G), ρG(w) = d, we prove that Gϑ(w) is non-

hamiltonian. In fact, If Gϑ(w) is a hamiltonian graph, then there must be a hamilto-

nian path P (ui, uj) connecting two vertices ui, uj for some integers i, j, 1 ≤ i, j ≤ d

in the graph Hd \ {v1, v2, · · · , vd}. However, there are no hamiltonian path connect-

ing vertices ui, uj in the graph Hd \ {v1, v2, · · · , vd} for any integer i, j, 1 ≤ i, j ≤ d.

Therefore, Gϑ(w) is non-hamiltonian. ♮

2.1.3. Classes of graphs with decomposition

(1) Typical classes of graphs

C1. Bouquets and Dipoles

In graphs, two simple cases is these graphs with one or two vertices, which are just

bouquets or dipoles. A graph Bn = (Vb, Eb; Ib) with Vb = { O }, Eb = {e1, e2, · · · , en}
and Ib(ei) = (O,O) for any integer i, 1 ≤ i ≤ n is called a bouquet of n edges.

Similarly, a graph Ds.l.t = (Vd, Ed; Id) is called a dipole if Vd = {O1, O2}, Ed =

{e1, e2, · · · , es, es+1, · · · , es+l, es+l+1, · · · , es+l+t} and
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Id(ei) =





(O1, O1), if 1 ≤ i ≤ s,

(O1, O2), if s+ 1 ≤ i ≤ s+ l,

(O2, O2), if s+ l + 1 ≤ i ≤ s+ l + t.

For example, B3 and D2,3,2 are shown in Fig.2.11.

Fig 2.11

In the past two decades, the behavior of bouquets on surfaces fascinated many

mathematicians. A typical example for its application to mathematics is the classi-

fication theorem of surfaces. By a combinatorial view, these connected sums of tori,

or these connected sums of projective planes used in this theorem are just bouquets

on surfaces. In Section 2.4, we will use them to construct completed multi-spaces.

C2. Complete graphs

A complete graph Kn = (Vc, Ec; Ic) is a simple graph with Vc = {v1, v2, · · · , vn},
Ec = {eij, 1 ≤ i, j ≤ n, i 6= j} and Ic(eij) = (vi, vj). Since Kn is simple, it can be also

defined by a pair (V,E) with V = {v1, v2, · · · , vn} and E = {vivj , 1 ≤ i, j ≤ n, i 6= j}.
The one edge graph K2 and the triangle graph K3 are both complete graphs.

A complete subgraph in a graph is called a clique. Obviously, every graph is a

union of its cliques.

C3. r-Partite graphs

A simple graph G = (V,E; I) is r-partite for an integer r ≥ 1 if it is possible to

partition V into r subsets V1, V2, · · · , Vr such that for ∀e ∈ E, I(e) = (vi, vj) for

vi ∈ Vi, vj ∈ Vj and i 6= j, 1 ≤ i, j ≤ r. Notice that by definition, there are no edges

between vertices of Vi, 1 ≤ i ≤ r. A vertex subset of this kind in a graph is called

an independent vertex subset.
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For n = 2, a 2-partite graph is also called a bipartite graph. It can be shown

that a graph is bipartite if and only if there are no odd circuits in this graph. As a

consequence, a tree or a forest is a bipartite graph since they are circuit-free.

Let G = (V,E; I) be an r-partite graph and let V1, V2, · · · , Vr be its r-partite

vertex subsets. If there is an edge eij ∈ E for ∀vi ∈ Vi and ∀vj ∈ Vj, where

1 ≤ i, j ≤ r, i 6= j such that I(e) = (vi, vj), then we call G a complete r-partite

graph, denoted by G = K(|V1|, |V2|, · · · , |Vr|). Whence, a complete graph is just a

complete 1-partite graph. For an integer n, the complete bipartite graph K(n, 1) is

called a star. For a graph G, we have an obvious formula shown in the following,

which corresponds to the neighborhood decomposition in topology.

E(G) =
⋃

x∈V (G)

EG(x,NG(x)).

C4. Regular graphs

A graph G is regular of valency k if ρG(u) = k for ∀u ∈ V (G). These graphs are also

called k-regular. There 3-regular graphs are referred to as cubic graphs. A k-regular

vertex-spanning subgraph of a graph G is also called a k-factor of G.

For a k-regular graph G, since k|V (G)| = 2|E(G)|, thereby one of k and |V (G)|
must be an even number, i.e., there are no k-regular graphs of odd order with

k ≡ 1(mod2). A complete graph Kn is (n − 1)-regular and a complete s-partite

graph K(p1, p2, · · · , ps) of order n with p1 = p2 = · · · = ps = p is (n− p)-regular.

In regular graphs, those of simple graphs with high symmetry are particularly

important to mathematics. They are related combinatorics with group theory and

crystal geometry. We briefly introduce them in the following.

Let G be a simple graph and H a subgroup of AutG. G is said to be H-vertex

transitive, H-edge transitive or H-symmetric if H acts transitively on the vertex set

V (G), the edge set E(G) or the set of ordered adjacent pairs of vertex of G. If

H = AutG, an H-vertex transitive, an H-edge transitive or an H-symmetric graph

is abbreviated to a vertex-transitive, an edge-transitive or a symmetric graph.

Now let Γ be a finite generated group and S ⊆ Γ such that 1Γ 6∈ S and

S−1 = {x−1|x ∈ S} = S. A Cayley graph Cay(Γ : S) is a simple graph with

vertex set V (G) = Γ and edge set E(G) = {(g, h)|g−1h ∈ S}. By the definition of

Cayley graphs, we know that a Cayley graph Cay(Γ : S) is complete if and only if



76 Linfan Mao: Smarandache Multi-Spaces Theory

S = Γ \ {1Γ} and connected if and only if Γ = 〈S〉.

Theorem 2.1.12 A Cayley graph Cay(Γ : S) is vertex-transitive.

Proof For ∀g ∈ Γ, define a permutation ζg on V (Cay(Γ : S)) = Γ by ζg(h) =

gh, h ∈ Γ. Then ζg is an automorphism of Cay(Γ : S) for (h, k) ∈ E(Cay(Γ : S))⇒
h−1k ∈ S ⇒ (gh)−1(gk) ∈ S ⇒ (ζg(h), ζg(k)) ∈ E(Cay(Γ : S)).

Now we know that ζkh−1(h) = (kh−1)h = k for ∀h, k ∈ Γ. Whence, Cay(Γ : S)

is vertex-transitive. ♮

Not every vertex-transitive graph is a Cayley graph of a finite group. For

example, the Petersen graph is vertex-transitive but not a Cayley graph(see [10], [21]]

and [110] for details). However, every vertex-transitive graph can be constructed

almost like a Cayley graph. This result is due to Sabidussi in 1964. The readers can

see [110] for a complete proof of this result.

Theorem 2.1.13 Let G be a vertex-transitive graph whose automorphism group is

A. Let H = Ab be the stabilizer of b ∈ V (G). Then G is isomorphic with the group-

coset graph C(A/H, S), where S is the set of all automorphisms x of G such that

(b, x(b)) ∈ E(G), V (C(A/H, S)) = A/H and E(C(A/H, S)) = {(xH, yH)|x−1y ∈
HSH}.

C5. Planar graphs

Every graph is drawn on the plane. A graph is planar if it can be drawn on the

plane in such a way that edges are disjoint expect possibly for endpoints. When

we remove vertices and edges of a planar graph G from the plane, each remained

connected region is called a face of G. The length of the boundary of a face is called

its valency. Two planar graphs are shown in Fig.2.12.

Fig 2.12
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For a planar graph G, its order, size and number of faces are related by a

well-known formula discovered by Euler.

Theorem 2.1.14 let G be a planar graph with φ(G) faces. Then

|G| − ε(G) + φ(G) = 2.

Proof We can prove this result by employing induction on ε(G). See [42] or

[23], [69] for a complete proof. ♮

For an integer s, s ≥ 3, an s-regular planar graph with the same length r for

all faces is often called an (s, r)-polyhedron, which are completely classified by the

ancient Greeks.

Theorem 2.1.15 There are exactly five polyhedrons, two of them are shown in

Fig.2.12, the others are shown in Fig.2.13.

Fig 2.13

Proof Let G be a k-regular planar graph with l faces. By definition, we know

that |G|k = φ(G)l = 2ε(G). Whence, we get that |G| = 2ε(G)
k

and φ(G) = 2ε(G)
l

.

According to Theorem 2.1.14, we get that

2ε(G)

k
− ε(G) +

2ε(G)

l
= 2.

i.e.,

ε(G) =
2

2
k
− 1 + 2

l

.
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Whence, 2
k

+ 2
l
− 1 > 0. Since k, l are both integers and k ≥ 3, l ≥ 3, if k ≥ 6, we

get

2

k
+

2

l
− 1 ≤ 2

3
+

2

6
− 1 = 0.

Contradicts that 2
k

+ 2
l
− 1 > 0. Therefore, k ≤ 5. Similarly, l ≤ 5. So we have

3 ≤ k ≤ 5 and 3 ≤ l ≤ 5. Calculation shows that all possibilities for (k, l) are

(k, l) = (3, 3), (3, 4), (3, 5), (4, 3) and (5, 3). The (3, 3) and (3, 4) polyhedrons have

be shown in Fig.2.12 and the remainder (3, 5), (4, 3) and (5, 3) polyhedrons are shown

in Fig.2.13. ♮

An elementary subdivision on a graph G is a graph obtained from G replacing

an edge e = uv by a path uwv, where, w 6∈ V (G). A subdivision of G is a graph

obtained from G by a succession of elementary subdivision. A graph H is defined

to be a homeomorphism of G if either H ∼= G or H is isomorphic to a subdivision of

G. Kuratowski found the following characterization for planar graphs in 1930. For

its a complete proof, see [9], [11] for details.

Theorem 2.1.16 A graph is planar if and only if it contains no subgraph homeo-

morphic with K5 or K(3, 3).

(2) Decomposition of graphs

A complete graph K6 with vertex set {1, 2, 3, 4, 5, 6} has two families of subgraphs

{C6, C
1
3 , C

2
3 , P

1
2 , P

2
2 , P

3
2 } and {S1.5, S1.4, S1.3, S1.2, S1.1}, such as those shown in Fig.2.14

and Fig.2.15.

Fig 2.14
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Fig 2.15

We know that

E(K6) = E(C6)
⋃
E(C1

3 )
⋃
E(C2

3)
⋃
E(P 1

2 )
⋃
E(P 2

2 )
⋃
E(P 3

2 );

E(K6) = E(S1.5)
⋃
E(S1.4)

⋃
E(S1.3)

⋃
E(S1.2)

⋃
E(S1.1).

These formulae imply the conception of decomposition of graphs. For a graph G,

a decomposition of G is a collection {Hi}1≤i≤s of subgraphs of G such that for any

integer i, 1 ≤ i ≤ s, Hi = 〈Ei〉 for some subsets Ei of E(G) and {Ei}1≤i≤s is a

partition of E(G), denoted by G = H1
⊕
H2

⊕ · · ·⊕Hs. The following result is

obvious.

Theorem 2.1.17 Any graph G can be decomposed to bouquets and dipoles, in where

K2 is seen as a dipole D0.1.0.

Theorem 2.1.18 For every positive integer n, the complete graph K2n+1 can be

decomposed to n hamiltonian circuits.

Proof For n = 1, K3 is just a hamiltonian circuit. Now let n ≥ 2 and

V (K2n+1) = {v0, v1, v2, · · · , v2n}. Arrange these vertices v1, v2, · · · , v2n on vertices

of a regular 2n-gon and place v0 in a convenient position not in the 2n-gon. For

i = 1, 2, · · · , n, we define the edge set of Hi to be consisted of v0vi, v0vn+i and edges

parallel to vivi+1 or edges parallel to vi−1vi+1, where the subscripts are expressed

modulo 2n. Then we get that

K2n+1 = H1

⊕
H2

⊕
· · ·

⊕
Hn
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with each Hi, 1 ≤ i ≤ n being a hamiltonian circuit

v0vivi+1vi−1vi+1vi−2 · · · vn+i−1vn+i+1vn+iv0. ♮

Every Cayley graph of a finite group Γ can be decomposed into 1-factors or

2-factors in a natural way as stated in the following theorems.

Theorem 2.1.19 Let G be a vertex-transitive graph and let H be a regular subgroup

of AutG. Then for any chosen vertex x, x ∈ V (G), there is a factorization

G = (
⊕

y∈NG(x),|H(x,y)|=1

(x, y)H)
⊕

(
⊕

y∈NG(x),|H(x,y)|=2

(x, y)H),

for G such that (x, y)H is a 2-factor if |H(x,y)| = 1 and a 1-factor if |H(x,y)| = 2.

Proof First, We prove the following claims.

Claim 1 ∀x ∈ V (G), xH = V (G) and Hx = 1H .

Claim 2 For ∀(x, y), (u, w) ∈ E(G), (x, y)H
⋂

(u, w)H = ∅ or (x, y)H = (u, w)H.

Claims 1 and 2 are holden by definition.

Claim 3 For ∀(x, y) ∈ E(G), |H(x,y)| = 1 or 2.

Assume that |H(x,y)| 6= 1. Since we know that (x, y)h = (x, y), i.e., (xh, yh) =

(x, y) for any element h ∈ H(x,y). Thereby we get that xh = x and yh = y or xh = y

and yh = x. For the first case we know h = 1H by Claim 1. For the second, we get

that xh
2

= x. Therefore, h2 = 1H .

Now if there exists an element g ∈ H(x,y)\{1H, h}, then we get xg = y = xh and

yg = x = yh. Thereby we get g = h by Claim 1, a contradiction. So we get that

|H(x,y)| = 2.

Claim 4 For any (x, y) ∈ E(G), if |H(x,y)| = 1, then (x, y)H is a 2-factor.

Because xH = V (G) ⊂ V (
〈
(x, y)H

〉
) ⊂ V (G), so V (

〈
(x, y)H

〉
) = V (G). There-

fore, (x, y)H is a spanning subgraph of G.

Since H acting on V (G) is transitive, there exists an element h ∈ H such that

xh = y. It is obvious that o(h) is finite and o(h) 6= 2. Otherwise, we have |H(x,y)| ≥
2, a contradiction. Now (x, y)〈h〉 = xxhxh

2 · · ·xho(h)−1
x is a circuit in the graph
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G. Consider the right coset decomposition of H on 〈h〉. Suppose H =
s⋃
i=1
〈h〉 ai,

〈h〉 ai
⋂ 〈h〉 aj = ∅, if i 6= j, and a1 = 1H .

Now let X = {a1, a2, ..., as}. We know that for any a, b ∈ X, (〈h〉 a) ⋂
(〈h〉 b) = ∅

if a 6= b. Since (x, y)〈h〉a = ((x, y)〈h〉)a and (x, y)〈h〉b = ((x, y)〈h〉)b are also circuits,

if V (
〈
(x, y)〈h〉a

〉
)
⋂
V (

〈
(x, y)〈h〉b

〉
) 6= ∅ for some a, b ∈ X, a 6= b, then there must

be two elements f, g ∈ 〈h〉 such that xfa = xgb . According to Claim 1, we get

that fa = gb, that is ab−1 ∈ 〈h〉. So 〈h〉 a = 〈h〉 b and a = b, contradicts to the

assumption that a 6= b.

Thereafter we know that (x, y)H =
⋃
a∈X

(x, y)〈h〉a is a disjoint union of circuits.

So (x, y)H is a 2-factor of the graph G.

Claim 5 For any (x, y) ∈ E(G), (x, y)H is an 1-factor if |H(x,y)| = 2.

Similar to the proof of Claim 4, we know that V (
〈
(x, y)H

〉
) = V (G) and (x, y)H

is a spanning subgraph of the graph G.

Let H(x,y) = {1H , h}, where xh = y and yh = x. Notice that (x, y)a = (x, y)

for ∀a ∈ H(x,y). Consider the coset decomposition of H on H(x,y), we know that

H =
t⋃
i=1

H(x,y)bi , where H(x,y)bi
⋂
H(x,y)bj = ∅ if i 6= j, 1 ≤ i, j ≤ t. Now let

L = {H(x,y)bi, 1 ≤ i ≤ t}. We get a decomposition

(x, y)H =
⋃

b∈L
(x, y)b

for (x, y)H. Notice that if b = H(x,y)bi ∈ L, (x, y)b is an edge of G. Now if there exist

two elements c, d ∈ L, c = H(x,y)f and d = H(x,y)g, f 6= g such that V (〈(x, y)c〉) ⋂

V (
〈
(x, y)d

〉
) 6= ∅, there must be xf = xg or xf = yg. If xf = xg, we get f = g

by Claim 1, contradicts to the assumption that f 6= g. If xf = yg = xhg, where

h ∈ H(x,y), we get f = hg and fg−1 ∈ H(x,y), so H(x,y)f = H(x,y)g. According to

the definition of L, we get f = g, also contradicts to the assumption that f 6= g.

Therefore, (x, y)H is an 1-factor of the graph G.

Now we can prove the assertion in this theorem. According to Claim 1- Claim

4, we get that

G = (
⊕

y∈NG(x),|H(x,y)|=1

(x, y)H)
⊕

(
⊕

y∈NG(x),|H(x,y)|=2

(x, y)H).
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for any chosen vertex x, x ∈ V (G). By Claims 5 and 6, we know that (x, y)H is

a 2-factor if |H(x,y)| = 1 and is a 1-factor if |H(x,y)| = 2. Whence, the desired

factorization for G is obtained. ♮

Now for a Cayley graph Cay(Γ : S), by Theorem 2.1.13, we can always choose

the vertex x = 1Γ and H the right regular transformation group on Γ. After then,

Theorem 2.1.19 can be restated as follows.

Theorem 2.1.20 Let Γ be a finite group with a subset S, S−1 = S, 1Γ 6∈ S and H

is the right transformation group on Γ. Then there is a factorization

G = (
⊕

s∈S,s2 6=1Γ

(1Γ, s)
H)

⊕
(

⊕

s∈S,s2=1Γ

(1Γ, s)
H)

for the Cayley graph Cay(Γ : S) such that (1Γ, s)
H is a 2-factor if s2 6= 1Γ and

1-factor if s2 = 1Γ.

Proof For any h ∈ H(1Γ,s), if h 6= 1Γ, then we get that 1Γh = s and sh = 1Γ, that

is s2 = 1Γ. According to Theorem 2.1.19, we get the factorization for the Cayley

graph Cay(Γ : S). ♮

More factorial properties for Cayley graphs of a finite group can be found in

the reference [51].

2.1.4. Operations on graphs

For two given graphs G1 = (V1.E1; I1) and G2 = (V2, E2; I2), there are a number of

ways to produce new graphs from G1 and G2. Some of them are described in the

following.

Operation 1. Union

The union G1
⋃
G2 of graphs G1 and G2 is defined by

V (G1

⋃
G2) = V1

⋃
V2, E(G1

⋃
G2) = E1

⋃
E2 and I(E1

⋃
E2) = I1(E1)

⋃
I2(E2).

If a graph consists of k disjoint copies of a graph H , k ≥ 1, then we write G = kH .

Therefore, we get that K6 = C6
⋃

3K2
⋃

2K3 =
5⋃
i=1

S1.i for graphs in Fig.2.14 and
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Fig.2.15 and generally, Kn =
n−1⋃
i=1

S1.i. For an integer k, k ≥ 2 and a simple graph G,

kG is a multigraph with edge multiple k by definition.

By the definition of a union of two graphs, we get decompositions for some

well-known graphs such as

Bn =
n⋃

i=1

B1(O), Dk,m,n = (
k⋃

i=1

B1(O1))
⋃

(
m⋃

i=1

K2)
⋃

(
n⋃

i=1

B1(O2)),

where V (B1)(O1) = {O1}, V (B1)(O2) = {O2} and V (K2) = {O1, O2}. By Theorem

1.18, we get that

K2n+1 =
n⋃

i=1

Hi

with Hi = v0vivi+1vi−1vi+1vi−2 · · · vn+i−1vn+i+1vn+iv0.

In Fig.2.16, we show two graphs C6 and K4 with a nonempty intersection and

their union C6
⋃
K4.

Fig 2.16

Operation 2. Join

The complement G of a graph G is a graph with the vertex set V (G) such that two

vertices are adjacent in G if and only if these vertices are not adjacent in G. The

join G1 +G2 of G1 and G2 is defined by

V (G1 +G2) = V (G1)
⋃
V (G2),

E(G1 +G2) = E(G1)
⋃
E(G2)

⋃
{(u, v)|u ∈ V (G1), v ∈ V (G2)}

and
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I(G1 +G2) = I(G1)
⋃
I(G2)

⋃
{I(u, v) = (u, v)|u ∈ V (G1), v ∈ V (G2)}.

Using this operation, we can represent K(m,n) ∼= Km + Kn. The join graph of

circuits C3 and C4 is given in Fig.2.17.

Fig 2.17

Operation 3. Cartesian product

The cartesian product G1 × G2 of graphs G1 and G2 is defined by V (G1 × G2) =

V (G1)× V (G2) and two vertices (u1, u2) and (v1, v2) of G1×G2 are adjacent if and

only if either u1 = v1 and (u2, v2) ∈ E(G2) or u2 = v2 and (u1, v1) ∈ E(G1).

For example, the cartesian product C3 × C3 of circuits C3 and C3 is shown in

Fig.2.18.

Fig 2.18

§2.2 Multi-Voltage Graphs

There is a convenient way for constructing a covering space of a graph G in topologi-

cal graph theory, i.e., by a voltage graph (G,α) of G which was firstly introduced by
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Gustin in 1963 and then generalized by Gross in 1974. Youngs extensively used volt-

age graphs in proving Heawood map coloring theorem([23]). Today, it has become

a convenient way for finding regular maps on surface. In this section, we generalize

voltage graphs to two types of multi-voltage graphs by using finite multi-groups.

2.2.1. Type 1

Definition 2.2.1 Let Γ̃ =
n⋃
i=1

Γi be a finite multi-group with an operation set O(Γ̃) =

{◦i|1 ≤ i ≤ n} and G a graph. If there is a mapping ψ : X 1
2
(G) → Γ̃ such that

ψ(e−1) = (ψ(e+))−1 for ∀e+ ∈ X 1
2
(G), then (G,ψ) is called a multi-voltage graph of

type 1.

Geometrically, a multi-voltage graph is nothing but a weighted graph with

weights in a multi-group. Similar to voltage graphs, the importance of a multi-

voltage graph is in its lifting defined in the next definition.

Definition 2.2.2 For a multi-voltage graph (G,ψ) of type 1, the lifting graph Gψ =

(V (Gψ), E(Gψ); I(Gψ)) of (G,ψ) is defined by

V (Gψ) = V (G)× Γ̃,

E(Gψ) = {(ua, va◦b)|e+ = (u, v) ∈ X 1
2
(G), ψ(e+) = b, a ◦ b ∈ Γ̃}

and

I(Gψ) = {(ua, va◦b)|I(e) = (ua, va◦b) if e = (ua, va◦b) ∈ E(Gψ)}.

For abbreviation, a vertex (x, g) in Gψ is denoted by xg. Now for ∀v ∈ V (G),

v × Γ̃ = {vg|g ∈ Γ̃} is called a fiber over v, denoted by Fv. Similarly, for ∀e+ =

(u, v) ∈ X 1
2
(G) with ψ(e+) = b, all edges {(ug, vg◦b)|g, g ◦ b ∈ Γ̃} is called the fiber

over e, denoted by Fe.

For a multi-voltage graph (G,ψ) and its lifting Gψ, there is a natural projection

p : Gψ → G defined by p(Fv) = v for ∀v ∈ V (G). It can be verfied that p(Fe) = e

for ∀e ∈ E(G).

Choose Γ̃ = Γ1
⋃

Γ2 with Γ1 = {1, a, a2}, Γ2 = {1, b, b2} and a 6= b. A multi-

voltage graph and its lifting are shown in Fig.2.19.
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Fig 2.19

Let Γ̃ =
n⋃
i=1

Γi be a finite multi-group with groups (Γi; ◦i), 1 ≤ i ≤ n. Similar

to the unique walk lifting theorem for voltage graphs, we know the following walk

multi-lifting theorem for multi-voltage graphs of type 1.

Theorem 2.2.1 Let W = e1e2 · · · ek be a walk in a multi-voltage graph (G,ψ) with

initial vertex u. Then there exists a lifting W ψ start at ua in Gψ if and only if there

are integers i1, i2, · · · , ik such that

a ◦i1 ψ(e+1 ) ◦i2 · · · ◦ij−1
ψ(e+j ) ∈ Γij+1

and ψ(e+j+1) ∈ Γij+1

for any integer j, 1 ≤ j ≤ k

Proof Consider the first semi-arc in the walk W , i.e., e+1 . Each lifting of e1

must be (ua, ua◦ψ(e+1 )). Whence, there is a lifting of e1 in Gψ if and only if there

exists an integer i1 such that ◦ = ◦i1 and a, a ◦i1 ψ(e+1 ) ∈ Γi1 .

Now if we have proved there is a lifting of a sub-walk Wl = e1e2 · · · el in Gψ if

and only if there are integers i1, i2, · · · , il, 1 ≤ l < k such that

a ◦i1 ψ(e+1 ) ◦i2 · · · ◦ij−1
ψ(e+j ) ∈ Γij+1

, ψ(e+j+1) ∈ Γij+1

for any integer j, 1 ≤ j ≤ l, we consider the semi-arc e+l+1. By definition, there is

a lifting of e+l+1 in Gψ with initial vertex ua◦i1ψ(e+1 )◦i2 ···◦ij−1
ψ(e+

l
) if and only if there

exists an integer il+1 such that

a ◦i1 ψ(e+1 ) ◦i2 · · · ◦ij−1
ψ(e+l ) ∈ Γl+1 and ψ(e+l+1) ∈ Γl+1.
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According to the induction principle, we know that there exists a lifting W ψ

start at ua in Gψ if and only if there are integers i1, i2, · · · , ik such that

a ◦i1 ψ(e+1 ) ◦i2 · · · ◦ij−1
ψ(e+j ) ∈ Γij+1

, and ψ(e+j+1) ∈ Γij+1

for any integer j, 1 ≤ j ≤ k. ♮

For two elements g, h ∈ Γ̃, if there exist integers i1, i2, · · · , ik such that g, h ∈
k⋂
j=1

Γij but for ∀ik+1 ∈ {1, 2, · · · , n}\{i1, i2, · · · , ik}, g, h 6∈
k+1⋂
j=1

Γij , we call k = Π[g, h]

the joint number of g and h. Denote O(g, h) = {◦ij ; 1 ≤ j ≤ k}. Define Π̃[g, h] =
∑

◦∈O(Γ̃)

Π[g, g ◦ h], where Π[g, g ◦ h] = Π[g ◦ h, h] = 0 if g ◦ h does not exist in Γ̃.

According to Theorem 2.2.1, we get an upper bound for the number of liftings in

Gψ for a walk W in (G,ψ).

Corollary 2.2.1 If those conditions in Theorem 2.2.1 hold, the number of liftings

of W with initial vertex ua in Gψ is not in excess of

Π̃[a, ψ(e+1 )]×
k∏

i=1

∑

◦1∈O(a,ψ(e+1 ))

· · ·
∑

◦i∈O(a;◦j ,ψ(e+
j

),1≤j≤i−1)

Π̃[a ◦1 ψ(e+1 ) ◦2 · · · ◦i ψ(e+i ), ψ(e+i+1)],

where O(a; ◦j, ψ(e+j ), 1 ≤ j ≤ i− 1) = O(a ◦1 ψ(e+1 ) ◦2 · · · ◦i−1 ψ(e+i−1), ψ(e+i )).

The natural projection of a multi-voltage graph is not regular in general. For

finding a regular covering of a graph, a typical class of multi-voltage graphs is the

case of Γi = Γ for any integer i, 1 ≤ i ≤ n in these multi-groups Γ̃ =
n⋃
i=1

Γi. In this

case, we can find the exact number of liftings in Gψ for a walk in (G,ψ).

Theorem 2.2.2 Let Γ̃ =
n⋃
i=1

Γ be a finite multi-group with groups (Γ; ◦i), 1 ≤ i ≤ n

and let W = e1e2 · · · ek be a walk in a multi-voltage graph (G,ψ) , ψ : X 1
2
(G) → Γ̃

of type 1 with initial vertex u. Then there are nk liftings of W in Gψ with initial

vertex ua for ∀a ∈ Γ̃.

Proof The existence of lifting ofW in Gψ is obvious by Theorem 2.2.1. Consider

the semi-arc e+1 . Since Γi = Γ for 1 ≤ i ≤ n, we know that there are n liftings of e1

in Gψ with initial vertex ua for any a ∈ Γ̃, each with a form (ua, ua◦ψ(e+1 )), ◦ ∈ O(Γ̃).
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Now if we have gotten ns, 1 ≤ s ≤ k − 1 liftings in Gψ for a sub-walk Ws =

e1e2 · · · es. Consider the semi-arc e+s+1. By definition we know that there are also n

liftings of es+1 in Gψ with initial vertex ua◦i1ψ(e+1 )◦i2 ···◦sψ(e+s ), where ◦i ∈ O(Γ̃), 1 ≤
i ≤ s. Whence, there are ns+1 liftings in Gψ for a sub-walk Ws = e1e2 · · · es+1 in

(G;ψ).

By the induction principle, we know the assertion is true. ♮

Corollary 2.2.2([23]) Let W be a walk in a voltage graph (G,ψ), ψ : X 1
2
(G) → Γ

with initial vertex u. Then there is an unique lifting of W in Gψ with initial vertex

ua for ∀a ∈ Γ.

If a lifting W ψ of a multi-voltage graph (G,ψ) is the same as the lifting of

a voltage graph (G,α), α : X 1
2
(G) → Γi, then this lifting is called a homogeneous

lifting of Γi. For lifting a circuit in a multi-voltage graph, we get the following result.

Theorem 2.2.3 Let Γ̃ =
n⋃
i=1

Γ be a finite multi-group with groups (Γ; ◦i), 1 ≤ i ≤ n,

C = u1u2 · · ·umu1 a circuit in a multi-voltage graph (G,ψ) and ψ : X 1
2
(G) → Γ̃.

Then there are |Γ|
o(ψ(C,◦i)) homogenous liftings of length o(ψ(C, ◦i))m in Gψ of C for

any integer i, 1 ≤ i ≤ n, where ψ(C, ◦i) = ψ(u1, u2)◦iψ(u2, u3)◦i · · ·◦iψ(um−1, um)◦i
ψ(um, u1) and there are

n∑

i=1

|Γ|
o(ψ(C, ◦i))

homogenous liftings of C in Gψ altogether.

Proof According to Theorem 2.2.2, there are liftings with initial vertex (u1)a

of C in Gψ for ∀a ∈ Γ̃. Whence, for any integer i, 1 ≤ i ≤ n, walks

Wa = (u1)a(u2)a◦iψ(u1,u2) · · · (um)a◦iψ(u1,u2)◦i···◦iψ(um−1,um)(u1)a◦iψ(C,◦i),

Wa◦iψ(C,◦i) = (u1)a◦iψ(C,◦i)(u2)a◦iψ(C,◦i)◦iψ(u1,u2)

· · · (um)a◦iψ(C,◦i)◦iψ(u1,u2)◦i···◦iψ(um−1,um)(u1)a◦iψ2(C,◦i),

· · · · · · · · · · · · · · · · · · · · · ,
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and

Wa◦iψo(ψ(C,◦i))−1(C,◦i) = (u1)a◦iψo(ψ(C,◦i))−1(C,◦i)(u2)a◦iψo(ψ(C,◦i))−1(C,◦i)◦iψ(u1,u2)

· · · (um)a◦iψo(ψ(C,◦i))−1(C,◦i)◦iψ(u1,u2)◦i···◦iψ(um−1,um)(u1)a

are attached end-to-end to form a circuit of length o(ψ(C, ◦i))m. Notice that there

are |Γ|
o(ψ(C,◦i)) left cosets of the cyclic group generated by ψ(C, ◦i) in the group (Γ, ◦i)

and each is correspondent with a homogenous lifting of C in Gψ. Therefore, we get

n∑

i=1

|Γ|
o(ψ(C, ◦i))

homogenous liftings of C in Gψ. ♮

Corollary 2.2.3([23]) Let C be a k-circuit in a voltage graph (G,ψ) such that

the order of ψ(C, ◦) is m in the voltage group (Γ; ◦). Then each component of the

preimage p−1(C) is a km-circuit, and there are |Γ|
m

such components.

The lifting Gζ of a multi-voltage graph (G, ζ) of type 1 has a natural decom-

position described in the next result.

Theorem 2.2.4 Let (G, ζ), ζ : X 1
2
(G)→ Γ̃ =

n⋃
i=1

Γi, be a multi-voltage graph of type

1. Then

Gζ =
n⊕

i=1

Hi,

where Hi is an induced subgraph 〈Ei〉 of Gζ for an integer i, 1 ≤ i ≤ n with

Ei = {(ua, va◦ib)|a, b ∈ Γi and (u, v) ∈ E(G), ζ(u, v) = b}.

For a finite multi-group Γ̃ =
n⋃
i=1

Γi with an operation set O(Γ̃) = {◦i, 1 ≤ i ≤ n}

and a graph G, if there exists a decomposition G =
n⊕
j=1

Hi and we can associate each

element gi ∈ Γi a homeomorphism ϕgi on the vertex set V (Hi) for any integer

i, 1 ≤ i ≤ n such that

(i) ϕgi◦ihi = ϕgi × ϕhi for all gi, hi ∈ Γi, where�× �is an operation between

homeomorphisms;
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(ii) ϕgi is the identity homeomorphism if and only if gi is the identity element

of the group (Γi; ◦i),
then we say this association to be a subaction of a multi-group Γ̃ on the graph G.

If there exists a subaction of Γ̃ on G such that ϕgi(u) = u only if gi = 1Γi for any

integer i, 1 ≤ i ≤ n, gi ∈ Γi and u ∈ Vi, then we call it a fixed-free subaction.

A left subaction lA of Γ̃ on Gψ is defined as follows:

For any integer i, 1 ≤ i ≤ n, let Vi = {ua|u ∈ V (G), a ∈ Γ̃} and gi ∈ Γi. Define

lA(gi)(ua) = ugi◦ia if a ∈ Vi. Otherwise, gi(ua) = ua.

Then the following result holds.

Theorem 2.2.5 Let (G,ψ) be a multi-voltage graph with ψ : X 1
2
(G) → Γ̃ =

n⋃
i=1

Γi

and G =
n⊕
j=1

Hi with Hi = 〈Ei〉, 1 ≤ i ≤ n, where Ei = {(ua, va◦ib)|a, b ∈
Γi and (u, v) ∈ E(G), ζ(u, v) = b}. Then for any integer i, 1 ≤ i ≤ n,

(i) for ∀gi ∈ Γi, the left subaction lA(gi) is a fixed-free subaction of an auto-

morphism of Hi;

(ii) Γi is an automorphism group of Hi.

Proof Notice that lA(gi) is a one-to-one mapping on V (Hi) for any integer

i, 1 ≤ i ≤ n, ∀gi ∈ Γi. By the definition of a lifting, an edge in Hi has the form

(ua, va◦ib) if a, b ∈ Γi. Whence,

(lA(gi)(ua), lA(gi)(va◦ib)) = (ugi◦ia, vgi◦ia◦ib) ∈ E(Hi).

As a result, lA(gi) is an automorphism of the graph Hi.

Notice that lA : Γi → AutHi is an injection from Γi to AutGψ. Since lA(gi) 6=
lA(hi) for ∀gi, hi ∈ Γi, gi 6= hi, 1 ≤ i ≤ n. Otherwise, if lA(gi) = lA(hi) for ∀a ∈ Γi,

then gi ◦i a = hi ◦i a. Whence, gi = hi, a contradiction. Therefore, Γi is an

automorphism group of Hi.

For any integer i, 1 ≤ i ≤ n, gi ∈ Γi, it is implied by definition that lA(gi) is a

fixed-free subaction on Gψ. This completes the proof. ♮

Corollary 2.2.4([23]) Let (G,α) be a voltage graph with α : X 1
2
(G) → Γ. Then Γ

is an automorphism group of Gα.

For a finite multi-group Γ̃ =
n⋃
i=1

Γi action on a graph G̃, the vertex orbit orb(v)
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of a vertex v ∈ V (G̃) and the edge orbit orb(e) of an edge e ∈ E(G̃) are defined as

follows:

orb(v) = {g(v)|g ∈ Γ̃} and orb(e) = {g(e)|g ∈ Γ̃}.

The quotient graph G̃/Γ̃ of G̃ under the action of Γ̃ is defined by

V (G̃/Γ̃) = { orb(v) | v ∈ V (G̃)}, E(G̃/Γ̃) = {orb(e)|e ∈ E(G̃)}

and

I(orb(e)) = (orb(u), orb(v)) if there exists (u, v) ∈ E(G̃)

.

For example, a quotient graph is shown in Fig.2.20, where, Γ̃ = Z5.

Fig 2.20

Then we get a necessary and sufficient condition for the lifting of a multi-voltage

graph in next result.

Theorem 2.2.6 If the subaction A of a finite multi-group Γ̃ =
n⋃
i=1

Γi on a graph G̃ =

n⊕
i=1

Hi is fixed-free, then there is a multi-voltage graph (G̃/Γ̃, ζ), ζ : X 1
2
(G̃/Γ̃) → Γ̃

of type 1 such that

G̃ ∼= (G̃/Γ̃)ζ .

Proof First, we choose positive directions for edges of G̃/Γ̃ and G̃ so that the

quotient map q
Γ̃

: G̃→ G̃/Γ̃ is direction-preserving and that the action A of Γ̃ on G̃

preserves directions. Next, for any integer i, 1 ≤ i ≤ n and ∀v ∈ V (G̃/Γ̃), label one

vertex of the orbit q−1

Γ̃
(v) in G̃ as v1Γi

and for every group element gi ∈ Γi, gi 6= 1Γi,

label the vertex A(gi)(v1Γi
) as vgi . Now if the edge e of G̃/Γ̃ runs from u to w, we
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assigns the label egi to the edge of the orbit q−1
Γi

(e) that originates at the vertex ugi.

Since Γi acts freely on Hi, there are just |Γi| edges in the orbit q−1
Γi

(e) for each integer

i, 1 ≤ i ≤ n, one originating at each of the vertices in the vertex orbit q−1
Γi

(v). Thus

the choice of an edge to be labelled egi is unique for any integer i, 1 ≤ i ≤ n. Finally,

if the terminal vertex of the edge e1Γi
is whi, one assigns a voltage hi to the edge e in

the quotient G̃/Γ̃, which enables us to get a multi-voltage graph (G̃/Γ̃, ζ). To show

that this labelling of edges in q−1
Γi

(e) and the choice of voltages hi, 1 ≤ i ≤ n for the

edge e really yields an isomorphism ϑ : G̃ → (G̃/Γ̃)ζ , one needs to show that for

∀gi ∈ Γi, 1 ≤ i ≤ n that the edge egi terminates at the vertex wgi◦ihi . However, since

egi = A(gi)(e1Γi
), the terminal vertex of the edge egi must be the terminal vertex of

the edge A(gi)(e1Γi
), which is

A(gi)(whi) = A(gi)A(hi)(w1Γi
) = A(gi ◦i hi)(w1Γi

) = wgi◦ihi.

Under this labelling process, the isomorphism ϑ : G̃ → (G̃/Γ̃)ζ identifies orbits in

G̃ with fibers of Gζ . Moreover, it is defined precisely so that the action of Γ̃ on G̃

is consistent with the left subaction lA on the lifting graph Gζ . This completes the

proof. ♮

Corollary 2.2.5([23]) Let Γ be a group acting freely on a graph G̃ and let G be

the resulting quotient graph. Then there is an assignment α of voltages in Γ to the

quotient graph G and a labelling of the vertices G̃ by the elements of V (G)×Γ such

that G̃ = Gα and that the given action of Γ on G̃ is the natural left action of Γ on

Gα.

2.2.2. Type 2

Definition 2.2.3 Let Γ̃ =
n⋃
i=1

Γi be a finite multi-group and let G be a graph with

vertices partition V (G) =
n⋃
i=1

Vi. For any integers i, j, 1 ≤ i, j ≤ n, if there is

a mapping τ : X 1
2
(〈EG(Vi, Vj)〉) → Γi

⋂
Γj and ς : Vi → Γi such that τ(e−1) =

(τ(e+))−1 for ∀e+ ∈ X 1
2
(G) and the vertex subset Vi is associated with the group

(Γi, ◦i) for any integer i, 1 ≤ i ≤ n, then (G, τ, ς) is called a multi-voltage graph of

type 2.

Similar to multi-voltage graphs of type 1, we construct a lifting from a multi-
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voltage graph of type 2.

Definition 2.2.4 For a multi-voltage graph (G, τ, ς) of type 2, the lifting graph

G(τ,ς) = (V (G(τ,ς)), E(G(τ,ς)); I(G(τ,ς))) of (G, τ, ς) is defined by

V (G(τ,ς)) =
n⋃

i=1

{Vi × Γi},

E(G(τ,ς)) = {(ua, va◦b)|e+ = (u, v) ∈ X 1
2
(G), ψ(e+) = b, a ◦ b ∈ Γ̃}

and

I(G(τ,ς)) = {(ua, va◦b)|I(e) = (ua, va◦b) if e = (ua, va◦b) ∈ E(G(τ,ς))}.

Two multi-voltage graphs of type 2 are shown on the left and their lifting on

the right in (a) and (b) of Fig.21. In where, Γ̃ = Z2
⋃
Z3, V1 = {u}, V2 = {v} and

ς : V1 → Z2, ς : V2 → Z3.

Fig 2.21

Theorem 2.2.7 Let (G, τ, ς) be a multi-voltage graph of type 2 and let Wk =

u1u2 · · ·uk be a walk in G. Then there exists a lifting of W (τ,ς) with an initial vertex

(u1)a, a ∈ ς−1(u1) in G(τ,ς) if and only if a ∈ ς−1(u1)
⋂
ς−1(u2) and for any integer

s, 1 ≤ s < k, a ◦i1 τ(u1u2) ◦i2 τ(u2u3) ◦i3 · · · ◦is−1 τ(us−2us−1) ∈ ς−1(us−1)
⋂
ς−1(us),

where�◦ij�is an operation in the group ς−1(uj+1) for any integer j, 1 ≤ j ≤ s.
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Proof By the definition of the lifting of a multi-voltage graph of type 2, there

exists a lifting of the edge u1u2 in G(τ,ς) if and only if a ◦i1 τ(u1u2) ∈ ς−1(u2),

where�◦ij�is an operation in the group ς−1(u2). Since τ(u1u2) ∈ ς−1(u1)
⋂
ς−1(u2),

we get that a ∈ ς−1(u1)
⋂
ς−1(u2). Similarly, there exists a lifting of the subwalk

W2 = u1u2u3 in G(τ,ς) if and only if a ∈ ς−1(u1)
⋂
ς−1(u2) and a ◦i1 τ(u1u2) ∈

ς−1(u2)
⋂
ς−1(u3).

Now assume there exists a lifting of the subwalk Wl = u1u2u3 · · ·ul in G(τ,ς)

if and only if a ◦i1 τ(u1u2) ◦i2 · · · ◦it−2 τ(ut−2ut−1) ∈ ς−1(ut−1)
⋂
ς−1(ut) for any

integer t, 1 ≤ t ≤ l, where�◦ij�is an operation in the group ς−1(uj+1) for any

integer j, 1 ≤ j ≤ l. We consider the lifting of the subwalk Wl+1 = u1u2u3 · · ·ul+1.

Notice that if there exists a lifting of the subwalk Wl in G(τ,ς), then the terminal

vertex of Wl in G(τ,ς) is (ul)a◦i1 τ(u1u2)◦i2 ···◦il−1
τ(ul−1ul). We only need to find a nec-

essary and sufficient condition for existing a lifting of ulul+1 with an initial vertex

(ul)a◦i1 τ(u1u2)◦i2 ···◦il−1
τ(ul−1ul). By definition, there exists such a lifting of the edge

ulul+1 if and only if (a◦i1 τ(u1u2)◦i2 · · · ◦il−1
)τ(ul−1ul))◦l τ(ulul+1) ∈ ς−1(ul+1). Since

τ(ulul+1) ∈ ς−1(ul+1) by the definition of multi-voltage graphs of type 2, we know

that a ◦i1 τ(u1u2) ◦i2 · · · ◦il−1
τ(ul−1ul) ∈ ς−1(ul+1).

Continuing this process, we get the assertion of this theorem by the induction

principle. ♮

Corollary 2.2.7 Let G a graph with vertices partition V (G) =
n⋃
i=1

Vi and let (Γ; ◦)
be a finite group, Γi ≺ Γ for any integer i, 1 ≤ i ≤ n. If (G, τ, ς) is a multi-voltage

graph with τ : X 1
2
(G) → Γ and ς : Vi → Γi for any integer i, 1 ≤ i ≤ n, then for a

walk W in G with an initial vertex u, there exists a lifting W (τ,ς) in G(τ,ς) with the

initial vertex ua, a ∈ ς−1(u) if and only if a ∈ ⋂
v∈V (W ) ς

−1(v).

Similar to multi-voltage graphs of type 1, we can get the exact number of liftings

of a walk in the case of Γi = Γ and Vi = V (G) for any integer i, 1 ≤ i ≤ n.

Theorem 2.2.8 Let Γ̃ =
n⋃
i=1

Γ be a finite multi-group with groups (Γ; ◦i), 1 ≤ i ≤ n

and let W = e1e2 · · · ek be a walk with an initial vertex u in a multi-voltage graph

(G, τ, ς) , τ : X 1
2
(G)→

n⋂
i=1

Γ and ς : V (G)→ Γ, of type 2. Then there are nk liftings

of W in G(τ,ς) with an initial vertex ua for ∀a ∈ Γ̃.

Proof The proof is similar to the proof of Theorem 2.2.2. ♮
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Theorem 2.2.9 Let Γ̃ =
n⋃
i=1

Γ be a finite multi-group with groups (Γ; ◦i), 1 ≤ i ≤
n, C = u1u2 · · ·umu1 a circuit in a multi-voltage graph (G, τ, ς) of type 2 where

τ : X 1
2
(G) →

n⋂
i=1

Γ and ς : V (G) → Γ. Then there are |Γ|
o(τ(C,◦i)) liftings of length

o(tau(C, ◦i))m in G(τ,ς) of C for any integer i, 1 ≤ i ≤ n, where τ(C, ◦i) = τ(u1, u2)◦i
τ(u2, u3) ◦i · · · ◦i τ(um−1, um) ◦i τ(um, u1) and there are

n∑

i=1

|Γ|
o(τ(C, ◦i))

liftings of C in G(τ,ς) altogether.

Proof The proof is similar to the proof of Theorem 2.2.3. ♮

Definition 2.2.5 Let G1, G2 be two graphs and H a subgraph of G1 and G2. A

one-to-one mapping ξ between G1 and G2 is called an H-isomorphism if for any

subgraph J isomorphic to H in G1, ξ(J) is also a subgraph isomorphic to H in G2.

If G1 = G2 = G, then an H-isomorphism between G1 and G2 is called an

H-automorphism of G. Certainly, all H-automorphisms form a group under the

composition operation, denoted by AutHG and AutHG = AutG if we take H = K2.

For example, letH = 〈E(x,NG(x))〉 for ∀x ∈ V (G). Then theH-automorphism

group of a complete bipartite graphK(n,m) is AutHK(n,m) = Sn[Sm] = AutK(n,m).

There H-automorphisms are called star-automorphisms.

Theorem 2.2.10 Let G be a graph. If there is a decomposition G =
n⊕
i=1

Hi with

Hi
∼= H for 1 ≤ i ≤ n and H =

m⊕
j=1

Jj with Jj ∼= J for 1 ≤ j ≤ m, then

(i) 〈ιi, ιi : H1 → Hi, an isomorphism, 1 ≤ i ≤ n〉 = Sn � AutHG, and par-

ticularly, Sn � AutHK2n+1 if H = C, a hamiltonian circuit in K2n+1.

(ii) AutJG � AutHG, and particularly, AutG � AutHG for a simple graph

G.

Proof (i) For any integer i, 1 ≤ i ≤ n, we prove there is a suchH-automorphism

ι on G that ιi : H1 → Hi. In fact, since Hi
∼= H , 1 ≤ i ≤ n, there is an isomorphism

θ : H1 → Hi. We define ιi as follows:

ιi(e) =




θ(e), if e ∈ V (H1)

⋃
E(H1),

e, ife ∈ (V (G) \ V (H1))
⋃

(E(G) \ E(H1)).
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Then ιi is a one-to-one mapping on the graph G and is also an H-isomorphism by

definition. Whence,

〈ιi, ιi : H1 → Hi, an isomorphism, 1 ≤ i ≤ n〉 � AutHG.

Since 〈ιi, 1 ≤ i ≤ n〉 ∼= 〈(1, i), 1 ≤ i ≤ n〉 = Sn, thereby we get that Sn �
AutHG.

For a complete graph K2n+1, we know a decomposition K2n+1 =
n⊕
i=1

Ci with

Ci = v0vivi+1vi−1vi−2 · · · vn+i−1vn+i+1vn+iv0

for any integer i, 1 ≤ i ≤ n by Theorem 2.1.18. Therefore, we get that

Sn � AutHK2n+1

if we choose a hamiltonian circuit H in K2n+1.

(ii) Choose σ ∈ AutJG. By definition, for any subgraph A of G, if A ∼= J ,

then σ(A) ∼= J . Notice that H =
m⊕
j=1

Jj with Jj ∼= J for 1 ≤ j ≤ m. Therefore,

for any subgraph B,B ∼= H of G, σ(B) ∼=
m⊕
j=1

σ(Jj) ∼= H . This fact implies that

σ ∈ AutHG.

Notice that for a simple graph G, we have a decomposition G =
ε(G)⊕
i=1

K2 and

AutK2G = AutG. Whence, AutG � AutHG. ♮

The equality in Theorem 2.2.10(ii) does not always hold. For example, a one-

to-one mapping σ on the lifting graph of Fig.2.21(a): σ(u0) = u1, σ(u1) = u0,

σ(v0) = v1, σ(v1) = v2 and σ(v2) = v0 is not an automorphism, but it is an H-

automorphism with H being a star S1.2.

For automorphisms of the lifting G(τ,ς) of a multi-voltage graph (G, τ, ς) of type

2, we get a result in the following.

Theorem 2.2.11 Let (G, τ, ς) be a multi-voltage graph of type 2 with τ : X 1
2
(G)→

n⋂
i=1

Γi and ς : Vi → Γi. Then for any integers i, j, 1 ≤ i, j ≤ n,

(i) for ∀gi ∈ Γi, the left action lA(gi) on 〈Vi〉(τ,ς) is a fixed-free action of an

automorphism of 〈Vi〉(τ,ς);
(ii) for ∀gij ∈ Γi

⋂
Γj, the left action lA(gij) on 〈EG(Vi, Vj)〉(τ,ς) is a star-

automorphism of 〈EG(Vi, Vj)〉(τ,ς).
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Proof The proof of (i) is similar to the proof of Theorem 2.2.4. We prove

the assertion (ii). A star with a central vertex ua, u ∈ Vi, a ∈ Γi
⋂

Γj is the

graph Sstar =
〈
{(ua, va◦jb) if (u, v) ∈ EG(Vi, Vj), τ(u, v) = b}

〉
. By definition, the

left action lA(gij) is a one-to-one mapping on 〈EG(Vi, Vj)〉(τ,ς). Now for any element

gij, gij ∈ Γi
⋂

Γj, the left action lA(gij) of gij on a star Sstar is

lA(gij)(Sstar) =
〈
{(ugij◦ia, v(gij◦ia)◦jb) if (u, v) ∈ EG(Vi, Vj), τ(u, v) = b}

〉
= Sstar.

Whence, lA(gij) is a star-automorphism of 〈EG(Vi, Vj)〉(τ,ς). ♮

Let G̃ be a graph and let Γ̃ =
n⋃
i=1

Γi be a finite multi-group. If there is a

partition for the vertex set V (G̃) =
n⋃
i=1

Vi such that the action of Γ̃ on G̃ consists of

Γi action on 〈Vi〉 and Γi
⋂

Γj on 〈EG(Vi, vj)〉 for 1 ≤ i, j ≤ n, then we say this action

to be a partially-action. A partially-action is called fixed-free if Γi is fixed-free on

〈Vi〉 and the action of each element in Γi
⋂

Γj is a star-automorphism and fixed-free

on 〈EG(Vi, Vj)〉 for any integers i, j, 1 ≤ i, j ≤ n. These orbits of a partially-action

are defined to be

orbi(v) = {g(v)|g ∈ Γi, v ∈ Vi}

for any integer i, 1 ≤ i ≤ n and

orb(e) = {g(e)|e ∈ E(G̃), g ∈ Γ̃}.

A partially-quotient graph G̃/pΓ̃ is defined by

V (G̃/pΓ̃) =
n⋃

i=1

{ orbi(v) | v ∈ Vi}, E(G̃/pΓ̃) = {orb(e)|e ∈ E(G̃)}

and I(G̃/pΓ̃) = {I(e) = (orbi(u), orbj(v)) if u ∈ Vi, v ∈ Vj and (u, v) ∈ E(G̃), 1 ≤
i, j ≤ n}. An example for partially-quotient graph is shown in Fig.2.22, where

V1 = {u0, u1, u2, u3}, V2 = {v0, v1, v2} and Γ1 = Z4, Γ2 = Z3.
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Fig 2.22

Then we have a necessary and sufficient condition for the lifting of a multi-

voltage graph of type 2.

Theorem 2.2.12 If the partially-action Pa of a finite multi-group Γ̃ =
n⋃
i=1

Γi on a

graph G̃, V (G̃) =
n⋃
i=1

Vi is fixed-free, then there is a multi-voltage graph (G̃/pΓ̃, τ, ς),

τ : X 1
2
(G̃/Γ̃)→ Γ̃, ς : Vi → Γi of type 2 such that

G̃ ∼= (G̃/pΓ̃)(τ,ς).

Proof Similar to the proof of Theorem 2.2.6, we also choose positive directions

on these edges of G̃/pΓ̃ and G̃ so that the partially-quotient map p
Γ̃

: G̃→ G̃/pΓ̃ is

direction-preserving and the partially-action of Γ̃ on G̃ preserves directions.

For any integer i, 1 ≤ i ≤ n and ∀vi ∈ Vi, we can label vi as vi1Γi
and for every

group element gi ∈ Γi, gi 6= 1Γi, label the vertex Pa(gi)((vi)1Γi
) as vigi . Now if the

edge e of G̃/pΓ̃ runs from u to w, we assign the label egi to the edge of the orbit

p−1(e) that originates at the vertex uigi and terminates at wjhj .

Since Γi acts freely on 〈Vi〉, there are just |Γi| edges in the orbit p−1
Γi

(e) for each

integer i, 1 ≤ i ≤ n, one originating at each of the vertices in the vertex orbit p−1
Γi

(v).

Thus for any integer i, 1 ≤ i ≤ n, the choice of an edge in p−1(e) to be labelled egi

is unique. Finally, if the terminal vertex of the edge egi is wjhj , one assigns voltage

g−1
i ◦j hj to the edge e in the partially-quotient graph G̃/pΓ̃ if gi, hj ∈ Γi

⋂
Γj for

1 ≤ i, j ≤ n.

Under this labelling process, the isomorphism ϑ : G̃ → (G̃/pΓ̃)(τ,ς) identifies

orbits in G̃ with fibers of G(τ,ς). ♮

The multi-voltage graphs defined in this section enables us to enlarge the appli-
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cation field of voltage graphs. For example, a complete bipartite graph K(n,m) is

a lifting of a multi-voltage graph, but it is not a lifting of a voltage graph in general

if n 6= m.

§2.3 Graphs in a Space

For two topological spaces E1 and E2, an embedding of E1 in E2 is a one-to-one

continuous mapping f : E1 → E2 (see [92] for details). Certainly, the same problem

can be also considered for E2 being a metric space. By a topological view, a graph is

nothing but a 1-complex, we consider the embedding problem for graphs in spaces

or on surfaces in this section. The same problem had been considered by Grümbaum

in [25]-[26] for graphs in spaces and in these references [6], [23],[42] − [44],[56], [69]

and [106] for graphs on surfaces.

2.3.1. Graphs in an n-manifold

For a positive integer n, an n-manifold Mn is a Hausdorff space such that each

point has an open neighborhood homeomorphic to an open n-dimensional ball Bn =

{(x1, x2, · · · , xn)|x2
1 +x2

2 + · · ·+x2
n < 1}. For a given graph G and an n-manifold Mn

with n ≥ 3, the embeddability of G in Mn is trivial. We characterize an embedding

of a graph in an n-dimensional manifold Mn for n ≥ 3 similar to the rotation

embedding scheme of a graph on a surface (see [23], [42] − [44], [69] for details) in

this section.

For ∀v ∈ V (G), a space permutation P (v) of v is a permutation on NG(v) =

{u1, u2, · · · , uρG(v)} and all space permutation of a vertex v is denoted by Ps(v). We

define a space permutation Ps(G) of a graph G to be

Ps(G) = {P (v)|∀v ∈ V (G), P (v) ∈ Ps(v)}

and a permutation system Ps(G) of G to be all space permutation of G. Then we

have the following characteristic for an embedded graph in an n-manifold Mn with

n ≥ 3.

Theorem 2.3.1 For an integer n ≥ 3, every space permutation Ps(G) of a graph

G defines a unique embedding of G→Mn. Conversely, every embedding of a graph

G→Mn defines a space permutation of G.



100 Linfan Mao: Smarandache Multi-Spaces Theory

Proof Assume G is embedded in an n-manifold Mn. For ∀v ∈ V (G), define

an (n − 1)-ball Bn−1(v) to be x2
1 + x2

2 + · · · + x2
n = r2 with center at v and radius

r as small as needed. Notice that all autohomeomorphisms AutBn−1(v) of Bn−1(v)

is a group under the composition operation and two points A = (x1, x2, · · · , xn)
and B = (y1, y2, · · · , yn) in Bn−1(v) are said to be combinatorially equivalent if

there exists an autohomeomorphism ς ∈ AutBn−1(v) such that ς(A) = B. Consider

intersection points of edges in EG(v,NG(v)) with Bn−1(v). We get a permutation

P (v) on these points, or equivalently on NG(v) by (A,B, · · · , C,D) being a cycle of

P (v) if and only if there exists ς ∈ AutBn−1(v) such that ς i(A) = B, · · ·, ςj(C) = D

and ς l(D) = A, where i, · · · , j, l are integers. Thereby we get a space permutation

Ps(G) of G.

Conversely, for a space permutation Ps(G), we can embed G in Mn by em-

bedding each vertex v ∈ V (G) to a point X of Mn and arranging vertices in one

cycle of Ps(G) of NG(v) as the same orbit of 〈σ〉 action on points of NG(v) for

σ ∈ AutBn−1(X). Whence we get an embedding of G in the manifold Mn. ♮

Theorem 2.3.1 establishes a relation for an embedded graph in an n-dimensional

manifold with a permutation, which enables us to give a combinatorial definition for

graphs embedded in n-dimensional manifolds, see Definition 2.3.6 in the finial part

of this section.

Corollary 2.3.1 For a graph G, the number of embeddings of G in Mn, n ≥ 3 is

∏

v∈V (G)

ρG(v)!.

For applying graphs in spaces to theoretical physics, we consider an embedding

of a graph in an manifold with some additional conditions which enables us to find

good behavior of a graph in spaces. On the first, we consider rectilinear embeddings

of a graph in an Euclid space.

Definition 2.3.1 For a given graph G and an Euclid space E, a rectilinear embedding

of G in E is a one-to-one continuous mapping π : G→ E such that

(i) for ∀e ∈ E(G), π(e) is a segment of a straight line in E;

(ii) for any two edges e1 = (u, v), e2 = (x, y) in E(G), (π(e1) \ {π(u), π(v)}) ⋂

(π(e2) \ {π(x), π(y)}) = ∅.
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In R3, a rectilinear embedding of K4 and a cube Q3 are shown in Fig.2.23.

Fig 2.23

In general, we know the following result for rectilinear embedding of G in an

Euclid space Rn, n ≥ 3.

Theorem 2.3.2 For any simple graph G of order n, there is a rectilinear embedding

of G in Rn with n ≥ 3.

Proof We only need to prove this assertion for n = 3. In R3, choose n

points (t1, t
2
1, t

3
1), (t2, t

2
2, t

3
2), · · · , (tn, t2n, t3n), where t1, t2, · · · , tn are n different real

numbers. For integers i, j, k, l, 1 ≤ i, j, k, l ≤ n, if a straight line passing through ver-

tices (ti, t
2
i , t

3
i ) and (tj , t

2
j , t

3
j ) intersects with a straight line passing through vertices

(tk, t
2
k, t

3
k) and (tl, t

2
l , t

3
l ), then there must be

∣∣∣∣∣∣∣∣∣

tk − ti tj − ti tl − tk
t2k − t2i t2j − t2i t2l − t2k
t3k − t3i t3j − t3i t3l − t3k

∣∣∣∣∣∣∣∣∣
= 0,

which implies that there exist integers s, f ∈ {k, l, i, j}, s 6= f such that ts = tf , a

contradiction.

Let V (G) = {v1, v2, · · · , vn}. We embed the graph G in R3 by a mapping

π : G→ R3 with π(vi) = (ti, t
2
i , t

3
i ) for 1 ≤ i ≤ n and if vivj ∈ E(G), define π(vivj)

being the segment between points (ti, t
2
i , t

3
i ) and (tj, t

2
j , t

3
j) of a straight line passing

through points (ti, t
2
i , t

3
i ) and (tj , t

2
j , t

3
j ). Then π is a rectilinear embedding of the

graph G in R3. ♮

For a graph G and a surface S, an immersion ι of G on S is a one-to-one

continuous mapping ι : G→ S such that for ∀e ∈ E(G), if e = (u, v), then ι(e) is a

curve connecting ι(u) and ι(v) on S. The following two definitions are generalization
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of embedding of a graph on a surface.

Definition 2.3.2 Let G be a graph and S a surface in a metric space E . A pseudo-

embedding of G on S is a one-to-one continuous mapping π : G → E such that

there exists vertices V1 ⊂ V (G), π|〈V1〉 is an immersion on S with each component

of S \ π(〈V1〉) isomorphic to an open 2-disk.

Definition 2.3.3 Let G be a graph with a vertex set partition V (G) =
k⋃
j=1

Vi,

Vi
⋂
Vj = ∅ for 1 ≤ i, j ≤ k and let S1, S2, · · · , Sk be surfaces in a metric space E

with k ≥ 1. A multi-embedding of G on S1, S2, · · · , Sk is a one-to-one continuous

mapping π : G → E such that for any integer i, 1 ≤ i ≤ k, π|〈Vi〉 is an immersion

with each component of Si \ π(〈Vi〉) isomorphic to an open 2-disk.

Notice that if π(G)
⋂

(S1
⋃
S2 · · ·

⋃
Sk) = π(V (G)), then every π : G → R3

is a multi-embedding of G. We say it to be a trivial multi-embedding of G on

S1, S2, · · · , Sk. If k = 1, then every trivial multi-embedding is a trivial pseudo-

embedding of G on S1. The main object of this section is to find nontrivial multi-

embedding of G on S1, S2, · · · , Sk with k ≥ 1. The existence pseudo-embedding of

a graph G is obvious by definition. We concentrate our attention on characteristics

of multi-embeddings of a graph.

For a graph G, let G1, G2, · · · , Gk be k vertex-induced subgraphs of G. If

V (Gi)
⋂
V (Gj) = ∅ for any integers i, j, 1 ≤ i, j ≤ k, it is called a block decomposition

of G and denoted by

G =
k⊎

i=1

Gi.

The planar block number np(G) of G is defined by

np(G) = min{k|G =
k⊎

i=1

Gi,For any integer i, 1 ≤ i ≤ k,Gi is planar}.

Then we get a result for the planar black number of a graph G in the following.

Theorem 2.3.3 A graph G has a nontrivial multi-embedding on s spheres P1, P2, · · · ,
Ps with empty overlapping if and only if np(G) ≤ s ≤ |G|.
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Proof Assume G has a nontrivial multi-embedding on spheres P1, P2, · · · , Ps.
Since |V (G)

⋂
Pi| ≥ 1 for any integer i, 1 ≤ i ≤ s, we know that

|G| =
s∑

i=1

|V (G)
⋂
Pi| ≥ s.

By definition, if π : G→ R3 is a nontrivial multi-embedding ofG on P1, P2, · · · , Ps,
then for any integer i, 1 ≤ i ≤ s, π−1(Pi) is a planar induced graph. Therefore,

G =
s⊎

i=1

π−1(Pi),

and we get that s ≥ np(G).

Now if np(G) ≤ s ≤ |G|, there is a block decomposition G =
s⊎
i=1

Gs of G such

that Gi is a planar graph for any integer i, 1 ≤ i ≤ s. Whence we can take s spheres

P1, P2, · · · , Ps and define an embedding πi : Gi → Pi of Gi on sphere Pi for any

integer i, 1 ≤ i ≤ s.

Now define an immersion π : G→ R3 of G on R3 by

π(G) = (
s⋃

i=1

π(Gi))
⋃
{(vi, vj)|vi ∈ V (Gi), vj ∈ V (Gj), (vi, vj) ∈ E(G), 1 ≤ i, j ≤ s}.

Then π : G→ R3 is a multi-embedding of G on spheres P1, P2, · · · , Ps. ♮

For example, a multi-embedding of K6 on two spheres is shown in Fig.2.24, in

where, 〈{x, y, z}〉 is on one sphere and 〈{u, v, w}〉 on another.

Fig 2.24

For a complete or a complete bipartite graph, we get the number np(G) as

follows.

Theorem 2.3.4 For any integers n,m, n,m ≥ 1, the numbers np(Kn) and np(K(m,n))

are
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np(Kn) = ⌈n
4
⌉ and np(K(m,n)) = 2,

if m ≥ 3, n ≥ 3, otherwise 1, respectively.

Proof Notice that every vertex-induced subgraph of a complete graph Kn is

also a complete graph. By Theorem 2.1.16, we know that K5 is non-planar. Thereby

we get that

np(Kn) = ⌈n
4
⌉

by definition of np(Kn). Now for a complete bipartite graph K(m,n), any vertex-

induced subgraph by choosing s and l vertices from its two partite vertex sets is still

a complete bipartite graph. According to Theorem 2.1.16, K(3, 3) is non-planar and

K(2, k) is planar. If m ≤ 2 or n ≤ 2, we get that np(K(m,n)) = 1. Otherwise,

K(m,n) is non-planar. Thereby we know that np(K(m,n)) ≥ 2.

Let V (K(m,n)) = V1
⋃
V2, where V1, V2 are its partite vertex sets. If m ≥ 3

and n ≥ 3, we choose vertices u, v ∈ V1 and x, y ∈ V2. Then the vertex-induced sub-

graphs 〈{u, v}⋃
V2 \ {x, y}〉 and 〈{x, y}⋃

V2 \ {u, v}〉 in K(m,n) are planar graphs.

Whence, np(K(m,n)) = 2 by definition. ♮

The position of surfaces S1, S2, · · · , Sk in a metric space E also influences the

existence of multi-embeddings of a graph. Among these cases an interesting case is

there exists an arrangement Si1, Si2 , · · · , Sik for S1, S2, · · · , Sk such that in E , Sij is

a subspace of Sij+1
for any integer j, 1 ≤ j ≤ k. In this case, the multi-embedding

is called an including multi-embedding of G on surfaces S1, S2, · · · , Sk.

Theorem 2.3.5 A graph G has a nontrivial including multi-embedding on spheres

P1 ⊃ P2 ⊃ · · · ⊃ Ps if and only if there is a block decomposition G =
s⊎
i=1

Gi of G

such that for any integer i, 1 < i < s,

(i) Gi is planar;

(ii) for ∀v ∈ V (Gi), NG(x) ⊆ (
i+1⋃
j=i−1

V (Gj)).

Proof Notice that in the case of spheres, if the radius of a sphere is tending to

infinite, an embedding of a graph on this sphere is tending to a planar embedding.

From this observation, we get the necessity of these conditions.
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Now if there is a block decomposition G =
s⊎
i=1

Gi of G such that Gi is planar for

any integer i, 1 < i < s and NG(x) ⊆ (
i+1⋃
j=i−1

V (Gj)) for ∀v ∈ V (Gi), we can so place

s spheres P1, P2, · · · , Ps in R3 that P1 ⊃ P2 ⊃ · · · ⊃ Ps. For any integer i, 1 ≤ i ≤ s,

we define an embedding πi : Gi → Pi of Gi on sphere Pi.

Since NG(x) ⊆ (
i+1⋃
j=i−1

V (Gj)) for ∀v ∈ V (Gi), define an immersion π : G→ R3

of G on R3 by

π(G) = (
s⋃

i=1

π(Gi))
⋃
{(vi, vj)|j = i− 1, i, i+ 1 for 1 < i < s and (vi, vj) ∈ E(G)}.

Then π : G→ R3 is a multi-embedding of G on spheres P1, P2, · · · , Ps. ♮

Corollary 2.3.2 If a graph G has a nontrivial including multi-embedding on spheres

P1 ⊃ P2 ⊃ · · · ⊃ Ps, then the diameter D(G) ≥ s− 1.

2.3.2. Graphs on a surface

In recent years, many books concern the embedding problem of graphs on surfaces,

such as Biggs and White’s [6], Gross and Tucker’s [23], Mohar and Thomassen’s [69]

and White’s [106] on embeddings of graphs on surfaces and Liu’s [42]-[44], Mao’s

[56] and Tutte’s [100] for combinatorial maps. Two disguises of graphs on surfaces,

i.e., graph embedding and combinatorial map consist of two main streams in the

development of topological graph theory in the past decades. For relations of these

disguises with Klein surfaces, differential geometry and Riemman geometry, one can

see in Mao’s [55]-[56] for details.

(1) The embedding of a graph

For a graph G = (V (G), E(G), I(G)) and a surface S, an embedding of G on S is

the case of k = 1 in Definition 2.3.3, which is also an embedding of a graph in a

2-manifold. It can be shown immediately that if there exists an embedding of G

on S, then G is connected. Otherwise, we can get a component in S \ π(G) not

isomorphic to an open 2-disk. Thereafter all graphs considered in this subsection

are connected.

Let G be a graph. For v ∈ V (G), denote all of edges incident with the vertex

v by N e
G(v) = {e1, e2, · · · , eρG(v)}. A permutation C(v) on e1, e2, · · · , eρG(v) is said a



106 Linfan Mao: Smarandache Multi-Spaces Theory

pure rotation of v. All pure rotations incident with a vertex v is denoted by ̺(v). A

pure rotation system of G is defined by

ρ(G) = {C(v)|C(v) ∈ ̺(v) for ∀v ∈ V (G)}

and all pure rotation systems of G is denoted by ̺(G).

Notice that in the case of embedded graphs on surfaces, a 1-dimensional ball

is just a circle. By Theorem 2.3.1, we get a useful characteristic for embedding of

graphs on orientable surfaces first found by Heffter in 1891 and then formulated by

Edmonds in 1962. It can be restated as follows.

Theorem 2.3.6([23]) Every pure rotation system for a graph G induces a unique

embedding of G into an orientable surface. Conversely, every embedding of a graph

G into an orientable surface induces a unique pure rotation system of G.

According to this theorem, we know that the number of all embeddings of a

graph G on orientable surfaces is
∏
v∈V (G)(ρG(v)− 1)!.

By a topological view, an embedded vertex or face can be viewed as a disk, and

an embedded edge can be viewed as a 1-band which is defined as a topological space

B together with a homeomorphism h : I×I → B, where I = [0, 1], the unit interval.

Whence, an edge in an embedded graph has two sides. One side is h((0, x)), x ∈ I.
Another is h((1, x)), x ∈ I.

For an embedded graph G on a surface, the two sides of an edge e ∈ E(G) may

lie in two different faces f1 and f2, or in one face f without a twist ,or in one face

f with a twist such as those cases (a), or (b), or (c) shown in Fig.25.

Fig 2.25
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Now we define a rotation system ρL(G) to be a pair (J , λ), where J is a pure

rotation system of G, and λ : E(G) → Z2. The edge with λ(e) = 0 or λ(e) = 1 is

called type 0 or type 1 edge, respectively. The rotation system ̺L(G) of a graph G

are defined by

̺L(G) = {(J , λ)|J ∈ ̺(G), λ : E(G)→ Z2}.

By Theorem 2.3.1 we know the following characteristic for embedding graphs

on locally orientable surfaces.

Theorem 2.3.7([23],[91]) Every rotation system on a graph G defines a unique lo-

cally orientable embedding of G → S. Conversely, every embedding of a graph

G→ S defines a rotation system for G.

Notice that in any embedding of a graph G, there exists a spanning tree T such

that every edge on this tree is type 0 (see also [23],[91] for details). Whence, the

number of all embeddings of a graph G on locally orientable surfaces is

2β(G)
∏

v∈V (G)

(ρG(v)− 1)!

and the number of all embedding of G on non-orientable surfaces is

(2β(G) − 1)
∏

v∈V (G)

(ρ(v)− 1)!.

The following result is the famous Euler-Poincaré formula for embedding a

graph on a surface.

Theorem 2.3.8 If a graph G can be embedded into a surface S, then

ν(G)− ε(G) + φ(G) = χ(S),

where ν(G), ε(G) and φ(G) are the order, size and the number of faces of G on S,

and χ(S) is the Euler characteristic of S, i.e.,

χ(S) =





2− 2p, if S is orientable,

2− q, if S is non− orientable.
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For a given graph G and a surface S, whether G embeddable on S is uncertain.

We use the notation G → S denoting that G can be embeddable on S. Define the

orientable genus range GRO(G) and the non-orientable genus range GRN(G) of a

graph G by

GRO(G) = {2− χ(S)

2
|G→ S, S is an orientable surface},

GRN(G) = {2− χ(S)|G→ S, S is a non− orientable surface},

respectively and the orientable or non-orientable genus γ(G), γ(G) by

γ(G) = min{p|p ∈ GRO(G)}, γM(G) = max{p|p ∈ GRO(G)},

γ̃(G) = min{q|q ∈ GRN(G)}, γ̃M(G) = max{q|q ∈ GRO(G)}.

Theorem 2.3.9(Duke 1966) Let G be a connected graph. Then

GRO(G) = [γ(G), γM(G)].

Proof Notice that if we delete an edge e and its adjacent faces from an embedded

graph G on a surface S, we get two holes at most, see Fig.25 also. This implies that

|φ(G)− φ(G− e)| ≤ 1.

Now assume G has been embedded on a surface of genus γ(G) and V (G) =

{u, v, · · · , w}. Consider those of edges adjacent with u. Not loss of generality, we

assume the rotation of G at vertex v is (e1, e2, · · · , eρG(u)). Construct an embedded

graph sequence G1, G2, · · · , GρG(u)! by

̺(G1) = ̺(G);

̺(G2) = (̺(G) \ {̺(u)}) ⋃{(e2, e1, e3, · · · , eρG(u))};
· · · · · · · · · · · · · · · · · · · · · · · ·;
̺(GρG(u)−1) = (̺(G) \ {̺(u)}) ⋃{(e2, e3, · · · , eρG(u), e1)};
̺(GρG(u)) = (̺(G) \ {̺(u)}) ⋃{(e3, e2, · · · , eρG(u), e1)};
· · · · · · · · · · · · · · · · · · · · · · · ·;
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̺(GρG(u)!) = (̺(G) \ {̺(u)}) ⋃{(eρG(u), · · · , e2, e1, )}.
For any integer i, 1 ≤ i ≤ ρG(u)!, since |φ(G)− φ(G− e)| ≤ 1 for ∀e ∈ E(G),

we know that |φ(Gi+1)− φ(Gi)| ≤ 1. Whence, |χ(Gi+1)− χ(Gi)| ≤ 1.

Continuing the above process for every vertex in G we finally get an embedding

of G with the maximum genus γM(G). Since in this sequence of embeddings of G,

the genus of two successive surfaces differs by at most one, we get that

GRO(G) = [γ(G), γM(G)]. ♮

The genus problem, i.e., to determine the minimum orientable or non-orientable

genus of a graph is NP-complete (see [23] for details). Ringel and Youngs got the

genus of Kn completely by current graphs (a dual form of voltage graphs) as follows.

Theorem 2.3.10 For a complete graph Kn and a complete bipartite graph K(m,n),

m,n ≥ 3,

γ(Kn) = ⌈(n− 3)(n− 4)

12
⌉ and γ(K(m,n)) = ⌈(m− 2)(n− 2)

4
⌉.

Outline proofs for γ(Kn) in Theorem 2.3.10 can be found in [42], [23],[69] and

a complete proof is contained in [81]. For a proof of γ(K(m,n)) in Theorem 2.3.10

can be also found in [42], [23],[69].

For the maximum genus γM(G) of a graph, the time needed for computation

is bounded by a polynomial function on the number of ν(G) ([23]). In 1979, Xuong

got the following result.

Theorem 2.3.11(Xuong 1979) Let G be a connected graph with n vertices and q

edges. Then

γM(G) =
1

2
(q − n+ 1)− 1

2
min
T
codd(G \ E(T )),

where the minimum is taken over all spanning trees T of G and codd(G \ E(T ))

denotes the number of components of G \ E(T ) with an odd number of edges.

In 1981, Nebeský derived another important formula for the maximum genus

of a graph. For a connected graph G and A ⊂ E(G), let c(A) be the number of

connected component of G\A and let b(A) be the number of connected components
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X of G \ A such that |E(X)| ≡ |V (X)|(mod2). With these notations, his formula

can be restated as in the next theorem.

Theorem 2.3.12(Nebeský 1981) Let G be a connected graph with n vertices and q

edges. Then

γM(G) =
1

2
(q − n+ 2)− max

A⊆E(G)
{c(A) + b(A)− |A|}.

Corollary 2.3.3 The maximum genus of Kn and K(m,n) are given by

γM(Kn) = ⌊(n− 1)(n− 2)

4
⌋ and γM(K(m,n)) = ⌊(m− 1)(n− 1)

2
⌋,

respectively.

Now we turn to non-orientable embedding of a graph G. For ∀e ∈ E(G), we

define an edge-twisting surgery ⊗(e) to be given the band of e an extra twist such

as that shown in Fig.26.

Fig 2.26

Notice that for an embedded graph G on a surface S, e ∈ E(G), if two sides

of e are in two different faces, then ⊗(e) will make these faces into one and if two

sides of e are in one face, ⊗(e) will divide the one face into two. This property of

⊗(e) enables us to get the following result for the crosscap range of a graph.

Theorem 2.3.13(Edmonds 1965, Stahl 1978) Let G be a connected graph. Then

GRN(G) = [γ̃(G), β(G)],

where β(G) = ε(G)− ν(G) + 1 is called the Betti number of G.
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Proof It can be checked immediately that γ̃(G) = γ̃M(G) = 0 for a tree G. If

G is not a tree, we have known there exists a spanning tree T such that every edge

on this tree is type 0 for any embedding of G.

Let E(G) \ E(T ) = {e1, e2, · · · , eβ(G)}. Adding the edge e1 to T , we get a

two faces embedding of T + e1. Now make edge-twisting surgery on e1. Then

we get a one face embedding of T + e1 on a surface. If we have get a one face

embedding of T + (e1 + e2 + · · · + ei), 1 ≤ i < β(G), adding the edge ei+1 to

T + (e1 + e2 + · · ·+ ei) and make ⊗(ei+1) on the edge ei+1. We also get a one face

embedding of T + (e1 + e2 + · · ·+ ei+1) on a surface again.

Continuing this process until all edges in E(G) \ E(T ) have a twist, we finally

get a one face embedding of T +(E(G) \E(T )) = G on a surface. Since the number

of twists in each circuit of this embedding of G is 1(mod2), this embedding is non-

orientable with only one face. By the Euler-Poincaré formula, we know its genus

g̃(G)

g̃(G) = 2− (ν(G)− ε(G) + 1) = β(G).

For a minimum non-orientable embedding EG of G, i.e., γ̃(EG) = γ̃(G), one can

selects an edge e that lies in two faces of the embedding EG and makes ⊗(e). Thus

in at most γ̃M(G) − γ̃(G) steps, one has obtained all of embeddings of G on every

non-orientable surface Ns with s ∈ [γ̃(G), γ̃M(G)]. Therefore,

GRN (G) = [γ̃(G), β(G)] ♮

Corollary 2.3.4 Let G be a connected graph with p vertices and q edges. Then

γ̃M(G) = q − p+ 1.

Theorem 2.3.14 For a complete graph Kn and a complete bipartite graph K(m,n),

m,n ≥ 3,

γ̃(Kn) = ⌈(n− 3)(n− 4)

6
⌉

with an exception value γ̃(K7) = 3 and
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γ̃(K(m,n)) = ⌈(m− 2)(n− 2)

2
⌉.

A complete proof of this theorem is contained in [81], Outline proofs of Theorem

2.3.14 can be found in [42].

(2) Combinatorial maps

Geometrically, an embedded graph ofG on a surface is called a combinatorial mapM

and say G underlying M . Tutte found an algebraic representation for an embedded

graph on a locally orientable surface in 1973 ([98], which transfers a geometrical

partition of a surface to a permutation in algebra.

According to the summaries in Liu’s [43] − [44], a combinatorial map M =

(Xα,β,P) is defined to be a permutation P acting on Xα,β of a disjoint union of

quadricells Kx of x ∈ X, where X is a finite set and K = {1, α, β, αβ} is Klein

4-group with the following conditions hold.

(i) ∀x ∈ Xα,β, there does not exist an integer k such that Pkx = αx;

(ii) αP = P−1α;

(iii) The group ΨJ = 〈α, β,P〉 is transitive on Xα,β.

The vertices of a combinatorial map are defined to be pairs of conjugate orbits

of P action on Xα,β, edges to be orbits of K on Xα,β and faces to be pairs of conjugate

orbits of Pαβ action on Xα,β.

For determining a map (Xα,β ,P) is orientable or not, the following condition is

needed.

(iv) If the group ΨI = 〈αβ,P〉 is transitive on Xα,β, then M is non-orientable.

Otherwise, orientable.

For example, the graph D0.4.0 (a dipole with 4 multiple edges ) on Klein bottle

shown in Fig.27,
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Fig 2.27

can be algebraic represented by a combinatorial map M = (Xα,β,P) with

Xα,β =
⋃

e∈{x,y,z,w}
{e, αe, βe, αβe},

P = (x, y, z, w)(αβx, αβy, βz, βw)

× (αx, αw, αz, αy)(βx, αβw, αβz, βy).

This map has 2 vertices v1 = {(x, y, z, w), (αx, αw, αz, αy)}, v2 = {(αβx, αβy, βz,
βw), (βx, αβw, αβz, βy)}, 4 edges e1 = {x, αx, βx, αβx}, e2 = {y, αy, βy, αβy}, e3 =

{z, αz, βz, αβz}, e4 = {w, αw, βw, αβw} and 2 faces f2 = {(x, αβy, z, βy, αx, αβw),

(βx, αw, αβx, y, βz, αy)}, f2 = {(βw, αz), (w, αβz)}. The Euler characteristic of

this map is

χ(M) = 2− 4 + 2 = 0

and ΨI = 〈αβ,P〉 is transitive on Xα,β. Thereby it is a map of D0.4.0 on a Klein

bottle with 2 faces accordance with its geometrical figure.

The following result was gotten by Tutte in [98], which establishes a relation

for an embedded graph with a combinatorial map.

Theorem 2.3.15 For an embedded graph G on a locally orientable surface S, there

exists one combinatorial map M = (Xα,β,P) with an underlying graph G and for a

combinatorial map M = (Xα,β,P), there is an embedded graph G underlying M on

S.
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Similar to the definition of a multi-voltage graph (see [56] for details), we can

define a multi-voltage map and its lifting by applying a multi-group Γ̃ =
n⋃
i=1

Γi with

Γi = Γj for any integers i, j, 1 ≤ i, j ≤ n.

Definition 2.3.4 Let Γ̃ =
n⋃
i=1

Γ be a finite multi-group with Γ = {g1, g2, · · · , gm} and

an operation set O(Γ̃) = {◦i|1 ≤ i ≤ n} and let M = (Xα,β,P) be a combinatorial

map. If there is a mapping ψ : Xα,β → Γ̃ such that

(i) for ∀x ∈ Xα,β, ∀σ ∈ K = {1, α, β, αβ}, ψ(αx) = ψ(x), ψ(βx) = ψ(αβx) =

ψ(x)−1;

(ii) for any face f = (x, y, · · · , z)(βz, · · · , βy, βx), ψ(f, i) = ψ(x)◦iψ(y)◦i · · ·◦i
ψ(z), where ◦i ∈ O(Γ̃), 1 ≤ i ≤ n and 〈ψ(f, i)|f ∈ F (v)〉 = G for ∀v ∈ V (G), where

F (v) denotes all faces incident with v,

then (M,ψ) is called a multi-voltage map.

The lifting of a multi-voltage map is defined in the next definition.

Definition 2.3.5 For a multi-voltage map (M,ψ), the lifting mapMψ = (X ψ

αψ ,βψ
,Pψ)

is defined by

X ψ

αψ ,βψ
= {xg|x ∈ Xα,β, g ∈ Γ̃},

Pψ =
∏

g∈Γ̃

∏

(x,y,···,z)(αz,···,αy,αx)∈V (M)

(xg, yg, · · · , zg)(αzg, · · · , αyg, αxg),

αψ =
∏

x∈Xα,β ,g∈Γ̃

(xg, αxg),

βψ =
m∏

i=1

∏

x∈Xα,β
(xgi, (βx)gi◦iψ(x))

with a convention that (βx)gi◦iψ(x) = ygi for some quadricells y ∈ Xα,β.
Notice that the lifting Mψ is connected and Ψψ

I =
〈
αψβψ,Pψ

〉
is transitive on

X ψ

αψ ,βψ
if and only if ΨI = 〈αβ,P〉 is transitive on Xα,β. We get a result in the

following.

Theorem 2.3.16 The Euler characteristic χ(Mψ) of the lifting map Mψ of a multi-

voltage map (M, Γ̃) is
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χ(Mψ) = |Γ|(χ(M) +
n∑

i=1

∑

f∈F (M)

(
1

o(ψ(f, ◦i))
− 1

n
)),

where F (M) and o(ψ(f, ◦i)) denote the set of faces in M and the order of ψ(f, ◦i)
in (Γ; ◦i), respectively.

Proof By definition the lifting map Mϑ has |Γ|ν(M) vertices, |Γ|ε(M) edges.

Notice that each lifting of the boundary walk of a face is a homogenous lifting by

definition of βψ. Similar to the proof of Theorem 2.2.3, we know that Mϑ has
n∑
i=1

∑
f∈F (M)

|Γ|
o(ψ(f,◦i)) faces. By the Eular-Poincaré formula we get that

χ(Mψ) = ν(Mψ)− ε(Mψ) + φ(Mψ)

= |Γ|ν(M)− |Γ|ε(M) +
n∑

i=1

∑

f∈F (M)

|Γ|
o(ψ(f, ◦i))

= |Γ|(χ(M)− φ(M) +
n∑

i=1

∑

f∈F (M)

1

o(ψ(f, ◦i))

= |G|(χ(M) +
n∑

i=1

∑

f∈F (M)

1

o(ψ(f, ◦i))
− 1

n
). ♮

Recently, more and more papers concentrated on finding regular maps on sur-

face, which are related with discrete groups, discrete geometry and crystal physics.

For this object, an important way is by the voltage assignment on a map. In this

field, general results for automorphisms of the lifting map are known, see [45]− [46]

and [71]− [72] for details. It is also an interesting problem for applying these multi-

voltage maps to finding non-regular or other maps with some constraint conditions.

Motivated by the Four Color Conjecture, Tait conjectured that every simple

3-polytope is hamiltonian in 1880. By Steinitz’s a famous result (see [24]), this con-

jecture is equivalent to that every 3-connected cubic planar graph is hamiltonian.

Tutte disproved this conjecture by giving a 3-connected non-hamiltonian cubic pla-

nar graph with 46 vertices in 1946 and proved that every 4-connected planar graph is

hamiltonian in 1956([97],[99]). In [56], Grünbaum conjectured that each 4-connected

graph embeddable in the torus or in the projective plane is hamiltonian. This conjec-

ture had been solved for the projective plane case by Thomas and Yu in 1994 ([93]).

Notice that the splitting operator ϑ constructed in the proof of Theorem 2.1.11 is a

planar operator. Applying Theorem 2.1.11 on surfaces we know that for every map
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M on a surface, Mϑ is non-hamiltonian. In fact, we can further get an interesting

result related with Tait’s conjecture.

Theorem 2.3.17 There exist infinite 3−connected non-hamiltonian cubic maps on

each locally orientable surface.

Proof Notice that there exist 3-connected triangulations on every locally ori-

entable surface S. Each dual of them is a 3-connected cubic map on S. Now we

define a splitting operator σ as shown in Fig.2.28.

Fig.2.28

For a 3-connected cubic map M , we prove that Mσ(v) is non-hamiltonian for

∀v ∈ V (M). According to Theorem 2.1.7, we only need to prove that there are no

y1 − y2, or y1 − y3, or y2 − y3 hamiltonian path in the nucleus N(σ(v)) of operator

σ.

Let H(zi) be a component of N(σ(v))\{z0zi, yi−1ui+1, yi+1vi−1} which contains

the vertex zi, 1 ≤ i ≤ 3(all these indices mod 3). If there exists a y1−y2 hamiltonian

path P in N(σ(v)), we prove that there must be a ui − vi hamiltonian path in the

subgraph H(zi) for an integer i, 1 ≤ i ≤ 3.

Since P is a hamiltonian path in N(σ(v)), there must be that v1y3u2 or u2y3v1

is a subpath of P . Now let E1 = {y1u3, z0z3, y2v3}, we know that |E(P )
⋂
E1| = 2.

Since P is a y1 − y2 hamiltonian path in the graph N(σ(v)), we must have y1u3 6∈
E(P ) or y2v3 6∈ E(P ). Otherwise, by |E(P )

⋂
S1| = 2 we get that z0z3 6∈ E(P ). But

in this case, P can not be a y1 − y2 hamiltonian path in N(σ(v)), a contradiction.



Chapter 2 Multi-Spaces on Graphs 117

Assume y2v3 6∈ E(P ). Then y2u1 ∈ E(P ). Let E2 = {u1y2, z1z0, v1y3}. We

also know that |E(P )
⋂
E2| = 2 by the assumption that P is a hamiltonian path in

N(σ(v)). Hence z0z1 6∈ E(P ) and the v1− u1 subpath in P is a v1− u1 hamiltonian

path in the subgraph H(z1).

Similarly, if y1u3 6∈ E(P ), then y1v2 ∈ E(P ). Let E3 = {y1v2, z0z2, y3u2}. We

can also get that |E(P )
⋂
E3| = 2 and a v2 − u2 hamiltonian path in the subgraph

H(z2).

Now if there is a v1 − u1 hamiltonian path in the subgraph H(z1), then the

graph H(z1) + u1v1 must be hamiltonian. According to the Grinberg’s criterion for

planar hamiltonian graphs, we know that

φ′
3 − φ”3 + 2(φ′

4 − φ”4) + 3(φ′
5 − φ”5) + 6(φ′

8 − φ”8) = 0, (∗)

where φ′
i or φ”i is the number of i-gons in the interior or exterior of a chosen

hamiltonian circuit C passing through u1v1 in the graph H(z1) + u1v1. Since it is

obvious that

φ′
3 = φ”8 = 1, φ”3 = φ′

8 = 0,

we get that

2(φ′
4 − φ”4) + 3(φ′

5 − φ”5) = 5, (∗∗)

by (*).

Because φ′
4 + φ”4 = 2, so φ′

4 − φ”4 = 0, 2 or − 2. Now the valency of z1

in H(z1) is 2, so the 4-gon containing the vertex z1 must be in the interior of C,

that is φ′
4 − φ”4 6= −2. If φ′

4 − φ”4 = 0 or φ′
4 − φ”4 = 2, we get 3(φ′

5 − φ”5) =

5 or 3(φ′
5 − φ”5) = 1, a contradiction.

Notice that H(z1) ∼= H(z2) ∼= H(z3). If there exists a v2 − u2 hamiltonian

path in H(z2), a contradiction can be also gotten. So there does not exist a y1 − y2

hamiltonian path in the graph N(σ(v)). Similarly , there are no y1 − y3 or y2 − y3

hamiltonian paths in the graph N(σ(v)). Whence, Mσ(v) is non-hamiltonian.

Now let n be an integer, n ≥ 1. We get that
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M1 = (M)σ(u), u ∈ V (M);

M2 = (M1)
N(σ(v))(v) , v ∈ V (M1);

· · · · · · · · · · · · · · · · · · · · · · · · · · · ;
Mn = (Mn−1)

N(σ(v))(w), w ∈ V (Mn−1);

· · · · · · · · · · · · · · · · · · · · · · · · · · · .

All of these maps are 3-connected non-hamiltonian cubic maps on the surface S.

This completes the proof. ♮

Corollary 2.3.5 There is not a locally orientable surface on which every 3-connected

cubic map is hamiltonian.

2.3.3. Multi-Embeddings in an n-manifold

We come back to determine multi-embeddings of graphs in this subsection. Let

S1, S2, · · · , Sk be k locally orientable surfaces and G a connected graph. Define

numbers

γ(G;S1, S2, · · · , Sk) = min{
k∑

i=1

γ(Gi)|G =
k⊎

i=1

Gi, Gi → Si, 1 ≤ i ≤ k},

γM(G;S1, S2, · · · , Sk) = max{
k∑

i=1

γ(Gi)|G =
k⊎

i=1

Gi, Gi → Si, 1 ≤ i ≤ k}.

and the multi-genus range GR(G;S1, S2, · · · , Sk) by

GR(G;S1, S2, · · · , Sk) = {
k∑

i=1

g(Gi)|G =
k⊎

i=1

Gi, Gi → Si, 1 ≤ i ≤ k},

where Gi is embeddable on a surface of genus g(Gi). Then we get the following

result.

Theorem 2.3.18 Let G be a connected graph and let S1, S2, · · · , Sk be locally ori-

entable surfaces with empty overlapping. Then
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GR(G;S1, S2, · · · , Sk) = [γ(G;S1, S2, · · · , Sk), γM(G;S1, S2, · · · , Sk)].

Proof Let G =
k⊎
i=1

Gi, Gi → Si, 1 ≤ i ≤ k. We prove that there are no gap

in the multi-genus range from γ(G1) + γ(G2) + · · ·+ γ(Gk) to γM(G1) + γM(G2) +

· · · + γM(Gk). According to Theorems 2.3.8 and 2.3.12, we know that the genus

range GRO(Gi) or GRN(G) is [γ(Gi), γM(Gi)] or [γ̃(Gi), γ̃M(Gi)] for any integer

i, 1 ≤ i ≤ k. Whence, there exists a multi-embedding of G on k locally orientable

surfaces P1, P2, · · · , Pk with g(P1) = γ(G1), g(P2) = γ(G2),· · ·, g(Pk) = γ(Gk).

Consider the graph G1, then G2, and then G3, · · · to get multi-embedding of G on

k locally orientable surfaces step by step. We get a multi-embedding of G on k

surfaces with genus sum at least being an unbroken interval [γ(G1) + γ(G2) + · · ·+
γ(Gk), γM(G1) + γM(G2) + · · ·+ γM(Gk)] of integers.

By definitions of γ(G;S1, S2, · · · , Sk) and γM(G;S1, S2, · · · , Sk), we assume that

G =
k⊎
i=1

G′
i, G

′
i → Si, 1 ≤ i ≤ k and G =

k⊎
i=1

G′′
i , G

′′
i → Si, 1 ≤ i ≤ k attain the

extremal values γ(G;S1, S2, · · · , Sk) and γM(G;S1, S2, · · · , Sk), respectively. Then

we know that the multi-embedding of G on k surfaces with genus sum is at least an

unbroken intervals [
k∑
i=1

γ(G′
i),

k∑
i=1

γM(G′
i)] and [

k∑
i=1

γ(G′′
i ),

k∑
i=1

γM(G′′
i )] of integers.

Since

k∑

i=1

g(Si) ∈ [
k∑

i=1

γ(G′
i),

k∑

i=1

γM(G′
i)]

⋂
[
k∑

i=1

γ(G′′
i ),

k∑

i=1

γM(G′′
i )],

we get that

GR(G;S1, S2, · · · , Sk) = [γ(G;S1, S2, · · · , Sk), γM(G;S1, S2, · · · , Sk)].

This completes the proof. ♮

For multi-embeddings of a complete graph, we get the following result.

Theorem 2.3.19 Let P1, P2, · · · , Pk and Q1, Q2, · · · , Qk be respective k orientable

and non-orientable surfaces of genus≥ 1. A complete graph Kn is multi-embeddable

in P1, P2, · · · , Pk with empty overlapping if and only if
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k∑

i=1

⌈
3 +

√
16g(Pi) + 1

2
⌉ ≤ n ≤

k∑

i=1

⌊
7 +

√
48g(Pi) + 1

2
⌋

and is multi-embeddable in Q1, Q2, · · · , Qk with empty overlapping if and only if

k∑

i=1

⌈1 +
√

2g(Qi)⌉ ≤ n ≤
k∑

i=1

⌊
7 +

√
24g(Qi) + 1

2
⌋.

Proof According to Theorem 2.3.9 and Corollary 2.3.2, we know that the genus

g(P ) of an orientable surface P on which a complete graphKn is embeddable satisfies

⌈(n− 3)(n− 4)

12
⌉ ≤ g(P ) ≤ ⌊(n− 1)(n− 2)

4
⌋,

i.e.,

(n− 3)(n− 4)

12
≤ g(P ) ≤ (n− 1)(n− 2)

4
.

If g(P ) ≥ 1, we get that

⌈
3 +

√
16g(P ) + 1

2
⌉ ≤ n ≤ ⌊

7 +
√

48g(P ) + 1

2
⌋.

Similarly, if Kn is embeddable on a non-orientable surface Q, then

⌈(n− 3)(n− 4)

6
⌉ ≤ g(Q) ≤ ⌊(n− 1)2

2
⌋,

i.e.,

⌈1 +
√

2g(Q)⌉ ≤ n ≤ ⌊
7 +

√
24g(Q) + 1

2
⌋.

Now if Kn is multi-embeddable in P1, P2, · · · , Pk with empty overlapping, then

there must exists a partition n = n1 + n2 + · · ·+ nk, ni ≥ 1, 1 ≤ i ≤ k. Since each

vertex-induced subgraph of a complete graph is still a complete graph, we know that

for any integer i, 1 ≤ i ≤ k,

⌈
3 +

√
16g(Pi) + 1

2
⌉ ≤ ni ≤ ⌊

7 +
√

48g(Pi) + 1

2
⌋.

Whence, we know that
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k∑

i=1

⌈
3 +

√
16g(Pi) + 1

2
⌉ ≤ n ≤

k∑

i=1

⌊
7 +

√
48g(Pi) + 1

2
⌋. (∗)

On the other hand, if the inequality (*) holds, we can find positive integers

n1, n2, · · · , nk with n = n1 + n2 + · · ·+ nk and

⌈
3 +

√
16g(Pi) + 1

2
⌉ ≤ ni ≤ ⌊

7 +
√

48g(Pi) + 1

2
⌋.

for any integer i, 1 ≤ i ≤ k. This enables us to establish a partition Kn =
k⊎
i=1

Kni for

Kn and embed each Kni on Pi for 1 ≤ i ≤ k. Therefore, we get a multi-embedding

of Kn in P1, P2, · · · , Pk with empty overlapping.

Similarly, if Kn is multi-embeddable in Q1, Q2, · · ·Qk with empty overlapping,

there must exists a partition n = m1 +m2 + · · ·+mk, mi ≥ 1, 1 ≤ i ≤ k and

⌈1 +
√

2g(Qi)⌉ ≤ mi ≤ ⌊
7 +

√
24g(Qi) + 1

2
⌋.

for any integer i, 1 ≤ i ≤ k. Whence, we get that

k∑

i=1

⌈1 +
√

2g(Qi)⌉ ≤ n ≤
k∑

i=1

⌊
7 +

√
24g(Qi) + 1

2
⌋. (∗∗)

Now if the inequality (**) holds, we can also find positive integersm1, m2, · · · , mk

with n = m1 +m2 + · · ·+mk and

⌈1 +
√

2g(Qi)⌉ ≤ mi ≤ ⌊
7 +

√
24g(Qi) + 1

2
⌋.

for any integer i, 1 ≤ i ≤ k. Similar to those of orientable cases, we get a multi-

embedding of Kn in Q1, Q2, · · · , Qk with empty overlapping. ♮

Corollary 2.3.6 A complete graph Kn is multi-embeddable in k, k ≥ 1 orientable

surfaces of genus p, p ≥ 1 with empty overlapping if and only if

⌈3 +
√

16p+ 1

2
≤ n

k
≤ ⌊7 +

√
48p+ 1

2
⌋

and is multi-embeddable in l, l ≥ 1 non-orientable surfaces of genus q, q ≥ 1 with

empty overlapping if and only if
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⌈1 +
√

2q⌉ ≤ n

k
≤ ⌊7 +

√
24q + 1

2
⌋.

Corollary 2.3.7 A complete graph Kn is multi-embeddable in s, s ≥ 1 tori with

empty overlapping if and only if

4s ≤ n ≤ 7s

and is multi-embeddable in t, t ≥ 1 projective planes with empty overlapping if and

only if

3t ≤ n ≤ 6t.

Similarly, the following result holds for a complete bipartite graph K(n, n).

Theorem 2.3.20 Let P1, P2, · · · , Pk and Q1, Q2, · · · , Qk be respective k orientable

and k non-orientable surfaces of genus≥ 1. A complete bipartite graph K(n, n) is

multi-embeddable in P1, P2, · · · , Pk with empty overlapping if and only if

k∑

i=1

⌈1 +
√

2g(Pi)⌉ ≤ n ≤
k∑

i=1

⌊2 + 2
√
g(Pi)⌋

and is multi-embeddable in Q1, Q2, · · · , Qk with empty overlapping if and only if

k∑

i=1

⌈1 +
√
g(Qi)⌉ ≤ n ≤

k∑

i=1

⌊2 +
√

2g(Qi)⌋.

Proof Similar to the proof of Theorem 2.3.18, we get this result. ♮

2.3.4. Classification of graphs in an n-manifold

By Theorem 2.3.1 we can give a combinatorial definition for a graph embedded in

an n-manifold, i.e., a manifold graph similar to the Tutte’s definition for a map.

Definition 2.3.6 For any integer n, n ≥ 2, an n-dimensional manifold graph nG is

a pair nG = (EΓ,L) in where a permutation L acting on EΓ of a disjoint union Γx =

{σx|σ ∈ Γ} for ∀x ∈ E, where E is a finite set and Γ = {µ, o|µ2 = on = 1, µo = oµ}
is a commutative group of order 2n with the following conditions hold.
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(i) ∀x ∈ EK, there does not exist an integer k such that Lkx = oix for ∀i, 1 ≤
i ≤ n− 1;

(ii) µL = L−1µ;

(iii) The group ΨJ = 〈µ, o,L〉 is transitive on EΓ.

According to (i) and (ii), a vertex v of an n-dimensional manifold graph is de-

fined to be an n-tuple {(oix1, o
ix2, · · · , oixsl(v))(oiy1, o

iy2, · · · , oiys2(v)) · · · (oiz1, oiz2,
· · · , oizsl(v)(v)); 1 ≤ i ≤ n} of permutations of L action on EΓ, edges to be these

orbits of Γ action on EΓ. The number s1(v) + s2(v) + · · · + sl(v)(v) is called the

valency of v, denoted by ρ
s1,s2,···,sl(v)
G (v). The condition (iii) is used to ensure that an

n-dimensional manifold graph is connected. Comparing definitions of a map with

an n-dimensional manifold graph, the following result holds.

Theorem 2.3.21 For any integer n, n ≥ 2, every n-dimensional manifold graph
nG = (EΓ,L) is correspondent to a unique map M = (Eα,β,P) in which each vertex

v in nG is converted to l(v) vertices v1, v2, · · · , vl(v) of M . Conversely, a map M =

(Eα,β,P) is also correspondent to an n-dimensional manifold graph nG = (EΓ,L) in

which l(v) vertices u1, u2, · · · , ul(v) of M are converted to one vertex u of nG.

Two n-dimensional manifold graphs nG1 = (E1
Γ1
,L1) and nG2 = (E2

Γ2
,L2) are

said to be isomorphic if there exists a one-to-one mapping κ : E1
Γ1
→ E2

Γ2
such that

κµ = µκ, κo = oκ and κL1 = L2κ. If E1
Γ1

= E2
Γ2

= EΓ and L1 = L2 = L, an

isomorphism between nG1 and nG2 is called an automorphism of nG = (EΓ,L). It

is immediately that all automorphisms of nG form a group under the composition

operation. We denote this group by AutnG.
It is obvious that for two isomorphic n-dimensional manifold graphs nG1 and

nG2, their underlying graphs G1 and G2 are isomorphic. For an embedding nG =

(EΓ,L) in an n-dimensional manifold and ∀ζ ∈ Aut 1
2
G, an induced action of ζ on

EΓ is defined by

ζ(gx) = gζ(x)

for ∀x ∈ EΓ and ∀g ∈ Γ. Then the following result holds.

Theorem 2.3.22 AutnG � Aut 1
2
G× 〈µ〉.
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Proof First we prove that two n-dimensional manifold graphs nG1 = (E1
Γ1
,L1)

andnG2 = (E2
Γ2
,L2) are isomorphic if and only if there is an element ζ ∈ Aut 1

2
Γ such

that Lζ1 = L2 or L−1
2 .

If there is an element ζ ∈ Aut 1
2
Γ such that Lζ1 = L2, then the n-dimensional

manifold graph nG1 is isomorphic to nG2 by definition. If Lζ1 = L−1
2 , then Lζµ1 = L2.

The n-dimensional manifold graph nG1 is also isomorphic to nG2.

By the definition of an isomorphism ξ between n-dimensional manifold graphs
nG1 and nG2, we know that

µξ(x) = ξµ(x), oξ(x) = ξo(x) and Lξ1(x) = L2(x).

∀x ∈ EΓ. By definition these conditions

oξ(x) = ξo(x) and Lξ1(x) = L2(x).

are just the condition of an automorphism ξ or αξ on X 1
2
(Γ). Whence, the assertion

is true.

Now let E1
Γ1

= E2
Γ2

= EΓ and L1 = L2 = L. We know that

AutnG � Aut 1
2
G× 〈µ〉 . ♮

Similar to combinatorial maps, the action of an automorphism of a manifold

graph on EΓ is fixed-free.

Theorem 2.3.23 Let nG = (EΓ,L) be an n-dimensional manifold graph. Then

(AutnG)x is trivial for ∀x ∈ EΓ.

Proof For ∀g ∈ (AutnG)x, we prove that g(y) = y for ∀y ∈ EΓ. In fact, since

the group ΨJ = 〈µ, o,L〉 is transitive on EΓ, there exists an element τ ∈ ΨJ such

that y = τ(x). By definition we know that every element in ΨJ is commutative with

automorphisms of nG. Whence, we get that

g(y) = g(τ(x)) = τ(g(x)) = τ(x) = y.

i.e., (AutnG)x is trivial. ♮

Corollary 2.3.8 Let M = (Xα,β,P) be a map. Then for ∀x ∈ Xα,β, (AutM)x is

trivial.
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For an n-dimensional manifold graph nG = (EΓ,L), an x ∈ EΓ is said a root

of nG. If we have chosen a root r on an n-dimensional manifold graph nG, then
nG is called a rooted n-dimensional manifold graph, denoted by nGr. Two rooted

n-dimensional manifold graphs nGr1 and nGr2 are said to be isomorphic if there is an

isomorphism ς between them such that ς(r1) = r2. Applying Theorem 2.3.23 and

Corollary 2.3.1, we get an enumeration result for n-dimensional manifold graphs

underlying a graph G in the following.

Theorem 2.3.24 For any integer n, n ≥ 3, the number rSn(G) of rooted n-dimensional

manifold graphs underlying a graph G is

rSn(G) =

nε(G)
∏

v∈V (G)
ρG(v)!

|Aut 1
2
G| .

Proof Denote the set of all non-isomorphic n-dimensional manifold graphs

underlying a graph G by GS(G). For an n-dimensional graph nG = (EΓ,L) ∈
GS(G), denote the number of non-isomorphic rooted n-dimensional manifold graphs

underlying nG by r(nG). By a result in permutation groups theory, for ∀x ∈ EΓ we

know that

|AutnG| = |(AutnG)x||xAutnG|.

According to Theorem 2.3.23, |(AutnG)x| = 1. Whence, |xAutnG| = |AutnG|.
However there are |EΓ| = 2nε(G) roots in nG by definition. Therefore, the number of

non-isomorphic rooted n-dimensional manifold graphs underlying an n-dimensional

graph nG is

r(nG) =
|EΓ|
|AutnG| =

2nε(G)

|AutnG| .

Whence, the number of non-isomorphic rooted n-dimensional manifold graphs un-

derlying a graph G is

rSn(G) =
∑

nG∈GS(G)

2nε(G)

|AutnG| .

According to Theorem 2.3.22, AutnG � Aut 1
2
G × 〈µ〉. Whence τ ∈ AutnG for

nG ∈ GS(G) if and only if τ ∈ (Aut 1
2
G× 〈µ〉)nG. Therefore, we know that AutnG =
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(Aut 1
2
G× 〈µ〉)nG. Because of |Aut 1

2
G× 〈µ〉 | = |(Aut 1

2
G× 〈µ〉)nG||nG

Aut 1
2
G×〈µ〉|, we

get that

|nGAut 1
2
G×〈µ〉| =

2|Aut 1
2
G|

|AutnG| .

Therefore,

rSn(G) =
∑

nG∈GS(G)

2nε(G)

|AutnG|

=
2nε(G)

|Aut1
2
G× 〈µ〉 |

∑

nG∈GS(G)

|Aut 1
2
G× 〈µ〉 |

|AutnG|

=
2nε(G)

|Aut1
2
G× 〈µ〉 |

∑

nG∈GS(G)

|nGAut 1
2
G×〈µ〉|

=

nε(G)
∏

v∈V (G)
ρG(v)!

|Aut 1
2
G|

by applying Corollary 2.3.1. ♮

Notice the fact that an embedded graph in a 2-dimensional manifolds is just a

map. Then Definition 3.6 is converted to Tutte’s definition for combinatorial maps

in this case. We can also get an enumeration result for rooted maps on surfaces

underlying a graph G by applying Theorems 2.3.7 and 2.3.23 in the following.

Theorem 2.3.25([66],[67]) The number rL(Γ) of rooted maps on locally orientable

surfaces underlying a connected graph G is

rL(G) =

2β(G)+1ε(G)
∏

v∈V (G)
(ρ(v)− 1)!

|Aut 1
2
G| ,

where β(G) = ε(G)− ν(G) + 1 is the Betti number of G.

Similarly, for a graph G =
l⊕

i=1
Gi and a multi-manifold M̃ =

l⋃
i=1

Mli , choose l

commutative groups Γ1,Γ2, · · · ,Γl, where Γi =
〈
µi, oi|µ2

i = ohi = 1
〉

for any integer

i, 1 ≤ i ≤ l. Consider permutations acting on
l⋃
i=1
EΓi, where for any integer i, 1 ≤ i ≤

l, EΓi is a disjoint union Γix = {σix|σi ∈ Γ} for ∀x ∈ E(Gi). Similar to Definition

2.3.6, we can also get a multi-embedding of G in M̃ =
l⋃
i=1

Mhi.
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§2.4 Multi-Spaces on Graphs

A Smarandache multi-space is a union of k spaces A1, A2, · · · , Ak for an integer

k, k ≥ 2 with some additional constraint conditions. For describing a finite algebraic

multi-space, graphs are a useful way. All graphs considered in this section are

directed graphs.

2.4.1. A graph model for an operation system

A graph is called a directed graph if there is an orientation on its every edge. A

directed graph
−→
G is called an Euler graph if we can travel all edges of

−→
G alone

orientations on its edges with no repeat starting at any vertex u ∈ V (
−→
G ) and come

back to u. For a directed graph
−→
G , we use the convention that the orientation on

the edge e is u → v for ∀e = (u, v) ∈ E(
−→
G) and say that e is incident from u and

incident to v. For u ∈ V (
−→
G), the outdegree ρ+−→

G
(u) of u is the number of edges in

−→
G

incident from u and the indegree ρ−−→
G

(u) of u is the number of edges in
−→
G incident

to u. Whence, we know that

ρ+−→
G

(u) + ρ−−→
G

(u) = ρ−→
G

(u).

It is well-known that a graph
−→
G is Eulerian if and only if ρ+−→

G
(u) = ρ−−→

G
(u) for

∀u ∈ V (
−→
G ), seeing examples in [11] for details. For a multiple 2-edge (a, b), if two

orientations on edges are both to a or both to b, then we say it to be a parallel

multiple 2-edge. If one orientation is to a and another is to b, then we say it to be

an opposite multiple 2-edge.

Now let (A; ◦) be an algebraic system with operation�◦�. We associate a

weighted graph G[A] for (A; ◦) defined as in the next definition.

Definition 2.4.1 Let (A; ◦) be an algebraic system. Define a weighted graph G[A]

associated with (A; ◦) by

V (G[A]) = A

and

E(G[A]) = {(a, c) with weight ◦ b | if a ◦ b = c for ∀a, b, c ∈ A}
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as shown in Fig.2.29.

Fig.2.29

For example, the associated graph G[Z4] for the commutative group Z4 is shown

in Fig.2.30.

Fig.2.30

The advantage of Definition 2.4.1 is that for any edge in G[A], if its vertices are

a,c with a weight ◦b, then a◦b = c and vice versa, if a◦b = c, then there is one and

only one edge in G[A] with vertices a, c and weight ◦b. This property enables us to

find some structure properties of G[A] for an algebraic system (A; ◦).

P1. G[A] is connected if and only if there are no partition A = A1
⋃
A2 such that

for ∀a1 ∈ A1, ∀a2 ∈ A2, there are no definition for a1 ◦ a2 in (A; ◦).

If G[A] is disconnected, we choose one component C and let A1 = V (C). Define

A2 = V (G[A]) \ V (C). Then we get a partition A = A1
⋃
A2 and for ∀a1 ∈ A1,

∀a2 ∈ A2, there are no definition for a1 ◦a2 in (A; ◦), a contradiction and vice versa.

P2. If there is a unit 1A in (A; ◦), then there exists a vertex 1A in G[A] such that

the weight on the edge (1A, x) is ◦x if 1A ◦ x is defined in (A; ◦) and vice versa.

P3. For ∀a ∈ A, if a−1 exists, then there is an opposite multiple 2-edge (1A, a) in

G[A] with weights ◦a and ◦a−1, respectively and vice versa.
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P4. For ∀a, b ∈ A if a ◦ b = b ◦ a, then there are edges (a, x) and (b, x), x ∈ A in

(A; ◦) with weights w(a, x) = ◦b and w(b, x) = ◦a, respectively and vice versa.

P5. If the cancellation law holds in (A; ◦), i.e., for ∀a, b, c ∈ A, if a ◦ b = a ◦ c then

b = c, then there are no parallel multiple 2-edges in G[A] and vice versa.

The property P2, P3, P4 and P5 are gotten by definition. Each of these cases

is shown in Fig.2.31(1), (2), (3) and (4), respectively.

Fig.2.31

Definition 2.4.2 An algebraic system (A; ◦) is called to be a one-way system if

there exists a mapping ̟ : A→ A such that if a ◦ b ∈ A, then there exists a unique

c ∈ A, c ◦̟(b) ∈ A. ̟ is called a one-way function on (A; ◦).

We have the following results for an algebraic system (A; ◦) with its associated

weighted graph G[A].

Theorem 2.4.1 Let (A; ◦) be an algebraic system with a associated weighted graph

G[A]. Then

(i) if there is a one-way function ̟ on (A; ◦), then G[A] is an Euler graph,

and vice versa, if G[A] is an Euler graph, then there exist a one-way function ̟ on

(A; ◦).
(ii) if (A; ◦) is a complete algebraic system, then the outdegree of every vertex

in G[A] is |A|; in addition, if the cancellation law holds in (A; ◦), then G[A] is a

complete multiple 2-graph with a loop attaching at each of its vertices such that each

edge between two vertices in G[A] is an opposite multiple 2-edge, and vice versa.

Proof (i) Assume ̟ is a one-way function ̟ on (A; ◦). By definition there

exists c ∈ A, c ◦ ̟(b) ∈ A for ∀a ∈ A, a ◦ b ∈ A. Thereby there is a one-to-one
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correspondence between edges from a with edges to a. That is, ρ+
G[A](a) = ρ−G[A](a)

for ∀a ∈ V (G[A]). Therefore, G[A] is an Euler graph.

Now if G[A] is an Euler graph, then there is a one-to-one correspondence be-

tween edges in E− = {e−i ; 1 ≤ i ≤ k} from a vertex a with edges E+ = {e+i ; 1 ≤
i ≤ k} to the vertex a. For any integer i, 1 ≤ i ≤ k, define ̟ : w(e−i ) → w(e+i ).

Therefore, ̟ is a well-defined one-way function on (A; ◦).
(ii) If (A; ◦) is complete, then for ∀a ∈ A and ∀b ∈ A, a ◦ b ∈ A. Therefore,

ρ+−→
G

(a) = |A| for any vertex a ∈ V (G[A]).

If the cancellation law holds in (A; ◦), by P5 there are no parallel multiple

2-edges in G[A]. Whence, each edge between two vertices is an opposite 2-edge and

weights on loops are ◦1A.

By definition, if G[A] is a complete multiple 2-graph with a loop attaching at

each of its vertices such that each edge between two vertices in G[A] is an oppo-

site multiple 2-edge, we know that (A; ◦) is a complete algebraic system with the

cancellation law holding by the definition of G[A]. ♮

Corollary 2.4.1 Let Γ be a semigroup. Then G[Γ] is a complete multiple 2-graph

with a loop attaching at each of its vertices such that each edge between two vertices

in G[A] is an opposite multiple 2-edge.

Notice that in a group Γ, ∀g ∈ Γ, if g2 6= 1Γ, then g−1 6= g. Whence, all

elements of order> 2 in Γ can be classified into pairs. This fact enables us to know

the following result.

Corollary 2.4.2 Let Γ be a group of even order. Then there are opposite multiple

2-edges in G[Γ] such that weights on its 2 directed edges are the same.

2.4.2. Multi-Spaces on graphs

Let Γ̃ be a Smarandache multi-space. Its associated weighted graph is defined in

the following.

Definition 2.4.3 Let Γ̃ =
n⋃
i=1

Γi be an algebraic multi-space with (Γi; ◦i) being

an algebraic system for any integer i, 1 ≤ i ≤ n. Define a weighted graph G(Γ̃)

associated with Γ̃ by
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G(Γ̃) =
n⋃

i=1

G[Γi],

where G[Γi] is the associated weighted graph of (Γi; ◦i) for 1 ≤ i ≤ n.

For example, the weighted graph shown in Fig.2.32 is correspondent with

a multi-space Γ̃ = Γ1
⋃

Γ2
⋃

Γ3, where (Γ1; +) = (Z3,+), Γ2 = {e, a, b}, Γ3 =

{1, 2, a, b} and these operations�·�on Γ2 and�◦�on Γ3 are shown in tables 2.4.1

and 2.4.2.

Fig.2.32

· e a b

e e a b

a a b e

b b e a

table 2.4.1

◦ 1 2 a b

1 * a b *

2 b * * a

a * * * 1

b * * 2 *

table 2.4.2

Notice that the correspondence between the multi-space Γ̃ and the weighted

graph G[Γ̃] is one-to-one. We immediately get the following result.

Theorem 2.4.2 The mappings π : Γ̃→ G[Γ̃] and π−1 : G[Γ̃]→ Γ̃ are all one-to-one.

According to Theorems 2.4.1 and 2.4.2, we get some consequences in the fol-
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lowing.

Corollary 2.4.3 Let Γ̃ =
n⋃
i=1

Γi be a multi-space with an algebraic system (Γi; ◦i) for

any integer i, 1 ≤ i ≤ n. If for any integer i, 1 ≤ i ≤ n, G[Γi] is a complete multiple

2-graph with a loop attaching at each of its vertices such that each edge between two

vertices in G[Γi] is an opposite multiple 2-edge, then Γ̃ is a complete multi-space.

Corollary 2.4.4 Let Γ̃ =
n⋃
i=1

Γi be a multi-group with an operation set O(Γ̃) =

{◦i; 1 ≤ i ≤ n}. Then there is a partition G[Γ̃] =
n⋃
i=1

Gi such that each Gi being a

complete multiple 2-graph attaching with a loop at each of its vertices such that each

edge between two vertices in V (Gi) is an opposite multiple 2-edge for any integer

i, 1 ≤ i ≤ n.

Corollary 2.4.5 Let F be a body. Then G[F ] is a union of two graphs K2(F ) and

K2(F ∗), where K2(F ) or K2(F ∗) is a complete multiple 2-graph with vertex set F

or F ∗ = F \ {0} and with a loop attaching at each of its vertices such that each edge

between two different vertices is an opposite multiple 2-edge.

2.4.3. Cayley graphs of a multi-group

Similar to the definition of Cayley graphs of a finite generated group, we can also

define Cayley graphs of a finite generated multi-group, where a multi-group Γ̃ =
n⋃
i=1

Γi

is said to be finite generated if the group Γi is finite generated for any integer

i, 1 ≤ i ≤ n, i.e., Γi = 〈xi, yi, · · · , zsi〉. We denote by Γ̃ = 〈xi, yi, · · · , zsi ; 1 ≤ i ≤ n〉
if Γ̃ is finite generated by {xi, yi, · · · , zsi; 1 ≤ i ≤ n}.

Definition 2.4.4 Let Γ̃ = 〈xi, yi, · · · , zsi; 1 ≤ i ≤ n〉 be a finite generated multi-

group, S̃ =
n⋃
i=1

Si, where 1Γi 6∈ Si, S̃−1 = {a−1|a ∈ S̃} = S̃ and 〈Si〉 = Γi for any

integer i, 1 ≤ i ≤ n. A Cayley graph Cay(Γ̃ : S̃) is defined by

V (Cay(Γ̃ : S̃)) = Γ̃

and

E(Cay(Γ̃ : S̃)) = {(g, h)| if there exists an integer i, g−1 ◦i h ∈ Si, 1 ≤ i ≤ n}.
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By Definition 2.4.4, we immediately get the following result for Cayley graphs

of a finite generated multi-group.

Theorem 2.4.3 For a Cayley graph Cay(Γ̃ : S̃) with Γ̃ =
n⋃
i=1

Γi and S̃ =
n⋃
i=1

Si,

Cay(Γ̃ : S̃) =
n⋃

i=1

Cay(Γi : Si).

It is well-known that every Cayley graph of order≥ 3 is 2-connected. But in

general, a Cayley graph of a multi-group is not connected. For the connectedness of

Cayley graphs of multi-groups, we get the following result.

Theorem 2.4.4 A Cayley graph Cay(Γ̃ : S̃) with Γ̃ =
n⋃
i=1

Γi and S̃ =
n⋃
i=1

Si is

connected if and only if for any integer i, 1 ≤ i ≤ n, there exists an integer j, 1 ≤
j ≤ n and j 6= i such that Γi

⋂
Γj 6= ∅.

Proof According to Theorem 2.4.3, if there is an integer i, 1 ≤ i ≤ n such that

Γi
⋂

Γj = ∅ for any integer j, 1 ≤ j ≤ n, j 6= i, then there are no edges with the

form (gi, h), gi ∈ Γi, h ∈ Γ̃ \ Γi. Thereby Cay(Γ̃ : S̃) is not connected.

Notice that Cay(Γ̃ : S̃) =
n⋃
i=1

Cay(Γi : Si). Not loss of generality, we assume

that g ∈ Γk and h ∈ Γl, where 1 ≤ k, l ≤ n for any two elements g, h ∈ Γ̃. If k = l,

then there must exists a path connecting g and h in Cay(Γ̃ : S̃).

Now if k 6= l and for any integer i, 1 ≤ i ≤ n, there is an integer j, 1 ≤ j ≤ n and

j 6= i such that Γi
⋂

Γj 6= ∅, then we can find integers i1, i2, · · · , is, 1 ≤ i1, i2, · · · , is ≤
n such that

Γk
⋂

Γi1 6= ∅,

Γi1
⋂

Γi2 6= ∅,

· · · · · · · · · · · · · · · · · · ,

Γis
⋂

Γl 6= ∅.
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Thereby we can find a path connecting g and h in Cay(Γ̃ : S̃) passing through

these vertices in Cay(Γi1 : Si1), Cay(Γi2 : Si2), · · ·, and Cay(Γis : Sis). Therefore,

Cay(Γ̃ : S̃) is connected. ♮

The following theorem is gotten by the definition of a Cayley graph and Theo-

rem 2.4.4.

Theorem 2.4.5 If Γ̃ =
n⋃
i=1

Γ with |Γ| ≥ 3, then a Cayley graph Cay(Γ̃ : S̃)

(i) is an |S̃|-regular graph;

(ii) the edge connectivity κ(Cay(Γ̃ : S̃)) ≥ 2n.

Proof The assertion (i) is gotten by the definition of Cay(Γ̃ : S̃). For (ii)

since every Cayley graph of order≥ 3 is 2-connected, for any two vertices g, h in

Cay(Γ̃ : S̃), there are at least 2n edge disjoint paths connecting g and h. Whence,

the edge connectivity κ(Cay(Γ̃ : S̃)) ≥ 2n. ♮

Applying multi-voltage graphs, we get a structure result for Cayley graphs of

a finite multi-group similar to that of Cayley graphs of a finite group.

Theorem 2.4.6 For a Cayley graph Cay(Γ̃ : S̃) of a finite multi-group Γ̃ =
n⋃
i=1

Γi

with S̃ =
n⋃
i=1

Si, there is a multi-voltage bouquet ς : B|S̃| → S̃ such that Cay(Γ̃ : S̃) ∼=
(B|S̃|)

ς .

Proof Let S̃ = {si; 1 ≤ i ≤ |S̃|} and E(B|S̃|) = {Li; 1 ≤ i ≤ |S̃|}. Define a

multi-voltage graph on a bouquet B|S̃| by

ς : Li → si, 1 ≤ i ≤ |S̃|.

Then we know that there is an isomorphism τ between (B|S̃|)
ς and Cay(Γ̃ : S̃) by

defining τ(Og) = g for ∀g ∈ Γ̃, where V (B|S̃|) = {O}. ♮

Corollary 2.4.6 For a Cayley graph Cay(Γ : S) of a finite group Γ, there exists a

voltage bouquet α : B|S| → S such that Cay(Γ : S) ∼= (B|S|)
α.

§2.5 Graph Phase Spaces

The behavior of a graph in an m-manifold is related with theoretical physics since it

can be viewed as a model of p-branes in M-theory both for a microcosmic and macro-
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cosmic world. For more details one can see in Chapter 6. This section concentrates

on surveying some useful fundamental elements for graphs in n-manifolds.

2.5.1. Graph phase in a multi-space

For convenience, we introduce some notations used in this section in the following.

M̃ – a multi-manifold M̃ =
n⋃
i=1

Mni , where Mni is an ni-manifold, ni ≥ 2. For

multi-manifolds, see also those materials in Subsection 1.5.4.

u ∈ M̃ – a point u of M̃.

G – a graph G embedded in M̃.

C(M̃) – the set of smooth mappings ω : M̃ → M̃, differentiable at each point

u in M̃.

Now we define the phase of a graph in a multi-space.

Definition 2.5.1 Let G be a graph embedded in a multi-manifold M̃. A phase of G
in M̃ is a triple (G;ω,Λ) with an operation ◦ on C(M̃), where ω : V (G) → C(M̃)

and Λ : E(G)→ C(M̃) such that Λ(u, v) = ω(u)◦ω(v)
‖u−v‖ for ∀(u, v) ∈ E(G), where ‖ u ‖

denotes the norm of u.

For examples, the complete graph K4 embedded in R3 has a phase as shown in

Fig.2.33, where g ∈ C(R3) and h ∈ C(R3).

Fig.2.33

Similar to the definition of a adjacent matrix on a graph, we can also define

matrixes on graph phases .

Definition 2.5.2 Let (G;ω,Λ) be a phase and A[G] = [aij ]p×p the adjacent matrix

of a graph G with V (G) = {v1, v2, · · · , vp}. Define matrixes V [G] = [Vij ]p×p and
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Λ[G] = [Λij]p×p by

Vij =
ω(vi)

‖ vi − vj ‖
if aij 6= 0; otherwise, Vij = 0

and

Λij =
ω(vi) ◦ ω(vj)

‖ vi − vj ‖2
if aij 6= 0; otherwise,Λij = 0,

where�◦�is an operation on C(M̃).

For example, for the phase of K4 in Fig.2.33, if choice g(u) = (x1, x2, x3),

g(v) = (y1, y2, y3), g(w) = (z1, z2, z3), g(o) = (t1, t2, t3) and ◦ = ×, the multiplication

of vectors in R3, then we get that

V (G) =




0 g(u)
ρ(u,v)

g(u)
ρ(u,w)

g(u)
ρ(u,o)

g(v)
ρ(v,u)

0 g(v)
ρ(v,w)

g(v)
ρ(v,t)

g(w)
ρ(w,u)

g(w)
ρ(w,v)

0 g(w)
ρ(w,o)

g(o)
ρ(o,u)

g(o)
ρ(o,v)

g(o)
ρ(o,w)

0




where

ρ(u, v) = ρ(v, u) =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2,

ρ(u, w) = ρ(w, u) =
√

(x1 − z1)2 + (x2 − z2)2 + (x3 − z3)2,

ρ(u, o) = ρ(o, u) =
√

(x1 − t1)2 + (x2 − t2)2 + (x3 − t3)2,

ρ(v, w) = ρ(w, v) =
√

(y1 − z1)2 + (y2 − z2)2 + (y3 − z3)2,

ρ(v, o) = ρ(o, v) =
√

(y1 − t1)2 + (y2 − t2)2 + (y3 − t3)2,

ρ(w, o) = ρ(o, w) =
√

(z1 − t1)2 + (z2 − t2)2 + (z3 − t3)2

and
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Λ(G) =




0 g(u)×g(v)
ρ2(u,v)

g(u)×g(w)
ρ2(u,w)

g(u)×g(o)
ρ2(u,o)

g(v)×g(u)
ρ2(v,u)

0 g(v)×g(w)
ρ2(v,w)

g(v×g(o)
ρ2(v,o)

g(w)×g(u)
ρ2(w,u)

g(w)×g(v)
ρ2(w,v)

0 g(w)×g(o)
ρ2(w,o)

g(o)×g(u)
ρ2(o,u)

g(o)×g(v)
ρ2(o,v)

g(o)×g(w)
ρ2(o,w)

0



.

where

g(u)× g(v) = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1),

g(u)× g(w) = (x2z3 − x3z2, x3z1 − x1z3, x1z2 − x2z1),

g(u)× g(o) = (x2t3 − x3t2, x3t1 − x1t3, x1t2 − x2t1),

g(v)× g(u) = (y2x3 − y3x2, y3x1 − y1x3, y1x2 − y2x1),

g(v)× g(w) = (y2z3 − y3z2, y3z1 − y1z3, y1z2 − y2z1),

g(v)× g(o) = (y2t3 − y3t2, y3t1 − y1t3, y1t2 − y2t1),

g(w)× g(u) = (z2x3 − z3x2, z3x1 − z1x3, z1x2 − z2x1),

g(w)× g(v) = (z2y3 − z3y2, z3y1 − z1y3, z1y2 − z2y1),

g(w)× g(o) = (z2t3 − z3t2, z3t1 − z1t3, z1t2 − z2t1),

g(o)× g(u) = (t2x3 − t3x2, t3x1 − t1x3, t1x2 − t2x1),

g(o)× g(v) = (t2y3 − t3y2, t3y1 − t1y3, t1y2 − t2y1),
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g(o)× g(w) = (t2z3 − t3z2, t3z1 − t1z3, t1z2 − t2z1).

For two given matrixes A = [aij]p×p and B = [bij ]p×p, the star product�∗�on

an operation�◦�is defined by A ∗B = [aij ◦ bij ]p×p. We get the following result for

matrixes V [G] and Λ[G].

Theorem 2.5.1 V [G] ∗ V t[G] = Λ[G].

Proof Calculation shows that each (i, j) entry in V [G] ∗ V t[G] is

ω(vi)

‖ vi − vj ‖
◦ ω(vj)

‖ vj − vi ‖
=
ω(vi) ◦ ω(vj)

‖ vi − vj ‖2
= Λij,

where 1 ≤ i, j ≤ p. Therefore, we get that

V [G] ∗ V t[G] = Λ[G]. ♮

An operation called addition on graph phases is defined in the next.

Definition 2.5.3 For two phase spaces (G1;ω1,Λ1), (G2;ω2,Λ2) of graphs G1, G2 in

M̃ and two operations�•�and�◦�on C(M̃), their addition is defined by

(G1;ω1,Λ1)
⊕

(G2;ω2,Λ2) = (G1

⊕
G2;ω1 • ω2,Λ1 • Λ2),

where ω1 • ω2 : V (G1
⋃G2)→ C(M̃) satisfying

ω1 • ω2(u) =





ω1(u) • ω2(u), if u ∈ V (G1)
⋂
V (G2),

ω1(u), if u ∈ V (G1) \ V (G2),

ω2(u), if u ∈ V (G2) \ V (G1).

and

Λ1 • Λ2(u, v) =
ω1 • ω2(u) ◦ ω1 • ω2(v)

‖ u− v ‖2
for (u, v) ∈ E(G1)

⋃
E(G2)

The following result is immediately gotten by Definition 2.5.3.

Theorem 2.5.2 For two given operations�•�and�◦�on C(M̃), all graph phases

in M̃ form a linear space on the field Z2 with a phase
⊕

for any graph phases

(G1;ω1,Λ1) and (G2;ω2,Λ2) in M̃ .
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2.5.2. Transformation of a graph phase

Definition 2.5.4 Let (G1;ω1,Λ1) and (G2;ω2,Λ2) be graph phases of graphs G1 and

G2 in a multi-space M̃ with operations�◦1, ◦2�, respectively. If there exists a smooth

mapping τ ∈ C(M̃) such that

τ : (G1;ω1,Λ1)→ (G2;ω2,Λ2),

i.e., for ∀u ∈ V (G1), ∀(u, v) ∈ E(G1), τ(G1) = G2, τ(ω1(u)) = ω2(τ(u)) and

τ(Λ1(u, v)) = Λ2(τ(u, v)), then we say (G1;ω1,Λ1) and (G2;ω2,Λ2) are transformable

and τ a transform mapping.

For examples, a transform mapping t for embeddings of K4 in R3 and on the

plane is shown in Fig.2.34

Fig.2.34

Theorem 2.5.3 Let (G1;ω1,Λ1) and (G2;ω2,Λ2) be transformable graph phases with

transform mapping τ . If τ is one-to-one on G1 and G2, then G1 is isomorphic to G2.

Proof By definitions, if τ is one-to-one on G1 and G2, then τ is an isomorphism

between G1 and G2. ♮

A very useful case among transformable graph phases is that one can find

parameters t1, t2, · · · , tq, q ≥ 1, such that each vertex of a graph phase is a smooth

mapping of t1, t2, · · · , tq, i.e., for ∀u ∈ M̃ , we consider it as u(t1, t2, · · · , tq). In this

case, we introduce two conceptions on graph phases.

Definition 2.5.5 For a graph phase (G;ω,Λ), define its capacity Ca(G;ω,Λ) and

entropy En(G;ω,Λ) by
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Ca(G;ω,Λ) =
∑

u∈V (G)

ω(u)

and

En(G;ω,Λ) = log(
∏

u∈V (G)

‖ ω(u) ‖).

Then we know the following result.

Theorem 2.5.4 For a graph phase (G;ω,Λ), its capacity Ca(G;ω,Λ) and entropy

En(G;ω,Λ) satisfy the following differential equations

dCa(G;ω,Λ) =
∂Ca(G;ω,Λ)

∂ui
dui and dEn(G;ω,Λ) =

∂En(G;ω,Λ)

∂ui
dui,

where we use the Einstein summation convention, i.e., a sum is over i if it is ap-

pearing both in upper and lower indices.

Proof Not loss of generality, we assume u = (u1, u2, · · · , up) for ∀u ∈ M̃ .

According to the invariance of differential form, we know that

dω =
∂ω

∂ui
dui.

By the definition of the capacity Ca(G;ω,Λ) and entropy En(G;ω,Λ) of a graph

phase, we get that

dCa(G;ω,Λ) =
∑

u∈V (G)

d(ω(u))

=
∑

u∈V (G)

∂ω(u)

∂ui
dui =

∂(
∑

u∈V (G)
ω(u))

∂ui
dui

=
∂Ca(G;ω,Λ)

∂ui
dui.

Similarly, we also obtain that

dEn(G;ω,Λ) =
∑

u∈V (G)

d(log ‖ ω(u) ‖)
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=
∑

u∈V (G)

∂ log |ω(u)|
∂ui

dui =

∂(
∑

u∈V (G)
log ‖ ω(u) ‖)

∂ui
dui

=
∂En(G;ω,Λ)

∂ui
dui.

This completes the proof. ♮

In a 3-dimensional Euclid space we can get more concrete results for graph

phases (G;ω,Λ). In this case, we get some formulae in the following by choice

u = (x1, x2, x3) and v = (y1, y2, y3).

ω(u) = (x1, x2, x3) for ∀u ∈ V (G),

Λ(u, v) =
x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2
for ∀(u, v) ∈ E(G),

Ca(G;ω,Λ) = (
∑

u∈V (G)

x1(u),
∑

u∈V (G)

x2(u),
∑

u∈V (G)

x3(u))

and

En(G;ω,Λ) =
∑

u∈V (G)

log(x2
1(u) + x2

2(u) + x2
3(u).

§2.6 Remarks and Open Problems

2.6.1 A graphical property P (G) is called to be subgraph hereditary if for any

subgraph H ⊆ G, H posses P (G) whenever G posses the property P (G). For

example, the properties: G is complete and the vertex coloring number χ(G) ≤ k

both are subgraph hereditary. The hereditary property of a graph can be generalized

by the following way.

Let G and H be two graphs in a space M̃ . If there is a smooth mapping ς

in C(M̃) such that ς(G) = H , then we say G and H are equivalent in M̃ . Many

conceptions in graph theory can be included in this definition, such as graph homo-

morphism, graph equivalent, · · ·, etc.

Problem 2.6.1 Applying different smooth mappings in a space such as smooth

mappings in R3 or R4 to classify graphs and to find their invariants.
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Problem 2.6.2 Find which parameters already known in graph theory for a graph

is invariant or to find the smooth mapping in a space on which this parameter is

invariant.

2.6.2 As an efficient way for finding regular covering spaces of a graph, voltage graphs

have been gotten more attentions in the past half-century by mathematicians. Works

for regular covering spaces of a graph can seen in [23], [45] − [46] and [71] − [72].

But few works are found in publication for irregular covering spaces of a graph. The

multi-voltage graph of type 1 or type 2 with multi-groups defined in Section 2.2 are

candidate for further research on irregular covering spaces of graphs.

Problem 2.6.3 Applying multi-voltage graphs to get the genus of a graph with less

symmetries.

Problem 2.6.4 Find new actions of a multi-group on a graph, such as the left

subaction and its contribution to topological graph theory. What can we say for

automorphisms of the lifting of a multi-voltage graph?

There is a famous conjecture for Cayley graphs of a finite group in algebraic

graph theory, i.e., every connected Cayley graph of order≥ 3 is hamiltonian. Simi-

larly, we can also present a conjecture for Cayley graphs of a multi-group.

Conjecture 2.6.1 Every Cayley graph of a finite multi-group Γ̃ =
n⋃
i=1

Γi with order≥

3 and |
n⋂
i=1

Γi| ≥ 2 is hamiltonian.

2.6.3 As pointed out in [56], for applying combinatorics to other sciences, a good

idea is pullback measures on combinatorial objects, initially ignored by the classi-

cal combinatorics and reconstructed or make a combinatorial generalization for the

classical mathematics, such as, the algebra, the differential geometry, the Riemann

geometry, · · · and the mechanics, the theoretical physics, · · ·. For this object, a more

natural way is to put a graph in a metric space and find its good behaviors. The

problem discussed in Sections 2.3 is just an elementary step for this target. More

works should be done and more techniques should be designed. The following open

problems are valuable to research for a researcher on combinatorics.

Problem 2.6.5 Find which parameters for a graph can be used to a graph in a
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space. Determine combinatorial properties of a graph in a space.

Consider a graph in an Euclid space of dimension 3. All of its edges are seen as

a structural member, such as steel bars or rods and its vertices are hinged points.

Then we raise the following problem.

Problem 2.6.6 Applying structural mechanics to classify what kind of graph struc-

tures are stable or unstable. Whether can we discover structural mechanics of

dimension≥ 4 by this idea?

We have known the orbit of a point under an action of a group, for example, a

torus is an orbit of Z × Z action on a point in R3. Similarly, we can also define an

orbit of a graph in a space under an action on this space.

Let G be a graph in a multi-space M̃ and Π a family of actions on M̃ . Define

an orbit Or(G) by

Or(G) = {π(G)| ∀π ∈ Π}.

Problem 2.6.7 Given an action π, continuous or discontinuous on a space M̃ , for

example R3 and a graph G in M̃ , find the orbit of G under the action of π. When

can we get a closed geometrical object by this action?

Problem 2.6.8 Given a family A of actions, continuous or discontinuous on a

space M̃ and a graph G in M̃ , find the orbit of G under these actions in A. Find the

orbit of a vertex or an edge of G under the action of G, and when are they closed?

2.6.4 The central idea in Section 2.4 is that a graph is equivalent to Smarandache

multi-spaces. This fact enables us to investigate Smarandache multi-spaces possible

by a combinatorial approach. Applying infinite graph theory (see [94] for details),

we can also define an infinite graph for an infinite Smarandache multi-space similar

to Definition 2.4.3.

Problem 2.6.9 Find its structural properties of an infinite graph of an infinite

Smarandache multi-space.

2.6.5 There is an alternative way for defining transformable graph phases, i.e., by

homotopy groups in a topological space, which is stated as follows.
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Let (G1;ω1,Λ1) and (G2;ω2,Λ2) be two graph phases. If there is a continuous

mapping H : C(M̃)×I → C(M̃)×I, I = [0, 1] such that H(C(M̃), 0) = (G1;ω1,Λ1)

and H(C(M̃), 1) = (G2;ω2,Λ2), then (G1;ω1,Λ1) and (G2;ω2,Λ2) are said two trans-

formable graph phases.

Similar to topology, we can also introduce product on homotopy equivalence

classes and prove that all homotopy equivalence classes form a group. This group

is called a fundamental group and denote it by π(G;ω,Λ). In topology there is

a famous theorem, called the Seifert and Van Kampen theorem for characterizing

fundamental groups π1(A) of topological spaces A restated as follows (see [92] for

details).

Suppose E is a space which can be expressed as the union of path-connected open

sets A, B such that A⋂B is path-connected and π1(A) and π1(B) have respective

presentations

〈a1, · · · , am; r1, · · · , rn〉 ,

〈b1, · · · , bm; s1, · · · , sn〉

while π1(A
⋂B) is finitely generated. Then π1(E) has a presentation

〈a1, · · · , am, b1, · · · , bm; r1, · · · , rn, s1, · · · , sn, u1 = v1, · · · , ut = vt〉 ,

where ui, vi, i = 1, · · · , t are expressions for the generators of π1(A
⋂B) in terms of

the generators of π1(A) and π1(B) respectively.

Then there is a problem for the fundamental group π(G;ω,Λ) of a graph phase

(G;ω,Λ).

Problem 2.6.10 Find a result similar to the Seifert and Van Kampen theorem for

the fundamental group of a graph phase.



Chapter 3 Map Geometries

As a kind of multi-metric spaces, Smarandache geometries were introduced by

Smarandache in [86] and investigated by many mathematicians. These geometries

are related with the Euclid geometry, the Lobachevshy-Bolyai-Gauss geometry and

the Riemann geometry, also related with relativity theory and parallel universes (see

[56], [35]− [36], [38] and [77]− [78] for details). As a generalization of Smarandache

manifolds of dimension 2, Map geometries were introduced in [55], [57] and [62],

which can be also seen as a realization of Smarandache geometries on surfaces or

Smarandache geometries on maps.

§3.1 Smarandache Geometries

3.1.1. What are lost in classical mathematics?

As we known, mathematics is a powerful tool of sciences for its unity and neatness,

without any shade of mankind. On the other hand, it is also a kind of aesthetics

deep down in one’s mind. There is a famous proverb says that only the beautiful

things can be handed down to today, which is also true for the mathematics.

Here, the terms unity and neatness are relative and local, maybe also have

various conditions. For obtaining a good result, many unimportant matters are

abandoned in the research process. Whether are those matters still unimportant in

another time? It is not true. That is why we need to think a queer question: what

are lost in the classical mathematics?

For example, a compact surface is topological equivalent to a polygon with

even number of edges by identifying each pairs of edges along its a given direction
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([68], [92]). If label each pair of edges by a letter e, e ∈ E , a surface S is also identified

to a cyclic permutation such that each edge e, e ∈ E just appears two times in S,

one is e and another is e−1 (orientable) or e (non-orientable). Let a, b, c, · · · denote

letters in E and A,B,C, · · · the sections of successive letters in a linear order on a

surface S (or a string of letters on S). Then, an orientable surface can be represented

by

S = (· · · , A, a, B, a−1, C, · · ·),

where�a ∈ E and A,B,C denote strings of letter. Three elementary transformations

are defined as follows:

(O1) (A, a, a−1, B)⇔ (A,B);

(O2) (i) (A, a, b, B, b−1, a−1)⇔ (A, c, B, c−1);

(ii) (A, a, b, B, a, b)⇔ (A, c, B, c);

(O3) (i) (A, a,B, C, a−1, D)⇔ (B, a, A,D, a−1, C);

(ii) (A, a,B, C, a,D)⇔ (B, a, A, C−1, a,D−1).

If a surface S0 can be obtained by these elementary transformations O1-O3 from a

surface S, it is said that S is elementary equivalent with S0, denoted by S ∼El S0.

We have known the following formulae from [43]:

(i) (A, a,B, b, C, a−1, D, b−1, E) ∼El (A,D,C,B,E, a, b, a−1, b−1);

(ii) (A, c, B, c) ∼El (A,B−1, C, c, c);

(iii) (A, c, c, a, b, a−1, b−1) ∼El (A, c, c, a, a, b, b).

Then we can get the classification theorem of compact surfaces as follows([68]):

Any compact surface is homeomorphic to one of the following standard surfaces:

(P0) The sphere: aa−1;

(Pn) The connected sum of n, n ≥ 1, tori:

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · ·anbna−1
n b−1

n ;

(Qn) The connected sum of n, n ≥ 1, projective planes:

a1a1a2a2 · · ·anan.
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As we have discussed in Chapter 2, a combinatorial map is just a kind of de-

composition of a surface. Notice that all the standard surfaces are one face map

underlying an one vertex graph, i.e., a bouquet Bn with n ≥ 1. By a combinatorial

view, a combinatorial map is nothing but a surface. This assertion is needed clari-

fying. For example, let us see the left graph Π4 in Fig. 3.1, which is a tetrahedron.

Fig.3.1

Whether can we say
∏

4 is a sphere? Certainly NOT. Since any point u on a sphere

has a neighborhood N(u) homeomorphic to an open disc, thereby all angles incident

with the point 1 must be 120◦ degree on a sphere. But in Π4, those are only 60◦

degree. For making them same in a topological sense, i.e., homeomorphism, we

must blow up the Π4 and make it become a sphere. This physical processing is

shown in the Fig.3.1. Whence, for getting the classification theorem of compact

surfaces, we lose the angle,area, volume,distance,curvature,· · ·, etc, which are also

lost in combinatorial maps.

By a geometrical view, Klein Erlanger Program says that any geometry is noth-

ing but find invariants under a transformation group of this geometry. This is essen-

tially the group action idea and widely used in mathematics today. Surveying topics

appearing in publications for combinatorial maps, we know the following problems

are applications of Klein Erlanger Program:

(i) to determine isomorphism maps or rooted maps;

(ii) to determine equivalent embeddings of a graph;

(iii) to determine an embedding whether exists or not;

(iv) to enumerate maps or rooted maps on a surface;

(v) to enumerate embeddings of a graph on a surface;

(vi) · · ·, etc.
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All the problems are extensively investigated by researches in the last century

and papers related those problems are still frequently appearing in journals today.

Then,

what are their importance to classical mathematics?

and

what are their contributions to sciences?

Today, we have found that combinatorial maps can contribute an underlying

frame for applying mathematics to sciences, i.e., through by map geometries or by

graphs in spaces.

3.1.2. Smarandache geometries

Smarandache geometries were proposed by Smarandache in [86] which are general-

ization of classical geometries, i.e., these Euclid, Lobachevshy-Bolyai-Gauss and Rie-

mann geometries may be united altogether in a same space, by some Smarandache

geometries. These last geometries can be either partially Euclidean and partially

Non-Euclidean, or Non-Euclidean. Smarandache geometries are also connected with

the Relativity Theory because they include Riemann geometry in a subspace and

with the Parallel Universes because they combine separate spaces into one space

too. For a detail illustration, we need to consider classical geometries first.

As we known, the axiom system of an Euclid geometry is in the following:

(A1) there is a straight line between any two points.

(A2) a finite straight line can produce a infinite straight line continuously.

(A3) any point and a distance can describe a circle.

(A4) all right angles are equal to one another.

(A5) if a straight line falling on two straight lines make the interior angles

on the same side less than two right angles, then the two straight lines, if produced

indefinitely, meet on that side on which are the angles less than the two right angles.

The axiom (A5) can be also replaced by:

(A5’) given a line and a point exterior this line, there is one line parallel to

this line.
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The Lobachevshy-Bolyai-Gauss geometry, also called hyperbolic geometry, is a

geometry with axioms (A1)− (A4) and the following axiom (L5):

(L5) there are infinitely many lines parallel to a given line passing through an

exterior point.

The Riemann geometry, also called elliptic geometry, is a geometry with axioms

(A1)− (A4) and the following axiom (R5):

there is no parallel to a given line passing through an exterior point.

By a thought of anti-mathematics: not in a nihilistic way, but in a positive

one, i.e., banish the old concepts by some new ones: their opposites, Smarandache

introduced thse paradoxist geometry, non-geometry, counter-projective geometry and

anti-geometry in [86] by contradicts axioms (A1)− (A5) in an Euclid geometry.

Paradoxist geometry

In this geometry, its axioms consist of (A1)− (A4) and one of the following as the

axiom (P5):

(i) there are at least a straight line and a point exterior to it in this space for

which any line that passes through the point intersect the initial line.

(ii) there are at least a straight line and a point exterior to it in this space for

which only one line passes through the point and does not intersect the initial line.

(iii) there are at least a straight line and a point exterior to it in this space for

which only a finite number of lines l1, l2, · · · , lk, k ≥ 2 pass through the point and do

not intersect the initial line.

(iv) there are at least a straight line and a point exterior to it in this space for

which an infinite number of lines pass through the point (but not all of them) and

do not intersect the initial line.

(v) there are at least a straight line and a point exterior to it in this space for

which any line that passes through the point and does not intersect the initial line.

Non-Geometry

The non-geometry is a geometry by denial some axioms of (A1)− (A5), such as:
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(A1−) It is not always possible to draw a line from an arbitrary point to another

arbitrary point.

(A2−) It is not always possible to extend by continuity a finite line to an infinite

line.

(A3−) It is not always possible to draw a circle from an arbitrary point and of

an arbitrary interval.

(A4−) not all the right angles are congruent.

(A5−) if a line, cutting two other lines, forms the interior angles of the same

side of it strictly less than two right angle, then not always the two lines extended

towards infinite cut each other in the side where the angles are strictly less than two

right angle.

Counter-Projective geometry

Denoted by P the point set, L the line set and R a relation included in P × L. A

counter-projective geometry is a geometry with these counter-axioms (C1)− (C3):

(C1) there exist: either at least two lines, or no line, that contains two given

distinct points.

(C2) let p1, p2, p3 be three non-collinear points, and q1, q2 two distinct points.

Suppose that {p1.q1, p3} and {p2, q2, p3} are collinear triples. Then the line contain-

ing p1, p2 and the line containing q1, q2 do not intersect.

(C3) every line contains at most two distinct points.

Anti-Geometry

A geometry by denial some axioms of the Hilbert’s 21 axioms of Euclidean geometry.

As shown in [38], there are at least 221 − 1 anti-geometries.

In general, Smarandache geometries are defined as follows.

Definition 3.1.1 An axiom is said to be Smarandachely denied if the axiom behaves

in at least two different ways within the same space, i.e., validated and invalided, or

only invalided but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely

denied axiom(1969).
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In a Smarandache geometries, points, lines, planes, spaces, triangles, · · ·, etc are

called s-points, s-lines, s-planes, s-spaces, s-triangles, · · ·, respectively in order to

distinguish them from classical geometries. An example of Smarandache geometries

in the classical geometrical sense is in the following.

Example 3.1.1 Let us consider an Euclidean plane R2 and three non-collinear

points A,B and C. Define s-points as all usual Euclidean points on R2 and s-lines

any Euclidean line that passes through one and only one of points A,B and C. Then

this geometry is a Smarandache geometry because two axioms are Smarandachely

denied comparing with an Euclid geometry:

(i) The axiom (A5) that through a point exterior to a given line there is only

one parallel passing through it is now replaced by two statements: one parallel, and

no parallel. Let L be an s-line passes through C and is parallel in the euclidean

sense to AB. Notice that through any s-point not lying on AB there is one s-line

parallel to L and through any other s-point lying on AB there is no s-lines parallel

to L such as those shown in Fig.3.2(a).

Fig.3.2

(ii) The axiom that through any two distinct points there exist one line passing

through them is now replaced by; one s-line, and no s-line. Notice that through

any two distinct s-points D,E collinear with one of A,B and C, there is one s-line

passing through them and through any two distinct s-points F,G lying on AB or

non-collinear with one of A,B and C, there is no s-line passing through them such

as those shown in Fig.3.2(b).

3.1.3. Smarandache manifolds

Generally, a Smarandache manifold is an n-dimensional manifold that support a
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Smarandache geometry. For n = 2, a nice model for Smarandache geometries called

s-manifolds was found by Iseri in [35][36], which is defined as follows:

An s-manifold is any collection C(T, n) of these equilateral triangular disks

Ti, 1 ≤ i ≤ n satisfying the following conditions:

(i) each edge e is the identification of at most two edges ei, ej in two distinct

triangular disks Ti, Tj, 1 ≤ i, j ≤ n and i 6= j;

(ii) each vertex v is the identification of one vertex in each of five, six or seven

distinct triangular disks.

The vertices are classified by the number of the disks around them. A vertex

around five, six or seven triangular disks is called an elliptic vertex, an euclidean

vertex or a hyperbolic vertex, respectively.

In a plane, an elliptic vertex O, an euclidean vertex P and a hyperbolic ver-

tex Q and an s-line L1, L2 or L3 passes through points O,P or Q are shown in

Fig.3.3(a), (b), (c), respectively.

Fig.3.3

Smarandache paradoxist geometries and non-geometries can be realized by s-

manifolds, but other Smarandache geometries can be only partly realized by this

kind of manifolds. Readers are inferred to Iseri’s book [35] for those geometries.

An s-manifold is called closed if each edge is shared exactly by two triangular

disks. An elementary classification for closed s-manifolds by triangulation were

introduced in [56]. They are classified into 7 classes. Each of those classes is defined

in the following.

Classical Type:

(1) ∆1 = {5− regular triangular maps} (elliptic);

(2) ∆2 = {6− regular triangular maps}(euclidean);
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(3) ∆3 = {7− regular triangular maps}(hyperbolic).

Smarandache Type:

(4) ∆4 = {triangular maps with vertex valency 5 and 6} (euclid-elliptic);

(5) ∆5 = {triangular maps with vertex valency 5 and 7} (elliptic-hyperbolic);

(6) ∆6 = {triangular maps with vertex valency 6 and 7} (euclid-hyperbolic);

(7) ∆7 = {triangular maps with vertex valency 5, 6 and 7} (mixed).

It is proved in [56] that |∆1| = 2, |∆5| ≥ 2 and |∆i|, i = 2, 3, 4, 6, 7 are infinite.

Iseri proposed a question in [35]: Do the other closed 2-manifolds correspond to s-

manifolds with only hyperbolic vertices? Since there are infinite Hurwitz maps, i.e.,

|∆3| is infinite, the answer is affirmative.

§3.2 Map Geometries without Boundary

A combinatorial map can be also used to construct new models for Smarandache

geometries. By a geometrical view, these models are generalizations of Isier’s model

for Smarandache geometries. For a given map on a locally orientable surface, map

geometries without boundary are defined in the following definition.

Definition 3.2.1 For a combinatorial map M with each vertex valency≥ 3, asso-

ciates a real number µ(u), 0 < µ(u) < 4π
ρM (u)

, to each vertex u, u ∈ V (M). Call

(M,µ) a map geometry without boundary, µ(u) an angle factor of the vertex u and

orientablle or non-orientable if M is orientable or not.

The realization for vertices u, v, w ∈ V (M) in a space R3 is shown in Fig.3.4,

where ρM (u)µ(u) < 2π for the vertex u, ρM (v)µ(v) = 2π for the vertex v and

ρM(w)µ(w) > 2π for the vertex w, respectively.

ρM (u)µ(u) < 2π ρM (u)µ(u) = 2π ρM (u)µ(u) > 2π

Fig.3.4
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As we have pointed out in Section 3.1, this kind of realization is not a surface,

but it is homeomorphic to a locally orientable surface by a view of topological

equivalence. Similar to s-manifolds, we also classify points in a map geometry

(M,µ) without boundary into elliptic points, euclidean points and hyperbolic points,

defined in the next definition.

Definition 3.2.2 A point u in a map geometry (M,µ) is said to be elliptic, euclidean

or hyperbolic if ρM (u)µ(u) < 2π, ρM(u)µ(u) = 2π or ρM(u)µ(u) > 2π.

Then we get the following results.

Theorem 3.2.1 Let M be a map with ∀u ∈ V (M), ρM (u) ≥ 3. Then for ∀u ∈
V (M), there is a map geometry (M,µ) without boundary such that u is elliptic,

euclidean or hyperbolic.

Proof Since ρM(u) ≥ 3, we can choose an angle factor µ(u) such that µ(u)ρM(u) <

2π, µ(u)ρM(u) = 2π or µ(u)ρM(u) > 2π. Notice that

0 <
2π

ρM(u)
<

4π

ρM(u)
.

Thereby we can always choose µ(u) satisfying that 0 < µ(u) < 4π
ρM (u)

. ♮

Theorem 3.2.2 Let M be a map of order≥ 3 and ∀u ∈ V (M), ρM (u) ≥ 3. Then

there exists a map geometry (M,µ) without boundary in which elliptic, euclidean

and hyperbolic points appear simultaneously.

Proof According to Theorem 3.2.1, we can always choose an angle factor µ

such that a vertex u, u ∈ V (M) to be elliptic, or euclidean, or hyperbolic. Since

|V (M)| ≥ 3, we can even choose the angle factor µ such that any two different

vertices v, w ∈ V (M)\{u} to be elliptic, or euclidean, or hyperbolic as we wish.

Then the map geometry (M,µ) makes the assertion hold. ♮

A geodesic in a manifold is a curve as straight as possible. Applying conceptions

such as angles and straight lines in an Euclid geometry, we define m-lines and m-

points in a map geometry in the next definition.

Definition 3.2.3 Let (M,µ) be a map geometry without boundary and let S(M) be

the locally orientable surface represented by a plane polygon on which M is embedded.
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A point P on S(M) is called an m-point. A line L on S(M) is called an m-line if

it is straight in each face of M and each angle on L has measure ρM (v)µ(v)
2

when it

passes through a vertex v on M .

Two examples for m-lines on the torus are shown in the Fig.3.5(a) and (b),

where M = M(B2), µ(u) = π
2

for the vertex u in (a) and

µ(u) =
135− arctan(2)

360
π

for the vertex u in (b), i.e., u is euclidean in (a) but elliptic in (b). Notice that in

(b), the m-line L2 is self-intersected.

Fig.3.5

If an m-line passes through an elliptic point or a hyperbolic point u, it must has

an angle µ(u)ρM (u)
2

with the entering line, not 180◦ which are explained in Fig.3.6.

a = µ(u)ρM (u)
2

< π a = µ(u)ρM (u)
2

> π

Fig.3.6

In an Euclid geometry, a right angle is an angle with measure π
2
, half of a straight

angle and parallel lines are straight lines never intersecting. They are very important

research objects. Many theorems characterize properties of them in classical Euclid
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geometry.

In a map geometry, we can also define a straight angle, a right angle and

parallel m-lines by Definition 3.2.2. Now a straight angle is an angle with measure π

for points not being vertices of M and ρM (u)µ(u)
2

for ∀u ∈ V (M). A right angle is an

angle with a half measure of a straight angle. Two m-lines are said parallel if they

are never intersecting. The following result asserts that map geometries without

boundary are paradoxist geometries.

Theorem 3.2.3 For a map M on a locally orientable surface with |M | ≥ 3 and

ρM(u) ≥ 3 for ∀u ∈ V (M), there exists an angle factor µ such that (M,µ) is a

Smarandache geometry by denial the axiom (A5) with these axioms (A5),(L5) and

(R5).

Proof According to Theorem 3.2.1, we know that there exists an angle factor

µ such that there are elliptic vertices, euclidean vertices and hyperbolic vertices

in (M,µ) simultaneously. The proof is divided into three cases according to M is

planar, orientable or non-orientable. Not loss of generality, we assume that an angle

is measured along a clockwise direction, i.e., as these cases in Fig.3.6 for an m-line

passing through an elliptic point or a hyperbolic point.

Case 1. M is a planar map

Notice that for a given line L not intersection with the map M and a point u in

(M,µ), if u is an euclidean point, then there is one and only one line passing through

u not intersecting with L, and if u is an elliptic point, then there are infinite lines

passing through u not intersecting with L, but if u is a hyperbolic point, then each

line passing through u will intersect with L. See also in Fig.3.7, where the planar

graph is a complete graph K4 and points 1, 2 are elliptic, the point 3 is euclidean but

the point 4 is hyperbolic. Then all m-lines in the field A do not intersect with L and

each m-line passing through the point 4 will intersect with the line L. Therefore,

(M,µ) is a Smarandache geometry by denial the axiom (A5) with these axioms (A5),

(L5) and (R5).
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Fig.3.7

Case 2. M is an orientable map

According to the classification theorem of compact surfaces, We only need to

prove this result for a torus. Notice thatm-lines on a torus has the following property

(see [82] for details):

If the slope ς of an m-line L is a rational number, then L is a closed line on

the torus. Otherwise, L is infinite, and moreover L passes arbitrarily close to every

point on the torus.

Whence, if L1 is an m-line on a torus with an irrational slope not passing

through an elliptic or a hyperbolic point, then for any point u exterior to L1, if u is

an euclidean point, then there is only one m-line passing through u not intersecting

with L1, and if u is elliptic or hyperbolic, any m-line passing through u will intersect

with L1.

Now let L2 be an m-line on the torus with an rational slope not passing through

an elliptic or a hyperbolic point, such as the m-line L2 in Fig.3.8, v is an euclidean

point. If u is an euclidean point, then each m-line L passing through u with rational

slope in the area A will not intersect with L2 but each m-line passing through u

with irrational slope in the area A will intersect with L2.
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Fig.3.8

Therefore, (M,µ) is a Smarandache geometry by denial the axiom (A5) with axioms

(A5),(L5) and (R5) in this case.

Case 3. M is a non-orientable map

Similar to the Case 2, we only need to prove this result for the projective plane.

An m-line in a projective plane is shown in Fig.3.9(a), (b) or (c), in where case (a) is

an m-line passing through an euclidean point, (b) passing through an elliptic point

and (c) passing through an hyperbolic point.

Fig.3.9

Now let L be an m-line passing through the center in the circle. Then if u is

an euclidean point, there is only one m-line passing through u such as the case (a)

in Fig.3.10. If v is an elliptic point then there is an m-line passing through it and

intersecting with L such as the case (b) in Fig.3.10. We assume the point 1 is a

point such that there exists an m-line passing through 1 and 0, then any m-line in

the shade of Fig.3.10(b) passing through v will intersect with L.
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Fig.3.10

If w is an euclidean point and there is an m-line passing through it not in-

tersecting with L such as the case (c) in Fig.3.10, then any m-line in the shade of

Fig.3.10(c) passing through w will not intersect with L. Since the position of the

vertices of a map M on a projective plane can be choose as our wish, we know (M,µ)

is a Smarandache geometry by denial the axiom (A5) with axioms (A5),(L5) and

(R5).

Combining these discussions of Cases 1, 2 and 3, the proof is complete. ♮.

Similar to Iseri’s s-manifolds, among map geometries without boundary there

are non-geometries, anti-geometries and counter-projective geometries, · · ·, etc..

Theorem 3.2.4 There are non-geometries in map geometries without boundary.

Proof We prove there are map geometries without boundary satisfying axioms

(A−
1 )− (A−

5 ). Let (M,µ) be such a map geometry with elliptic or hyperbolic points.

(i) Assume u is an eulicdean point and v is an elliptic or hyperbolic point on

(M,µ). Let L be an m-line passing through points u and v in an Euclid plane.

Choose a point w in L after but nearly enough to v when we travel on L from u to

v. Then there does not exist a line from u to w in the map geometry (M,µ) since

v is an elliptic or hyperbolic point. So the axiom (A−
1 ) is true in (M,µ).

(ii) In a map geometry (M,µ), an m-line maybe closed such as we have il-

lustrated in the proof of Theorem 3.2.3. Choose any two points A,B on a closed

m-line L in a map geometry. Then the m-line between A and B can not continuously

extend to indefinite in (M,µ). Whence the axiom (A−
2 ) is true in (M,µ).

(iii) An m-circle in a map geometry is defined to be a set of continuous points

in which all points have a given distance to a given point. Let C be a m-circle in an

Euclid plane. Choose an elliptic or a hyperbolic point A on C which enables us to



160 Linfan Mao: Smarandache Multi-Spaces Theory

get a map geometry (M,µ). Then C has a gap in A by definition of an elliptic or

hyperbolic point. So the axiom (A−
3 ) is true in a map geometry without boundary.

(iv) By the definition of a right angle, we know that a right angle on an elliptic

point can not equal to a right angle on a hyperbolic point. So the axiom (A−
4 ) is

held in a map geometry with elliptic or hyperbolic points.

(v) The axiom (A−
5 ) is true by Theorem 3.2.3.

Combining these discussions of (i)-(v), we know that there are non-geometries

in map geometries. This completes the proof. ♮

The Hilbert’s axiom system for an Euclid plane geometry consists five group

axioms stated in the following, where we denote each group by a capital Roman

numeral.

I. Incidence

I − 1. For every two points A and B, there exists a line L that contains each of the

points A and B.

I−2. For every two points A and B, there exists no more than one line that contains

each of the points A and B.

I− 3. There are at least two points on a line. There are at least three points not on

a line.

II. Betweenness

II − 1. If a point B lies between points A and C, then the points A,B and C are

distinct points of a line, and B also lies between C and A.

II−2. For two points A and C, there always exists at least one point B on the line

AC such that C lies between A and B.

II−3. Of any three points on a line, there exists no more than one that lies between

the other two.

II − 4. Let A,B and C be three points that do not lie on a line, and let L be a

line which does not meet any of the points A,B and C. If the line L passes through

a point of the segment AB, it also passes through a point of the segment AC, or

through a point of the segment BC.

III. Congruence
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III − 1. If A1 and B1 are two points on a line L1, and A2 is a point on a line L2

then it is always possible to find a point B2 on a given side of the line L2 through

A2 such that the segment A1B1 is congruent to the segment A2B2.

III − 2. If a segment A1B1 and a segment A2B2 are congruent to the segment AB,

then the segment A1B1 is also congruent to the segment A2B2.

III − 3. On the line L, let AB and BC be two segments which except for B have

no point in common. Furthermore, on the same or on another line L1, let A1B1

and B1C1 be two segments, which except for B1 also have no point in common. In

that case, if AB is congruent to A1B1 and BC is congruent to B1C1, then AC is

congruent to A1C1.

III − 4. Every angle can be copied on a given side of a given ray in a uniquely

determined way.

III − 5 If for two triangles ABC and A1B1C1, AB is congruent to A1B1, AC is

congruent to A1C1 and 6 BAC is congruent to 6 B1A1C1, then 6 ABC is congruent

to 6 A1B1C1.

IV. Parallels

IV − 1. There is at most one line passes through a point P exterior a line L that is

parallel to L.

V. Continuity

V − 1(Archimedes) Let AB and CD be two line segments with |AB| ≥ |CD|. Then

there is an integer m such that

m|CD| ≤ |AB| ≤ (m+ 1)|CD|.

V − 2(Cantor) Let A1B1, A2B2, · · · , AnBn, · · · be a segment sequence on a line L.

If

A1B1 ⊇ A2B2 ⊇ · · · ⊇ AnBn ⊇ · · · ,

then there exists a common point X on each line segment AnBn for any integer

n, n ≥ 1.

Smarandache defined an anti-geometries by denial some axioms of Hilbert axiom

system for an Euclid geometry. Similar to the discussion in the reference [35], We
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obtain the following result for anti-geometries in map geometries without boundary.

Theorem 3.2.5 Unless axioms I − 3, II − 3, III − 2, V − 1 and V − 2, an

anti-geometry can be gotten from map geometries without boundary by denial other

axioms in Hilbert axiom system.

Proof The axiom I − 1 has been denied in the proof of Theorem 3.2.4. Since

there maybe exists more than one line passing through two points A and B in a

map geometry with elliptic or hyperbolic points u such as those shown in Fig.3.11.

So the axiom II − 2 can be Smarandachely denied.

Fig.3.11

Notice that an m-line maybe has self-intersection points in a map geometry

without boundary. So the axiom II − 1 can be denied. By the proof of Theorem

3.2.4, we know that for two points A and B, an m-line passing through A and B

may not exist. Whence, the axiom II − 2 can be denied. For the axiom II − 4, see

Fig.3.12, in where v is a non-euclidean point such that ρM(v)µ(v) ≥ 2(π + 6 ACB)

in a map geometry.

Fig.3.12

So II − 4 can be also denied. Notice that an m-line maybe has self-intersection

points. There are maybe more than one m-lines passing through two given points

A,B. Therefore, the axioms III − 1 and III − 3 are deniable. For denial the
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axiom III − 4, since an elliptic point u can be measured at most by a number
ρM (u)µ(u)

2
< π, i.e., there is a limitation for an elliptic point u. Whence, an angle

with measure bigger than ρM (u)µ(u)
2

can not be copied on an elliptic point on a given

ray.

Because there are maybe more than one m-lines passing through two given

points A and B in a map geometry without boundary, the axiom III − 5 can be

Smarandachely denied in general such as those shown in Fig.3.13(a) and (b) where

u is an elliptic point.

Fig.3.13

For the parallel axiom IV − 1, it has been denied by the proofs of Theorems

3.2.3 and 3.2.4.

Notice that axioms I − 3, II − 3 III − 2, V − 1 and V − 2 can not be denied

in a map geometry without boundary. This completes the proof. ♮

For counter-projective geometries, we have a result as in the following.

Theorem 3.2.6 Unless the axiom (C3), a counter-projective geometry can be gotten

from map geometries without boundary by denial axioms (C1) and (C2).

Proof Notice that axioms (C1) and (C2) have been denied in the proof of

Theorem 3.2.5. Since a map is embedded on a locally orientable surface, every m-

line in a map geometry without boundary may contains infinite points. Therefore

the axiom (C3) can not be Smarandachely denied. ♮

§3.3 Map Geometries with Boundary

A Poincaré’s model for a hyperbolic geometry is an upper half-plane in which lines

are upper half-circles with center on the x-axis or upper straight lines perpendicular

to the x-axis such as those shown in Fig.3.14.
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Fig.3.14

If we think that all infinite points are the same, then a Poincaré’s model for

a hyperbolic geometry is turned to a Klein model for a hyperbolic geometry which

uses a boundary circle and lines are straight line segment in this circle, such as those

shown in Fig.3.15.

Fig.3.15

By a combinatorial map view, a Klein’s model is nothing but a one face map

geometry. This fact hints us to introduce map geometries with boundary, which is

defined in the next definition.

Definition 3.3.1 For a map geometry (M,µ) without boundary and faces f1, f2, · · · , fl
∈ F (M), 1 ≤ l ≤ φ(M) − 1, if S(M) \ {f1, f2, · · · , fl} is connected, then call

(M,µ)−l = (S(M) \ {f1, f2, · · · , fl}, µ) a map geometry with boundary f1, f2, · · · , fl
and orientable or not if (M,µ) is orientable or not, where S(M) denotes the locally

orientable surface on which M is embedded.

The m-points and m-lines in a map geometry (M,µ)−l are defined as same

as Definition 3.2.3 by adding an m-line terminated at the boundary of this map

geometry. Two m−-lines on the torus and projective plane are shown in these

Fig.3.16 and Fig.3.17, where the shade field denotes the boundary.
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Fig.3.16

Fig.3.17

All map geometries with boundary are also Smarandache geometries which is

convince by a result in the following.

Theorem 3.3.1 For a map M on a locally orientable surface with order≥ 3, vertex

valency≥ 3 and a face f ∈ F (M), there is an angle factor µ such that (M,µ)−1 is a

Smarandache geometry by denial the axiom (A5) with these axioms (A5),(L5) and

(R5).

Proof Similar to the proof of Theorem 3.2.3, we consider a map M being a

planar map, an orientable map on a torus or a non-orientable map on a projective

plane, respectively. We can get the assertion. In fact, by applying the property that

m-lines in a map geometry with boundary are terminated at the boundary, we can

get an more simpler proof for this theorem. ♮

Notice that in a one face map geometry (M,µ)−1 with boundary is just a Klein’s

model for hyperbolic geometry if we choose all points being euclidean.

Similar to map geometries without boundary, we can also get non-geometries,

anti-geometries and counter-projective geometries from map geometries with bound-
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ary.

Theorem 3.3.2 There are non-geometries in map geometries with boundary.

Proof The proof is similar to the proof of Theorem 3.2.4 for map geometries

without boundary. Each of axioms (A−
1 )− (A−

5 ) is hold, for example, cases (a)− (e)

in Fig.3.18,

Fig.3.18

in where there are no an m-line from points A to B in (a), the line AB can not be

continuously extended to indefinite in (b), the circle has gap in (c), a right angle at

an euclidean point v is not equal to a right angle at an elliptic point u in (d) and

there are infinite m-lines passing through a point P not intersecting with the m-line

L in (e). Whence, there are non-geometries in map geometries with boundary. ♮

Theorem 3.3.3 Unless axioms I − 3, II − 3 III − 2, V − 1 and V − 2 in the

Hilbert’s axiom system for an Euclid geometry, an anti-geometry can be gotten from

map geometries with boundary by denial other axioms in this axiom system.

Theorem 3.3.4 Unless the axiom (C3), a counter-projective geometry can be gotten

from map geometries with boundary by denial axioms (C1) and (C2).

Proof The proofs of Theorems 3.3.3 and 3.3.4 are similar to the proofs of

Theorems 3.2.5 and 3.2.6. The reader is required to complete their proof. ♮
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§3.4 The Enumeration of Map Geometries

For classifying map geometries, the following definition is needed.

Definition 3.4.1 Two map geometries (M1, µ1) and (M2, µ2) or (M1, µ1)
−l and

(M2, µ2)
−l are said to be equivalent each other if there is a bijection θ : M1 → M2

such that for ∀u ∈ V (M), θ(u) is euclidean, elliptic or hyperbolic if and only if u is

euclidean, elliptic or hyperbolic.

A relation for the numbers of unrooted maps with map geometries is in the

following result.

Theorem 3.4.1 LetM be a set of non-isomorphic maps of order n and with m faces.

Then the number of map geometries without boundary is 3n|M| and the number of

map geometries with one face being its boundary is 3nm|M|.

Proof By the definition of equivalent map geometries, for a given map M ∈ M,

there are 3n map geometries without boundary and 3nm map geometries with one

face being its boundary by Theorem 3.3.1. Whence, we get 3n|M| map geometries

without boundary and 3nm|M| map geometries with one face being its boundary

fromM. ♮.

We get an enumeration result for non-equivalent map geometries without bound-

ary as follows.

Theorem 3.4.2 The numbers nO(Γ, g) and nN(Γ, g) of non-equivalent orientable

and non-orientable map geometries without boundary underlying a simple graph Γ

by denial the axiom (A5) by (A5), (L5) or (R5) are

nO(Γ, g) =

3|Γ|
∏

v∈V (Γ)
(ρ(v)− 1)!

2|AutΓ| ,

and

nN (Γ, g) =

(2β(Γ) − 1)3|Γ|
∏

v∈V (Γ)
(ρ(v)− 1)!

2|AutΓ| ,

where β(Γ) = ε(Γ)− ν(Γ) + 1 is the Betti number of the graph Γ.
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Proof Denote the set of non-isomorphic maps underlying the graph Γ on locally

orientable surfaces by M(Γ) and the set of embeddings of the graph Γ on locally

orientable surfaces by E(Γ). For a map M,M ∈ M(Γ), there are 3|M|

|AutM | different

map geometries without boundary by choice the angle factor µ on a vertex u such

that u is euclidean, elliptic or hyperbolic. From permutation groups, we know that

|AutΓ× 〈α〉 | = |(AutΓ)M ||MAutΓ×〈α〉| = |AutM ||MAutΓ×〈α〉|.

Therefore, we get that

nO(Γ, g) =
∑

M∈M(Γ)

3|M |

|AutM |

=
3|Γ|

|AutΓ× 〈α〉 |
∑

M∈M(Γ)

|AutΓ× 〈α〉 |
|AutM |

=
3|Γ|

|AutΓ× 〈α〉 |
∑

M∈M(Γ)

|MAutΓ×〈α〉|

=
3|Γ|

|AutΓ× 〈α〉 | |E
O(Γ)|

=

3|Γ|
∏

v∈V (Γ)
(ρ(v)− 1)!

2|AutΓ| .

Similarly, we can also get that

nN(Γ, g) =
3|Γ|

|AutΓ× 〈α〉 | |E
N(Γ)|

=

(2β(Γ) − 1)3|Γ|
∏

v∈V (Γ)
(ρ(v)− 1)!

2|AutΓ| .

This completes the proof. ♮

For classifying map geometries with boundary, we get a result as in the follow-

ing.

Theorem 3.4.3 The numbers nO(Γ,−g), nN (Γ,−g) of non-equivalent orientable,

non-orientable map geometries with one face being its boundary underlying a simple

graph Γ by denial the axiom (A5) by (A5), (L5) or (R5) are respective
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nO(Γ,−g) =
3|Γ|

2|AutΓ| [(β(Γ) + 1)
∏

v∈V (Γ)

(ρ(v)− 1)!− 2d(g[Γ](x))

dx
|x=1]

and

nN(Γ,−g) =
(2β(Γ) − 1)3|Γ|

2|AutΓ| [(β(Γ) + 1)
∏

v∈V (Γ)

(ρ(v)− 1)!− 2d(g[Γ](x))

dx
|x=1],

where g[Γ](x) is the genus polynomial of the graph Γ, i.e., g[Γ](x) =
γm(Γ)∑
k=γ(Γ)

gk[Γ]xk

with gk[Γ] being the number of embeddings of Γ on the orientable surface of genus k.

Proof Notice that ν(M) − ε(M) + φ(M) = 2 − 2g(M) for an orientable map

M by the Euler-Poincaré formula. Similar to the proof of Theorem 3.4.2 with the

same meaning forM(Γ), we know that

nO(Γ,−g) =
∑

M∈M(Γ)

φ(M)3|M |

|AutM |

=
∑

M∈M(Γ)

(2 + ε(Γ)− ν(Γ)− 2g(M))3|M |

|AutM |

=
∑

M∈M(Γ)

(2 + ε(Γ)− ν(Γ))3|M |

|AutM | −
∑

M∈M(Γ)

2g(M)3|M |

|AutM |

=
(2 + ε(Γ)− ν(Γ))3|M |

|AutΓ× 〈α〉 |
∑

M∈M(Γ)

|AutΓ× 〈α〉 |
|AutM |

− 2× 3|Γ|

|AutΓ× 〈α〉 |
∑

M∈M(Γ)

g(M)|AutΓ× 〈α〉 |
|AutM |

=
(β(Γ) + 1)3|M |

|AutΓ× 〈α〉 |
∑

M∈M
(Γ)|MAutΓ×〈α〉|

− 3|Γ|

|AutΓ|
∑

M∈M(Γ)

g(M)|MAutΓ×〈α〉|

=
(β(Γ) + 1)3|Γ|

2|AutΓ|
∏

v∈V (Γ)

(ρ(v)− 1)!− 3|Γ|

|AutΓ|
γm(Γ)∑

k=γ(Γ)

kgk[Γ]

=
3|Γ|

2|AutΓ| [(β(Γ) + 1)
∏

v∈V (Γ)

(ρ(v)− 1)!− 2d(g[Γ](x))

dx
|x=1].
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by Theorem 3.4.1.

Notice that nL(Γ,−g) = nO(Γ,−g)+nN(Γ,−g) and the number of re-embeddings

an orientable map M on surfaces is 2β(M) (see also [56] for details). We know that

nL(Γ,−g) =
∑

M∈M(Γ)

2β(M) × 3|M |φ(M)

|AutM |
= 2β(M)nO(Γ,−g).

Whence, we get that

nN(Γ,−g) = (2β(M) − 1)nO(Γ,−g)

=
(2β(M) − 1)3|Γ|

2|AutΓ| [(β(Γ) + 1)
∏

v∈V (Γ)

(ρ(v)− 1)!− 2d(g[Γ](x))

dx
|x=1].

This completes the proof. ♮

§3.5 Remarks and Open Problems

3.5.1 A complete Hilbert axiom system for an Euclid geometry contains axioms

I − i, 1 ≤ i ≤ 8; II − j, 1 ≤ j ≤ 4; III − k, 1 ≤ k ≤ 5; IV − 1 and V − l, 1 ≤ l ≤ 2,

which can be also applied to the geometry of space. Unless I − i, 4 ≤ i ≤ 8, other

axioms are presented in Section 3.2. Each of axioms I − i, 4 ≤ i ≤ 8 is described in

the following.

I − 4 For three non-collinear points A,B and C, there is one and only one plane

passing through them.

I − 5 Each plane has at least one point.

I − 6 If two points A and B of a line L are in a plane
∑

, then every point of L is

in the plane
∑

.

I − 7 If two planes
∑

1 and
∑

2 have a common point A, then they have another

common point B.

I − 8 There are at least four points not in one plane.

By the Hilbert’s axiom system, the following result for parallel planes can be

obtained.
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(T) Passing through a given point A exterior to a given plane
∑

there is one

and only one plane parallel to
∑

.

This result seems like the Euclid’s fifth axiom. Similar to the Smarandache’s

notion, we present problems by denial this theorem for the geometry of space as

follows.

Problem 3.5.1 Construct a geometry of space by denial the parallel theorem of

planes with

(T−
1 ) there are at least a plane

∑
and a point A exterior to the plane

∑
such

that no parallel plane to
∑

passing through the point A.

(T−
2 ) there are at least a plane

∑
and a point A exterior to the plane

∑
such

that there are finite parallel planes to
∑

passing through the point A.

(T−
3 ) there are at least a plane

∑
and a point A exterior to the plane

∑
such

that there are infinite parallel planes to
∑

passing through the point A.

Problem 3.5.2 Similar to the Iseri’s idea define an elliptic, euclidean, or hyperbolic

point or plane in R3 and apply these Plato polyhedrons to construct Smarandache

geometries of a space R3.

Problem 3.5.3 Similar to map geometries define graph in a space geometries and

apply graphs in R3 to construct Smarandache geometries of a space R3.

Problem 3.5.4 For an integer n, n ≥ 4, define Smarandache geometries in Rn by

denial some axioms for an Euclid geometry in Rn and construct them.

3.5.2 The terminology map geometry was first appeared in [55] which enables us to

find non-homogenous spaces from already known homogenous spaces and is also a

typical example for application combinatorial maps to metric geometries. Among

them there are many problems not solved yet until today. Here we would like to

describe some of them.

Problem 3.5.5 For a given graph G, determine non-equivalent map geometries

with an underlying graph G, particularly, for graphs Kn, K(m,n), m, n ≥ 4 and

enumerate them.
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Problem 3.5.6 For a given locally orientable surface S, determine non-equivalent

map geometries on S, such as a sphere, a torus or a projective plane, · · · and enu-

merate them.

Problem 3.5.7 Find characteristics for equivalent map geometries or establish new

ways for classifying map geometries.

Problem 3.5.8 Whether can we rebuilt an intrinsic geometry on surfaces, such as

a sphere, a torus or a projective plane, · · ·, by map geometries?



Chapter 4 Planar Map Geometries

Fundamental elements in an Euclid geometry are those of points, lines, polygons

and circles. For a map geometry, the situation is more complex since a point maybe

an elliptic, euclidean or a hyperbolic point, a polygon maybe a line, · · ·, etc.. This

chapter concentrates on discussing fundamental elements and measures such as an-

gle, area, curvature, · · ·, etc., also parallel bundles in planar map geometries, which

can be seen as a first step for comprehending map geometries on surfaces. All ma-

terials of this chapter will be used in Chapters 5-6 for establishing relations of an

integral curve with a differential equation system in a pseudo-plane geometry and

continuous phenomena with discrete phenomena

§4.1 Points in a Planar Map Geometry

Points in a map geometry are classified into three classes: elliptic, euclidean and hy-

perbolic. There are only finite non-euclidean points considered in Chapter 3 because

we had only defined an elliptic, euclidean or a hyperbolic point on vertices of a map.

In a planar map geometry, we can present an even more delicate consideration for

euclidean or non-euclidean points and find infinite non-euclidean points in a plane.

Let (M,µ) be a planar map geometry on a plane
∑

. Choose vertices u, v ∈
V (M). A mapping is called an angle function between u and v if there is a smooth

monotone mapping f :
∑ → ∑

such that f(u) = ρM (u)µ(u)
2

and f(v) = ρM (v)µ(v)
2

.

Not loss of generality, we can assume that each edge in a planar map geometry is

an angle function. Then we know a result as in the following.
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Theorem 4.1.1 A planar map geometry (M,µ) has infinite non-euclidean points if

and only if there is an edge e = (u, v) ∈ E(M) such that ρM (u)µ(u) 6= ρM(v)µ(v),

or ρM(u)µ(u) is a constant but 6= 2π for ∀u ∈ V (M), or a loop (u, u) ∈ E(M)

attaching a non-euclidean point u.

Proof If there is an edge e = (u, v) ∈ E(M) such that ρM(u)µ(u) 6= ρM(v)µ(v),

then at least one of vertices u and v in (M,µ) is non-euclidean. Not loss of generality,

we assume the vertex u is non-euclidean.

If u and v are elliptic or u is elliptic but v is euclidean, then by the definition of

angle functions, the edge (u, v) is correspondent with an angle function f :
∑→ ∑

such that f(u) = ρM (u)µ(u)
2

and f(v) = ρM (v)µ(v)
2

, each points is non-euclidean in

(u, v)\{v}. If u is elliptic but v is hyperbolic, i.e., ρM (u)µ(u) < 2π and ρM (v)µ(v) >

2π, since f is smooth and monotone on (u, v), there is one and only one point x∗

in (u, v) such that f(x∗) = π. Thereby there are infinite non-euclidean points on

(u, v).

Similar discussion can be gotten for the cases that u and v are both hyperbolic,

or u is hyperbolic but v is euclidean, or u is hyperbolic but v is elliptic.

If ρM(u)µ(u) is a constant but 6= 2π for ∀u ∈ V (M), then each point on an

edges is a non-euclidean point. Thereby there are infinite non-euclidean points in

(M,µ).

Now if there is a loop (u, u) ∈ E(M) and u is non-eucliean, then by defini-

tion, each point v on the loop (u, u) satisfying that f(v) > or < π according to

ρM(u)µ(u) > π or < π. Therefore there are also infinite non-euclidean points on the

loop (u, u).

On the other hand, if there are no an edge e = (u, v) ∈ E(M) such that

ρM(u)µ(u) 6= ρM(v)µ(v), i.e., ρM(u)µ(u) = ρM(v)µ(v) for ∀(u, v) ∈ E(M), or there

are no vertices u ∈ V (M) such that ρM(u)µ(u) is a constant but 6= 2π for ∀, or there

are no loops (u, u) ∈ E(M) with a non-eucliean point u, then all angle functions on

these edges of M are an constant π. Therefore there are no non-euclidean points in

the map geometry (M,µ). This completes the proof. ♮

For euclidean points in a planar map geometry (M,µ), we get the following

result.

Theorem 4.1.2 For a planar map geometry (M,µ) on a plane
∑

,
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(i) every point in
∑ \E(M) is an euclidean point;

(ii) there are infinite euclidean points on M if and only if there exists an edge

(u, v) ∈ E(M) (u = v or u 6= v) such that u and v are both euclidean.

Proof By the definition of angle functions, we know that every point is euclidean

if it is not on M . So the assertion (i) is true.

According to the proof of Theorem 4.1.1, there are only finite euclidean points

unless there is an edge (u, v) ∈ E(M) with ρM(u)µ(u) = ρM (v)µ(v) = 2π. In this

case, there are infinite euclidean points on the edge (u, v). Thereby the assertion

(ii) is also holds. ♮

According to Theorems 4.1.1 and 4.1.2, we classify edges in a planar map ge-

ometry (M,µ) into six classes as follows.

C1
E (euclidean-elliptic edges): edges (u, v) ∈ E(M) with ρM(u)µ(u) = 2π

but ρM (v)µ(v) < 2π.

C2
E (euclidean-euclidean edges): edges (u, v) ∈ E(M) with ρM(u)µ(u) = 2π

and ρM (v)µ(v) = 2π.

C3
E (euclidean-hyperbolic edges): edges (u, v) ∈ E(M) with ρM(u)µ(u) =

2π but ρM(v)µ(v) > 2π.

C4
E (elliptic-elliptic edges): edges (u, v) ∈ E(M) with ρM (u)µ(u) < 2π and

ρM(v)µ(v) < 2π.

C5
E (elliptic-hyperbolic edges): edges (u, v) ∈ E(M) with ρM (u)µ(u) < 2π

but ρM (v)µ(v) > 2π.

C6
E (hyperbolic-hyperbolic edges): edges (u, v) ∈ E(M) with ρM(u)µ(u) >

2π and ρM(v)µ(v) > 2π.

In Fig.4.1(a)− (f), these m-lines passing through an edge in one of classes of

C1
E-C6

E are shown, where u is elliptic and v is eucildean in (a), u and v are both

euclidean in (b), u is eucildean but v is hyperbolic in (c), u and v are both elliptic

in (d), u is elliptic but v is hyperbolic in (e) and u and v are both hyperbolic in (f),

respectively.
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Fig.4.1

Denote by Vel(M), Veu(M) and Vhy(M) the respective sets of elliptic, euclidean

and hyperbolic points in V (M) in a planar map geometry (M,µ). Then we get a

result as in the following.

Theorem 4.1.3 Let (M,µ) be a planar map geometry. Then

∑

u∈Vel(M)

ρM(u) +
∑

v∈Veu(M)

ρM(v) +
∑

w∈Vhy(M)

ρM(w) = 2
6∑

i=1

|Ci
E|

and

|Vel(M)| + |Veu(M)| + |Vhy(M)| + φ(M) =
6∑

i=1

|Ci
E|+ 2.

where φ(M) denotes the number of faces of a map M .

Proof Notice that

|V (M)| = |Vel(M)| + |Veu(M)| + |Vhy(M)| and |E(M)| =
6∑

i=1

|Ci
E|

for a planar map geometry (M,µ). By two well-known results

∑

v∈V (M)

ρM(v) = 2|E(M)| and |V (M)| − |E(M)|+ φ(M) = 2
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for a planar map M , we know that

∑

u∈Vel(M)

ρM(u) +
∑

v∈Veu(M)

ρM (v) +
∑

w∈Vhy(M)

ρM(w) = 2
6∑

i=1

|Ci
E|

and

|Vel(M)| + |Veu(M)|+ |Vhy(M)| + φ(M) =
6∑

i=1

|Ci
E|+ 2. ♮

§4.2 Lines in a Planar Map Geometry

The situation of m-lines in a planar map geometry (M,µ) is more complex. Here

an m-line maybe open or closed, with or without self-intersections in a plane. We

discuss all of these m-lines and their behaviors in this section, .

4.2.1. Lines in a planar map geometry

As we have seen in Chapter 3, m-lines in a planar map geometry (M,µ) can be

classified into three classes.

C1
L(opened lines without self-intersections): m-lines in (M,µ) have an

infinite number of continuous m-points without self-intersections and endpoints and

may be extended indefinitely in both directions.

C2
L(opened lines with self-intersections): m-lines in (M,µ) have an infi-

nite number of continuous m-points and self-intersections but without endpoints and

may be extended indefinitely in both directions.

C3
L(closed lines): m-lines in (M,µ) have an infinite number of continuous

m-points and will come back to the initial point as we travel along any one of these

m-lines starting at an initial point.

By this classification, a straight line in an Euclid plane is nothing but an opened

m-line without non-euclidean points. Certainly, m-lines in a planar map geometry

(M,µ) maybe contain non-euclidean points. In Fig.4.2, these m-lines shown in

(a), (b) and (c) are opened m-line without self-intersections, opened m-line with

a self-intersection and closed m-line with A,B,C,D and E non-euclidean points,

respectively.
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Fig.4.2

Notice that a closed m-line in a planar map geometry maybe also has self-

intersections. A closed m-line is said to be simply closed if it has no self-intersections,

such as the m-line in Fig.4.2(c). For simply closed m-lines, we know the following

result.

Theorem 4.2.1 Let (M,µ) be a planar map geometry. An m-line L in (M,µ)

passing through n non-euclidean points x1, x2, · · · , xn is simply closed if and only if

n∑

i=1

f(xi) = (n− 2)π,

where f(xi) denotes the angle function value at an m-point xi, 1 ≤ i ≤ n.

Proof By results in an Euclid geometry of plane, we know that the angle sum of

an n-polygon is (n− 2)π. In a planar map geometry (M,µ), a simply closed m-line

L passing through n non-euclidean points x1, x2, · · · , xn is nothing but an n-polygon

with vertices x1, x2, · · · , xn. Whence, we get that

n∑

i=1

f(xi) = (n− 2)π.

Now if a simply m-line L passing through n non-euclidean points x1, x2, · · · , xn
with

n∑

i=1

f(xi) = (n− 2)π

held, then L is nothing but an n-polygon with vertices x1, x2, · · · , xn. Therefore, L

is simply closed. ♮

By applying Theorem 4.2.1, we can also find conditions for an opened m-line

with or without self-intersections.
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Theorem 4.2.2 Let (M,µ) be a planar map geometry. An m-line L in (M,µ) pass-

ing through n non-euclidean points x1, x2, · · · , xn is opened without self-intersections

if and only if m-line segments xixi+1, 1 ≤ i ≤ n−1 are not intersect two by two and

n∑

i=1

f(xi) ≥ (n− 1)π.

Proof By the Euclid’s fifth postulate for a plane geometry, two straight lines

will meet on the side on which the angles less than two right angles if we extend

them to indefinitely. Now for an m-line L in a planar map geometry (M,µ), if it

is opened without self-intersections, then for any integer i, 1 ≤ i ≤ n − 1, m-line

segments xixi+1 will not intersect two by two and the m-line L will also not intersect

before it enters x1 or leaves xn.

Fig.4.3

Now look at Fig.4.3, in where line segment x1xn is an added auxiliary m-line

segment. We know that

6 1 + 6 2 = f(x1) and 6 3 + 6 4 = f(xn).

According to Theorem 4.2.1 and the Euclid’s fifth postulate, we know that

6 2 + 6 4 +
n−1∑

i=2

f(xi) = (n− 2)π

and

6 1 + 6 3 ≥ π

Therefore, we get that

n∑

i=1

f(xi) = (n− 2)π + 6 1 + 6 3 ≥ (n− 1)π. ♮
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For opened m-lines with self-intersections, we know a result as in the following.

Theorem 4.2.3 Let (M,µ) be a planar map geometry. An m-line L in (M,µ)

passing through n non-euclidean points x1, x2, · · · , xn is opened only with l self-

intersections if and only if there exist integers ij and sij , 1 ≤ j ≤ l with 1 ≤ ij , si,j ≤
n and ij 6= it if t 6= j such that

(sij − 2)π <

sij∑

h=1

f(xij+h) < (sij − 1)π.

Proof If an m-line L passing through m-points xt+1, xt+2, · · · , xt+st only has one

self-intersection point, let us look at Fig.4.4 in where xt+1xt+st is an added auxiliary

m-line segment.

Fig.4.4

We know that

6 1 + 6 2 = f(xt+1) and 6 3 + 6 4 = f(xt+st).

Similar to the proof of Theorem 4.2.2, by Theorem 4.2.1 and the Euclid’s fifth

postulate, we know that

6 2 + 6 4 +
st−1∑

j=2

f(xt+j) = (st − 2)π

and

6 1 + 6 3 < π.

Whence, we get that

(st − 2)π <
st∑

j=1

f(xt+j) < (st − 1)π.
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Therefore, if L is opened only with l self-intersection points, we can find integers

ij and sij , 1 ≤ j ≤ l with 1 ≤ ij, si,j ≤ n and ij 6= it if t 6= j such that L passing

through xij+1, xij+2, · · · , xij+sj only has one self-intersection point. By the previous

discussion, we know that

(sij − 2)π <

sij∑

h=1

f(xij+h) < (sij − 1)π.

This completes the proof. ♮

Notice that all m-lines considered in this section are consisted by line segments

or rays in an Euclid plane geometry. If the length of each line segment tends to

zero, then we get a curve at the limitation in the usually sense. Whence, an m-line

in a planar map geometry can be also seen as a discretization for plane curves and

also has relation with differential equations. Readers interested in those materials

can see in Chapter 5 for more details.

4.2.2. Curvature of an m-line

The curvature at a point of a curve C is a measure of how quickly the tangent

vector changes direction with respect to the length of arc, such as those of the

Gauss curvature, the Riemann curvature, · · ·, etc.. In Fig.4.5 we present a smooth

curve and the changing of tangent vectors.

Fig.4.5

To measure the changing of vector v1 to v2, a simpler way is by the changing

of the angle between vectors v1 and v2. If a curve C = f(s) is smooth, then the

changing rate of the angle between two tangent vector with respect to the length of

arc, i.e., df

ds
is continuous. For example, as we known in the differential geometry,

the Gauss curvature at every point of a circle x2 + y2 = r2 of radius r is 1
r
. Whence,

the changing of the angle from vectors v1 to v2 is
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B∫

A

1

r
ds =

1

r
|ÂB| = 1

r
rθ = θ.

By results in an Euclid plane geometry, we know that θ is also the angle between

vectors v1 and v2. As we illustrated in Subsection 4.2.1, an m-line in a planar map

geometry is consisted by line segments or rays. Therefore, the changing rate of the

angle between two tangent vector with respect to the length of arc is not continuous.

Similar to the definition of the set curvature in the reference [1], we present a discrete

definition for the curvature of m-lines as follows.

Definition 4.2.1 Let L be an m-line in a planar map geometry (M,µ) with the set

W of non-euclidean points. The curvature ω(L) of L is defined by

ω(L) =
∑

p∈W
(π −̟(p)),

where ̟(p) = f(p) if p is on an edge (u, v) in map M on a plane
∑

with an angle

function f :
∑→ ∑

.

In the classical differential geometry, the Gauss mapping and the Gauss curva-

ture on surfaces are defined as follows:

Let S ⊂ R3 be a surface with an orientation N. The mapping N : S → S2

takes its value in the unit sphere

S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}

along the orientation N. The map N : S → S2, thus defined, is called a Gauss

mapping and the determinant of K(p) = dNp a Gauss curvature.

We know that for a point p ∈ S such that the Gaussian curvature K(p) 6= 0

and a connected neighborhood V of p with K does not change sign,

K(p) = lim
A→0

N(A)

A
,

where A is the area of a region B ⊂ V and N(A) is the area of the image of B by

the Gauss mapping N : S → S2.

The well-known Gauss-Bonnet theorem for a compact surface says that
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∫ ∫

S
Kdσ = 2πχ(S),

for any orientable compact surface S.

For a simply closed m-line, we also have a result similar to the Gauss-Bonnet

theorem, which can be also seen as a discrete Gauss-Bonnet theorem on a plane.

Theorem 4.2.4 Let L be a simply closed m-line passing through n non-euclidean

points x1, x2, · · · , xn in a planar map geometry (M,µ). Then

ω(L) = 2π.

Proof According to Theorem 4.2.1, we know that

n∑

i=1

f(xi) = (n− 2)π,

where f(xi) denotes the angle function value at an m-point xi, 1 ≤ i ≤ n. Whence,

by Definition 4.2.1 we know that

ω(L) =
n∑

i=1

(π − f(xi))

= πn−
n∑

i=1

f(xi)

= πn− (n− 2)π = 2π. ♮

Similarly, we get a result for the sum of curvatures on the planar map M in a

planar geometry (M,µ).

Theorem 4.2.6 Let (M,µ) be a planar map geometry. Then the sum ω(M) of

curvatures on edges in a map M is

ω(M) = 2πs(M),

where s(M) denotes the sum of length of edges in M .

Proof Notice that the sum ω(u, v) of curvatures on an edge (u, v) of M is
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ω(u, v) =

u∫

v

(π − f(s))ds = π| ̂(u, v)| −
u∫

v

f(s)ds.

Since M is a planar map, each of its edges appears just two times with an

opposite direction. Whence, we get that

ω(M) =
∑

(u,v)∈E(M)

ω(u, v) +
∑

(v,u)∈E(M)

ω(v, u)

= π
∑

(u,v)∈E(M)

(| ̂(u, v)|+ | ̂(v, u)|)− (

u∫

v

f(s)ds+

v∫

u

f(s)ds)

= 2πs(M) ♮

Notice that if we assume s(M) = 1, then Theorem 4.2.6 turns to the Gauss-

bonnet theorem for a sphere. Similarly, if we consider general map geometry on an

orientable surface, similar results can be also obtained such as those materials in

Problem 4.7.8 and Conjecture 4.7.1 in the final section of this chapter.

§4.3 Polygons in a Planar Map Geometry

4.3.1. Existence

In an Euclid plane geometry, we have encountered triangles, quadrilaterals, · · ·, and

generally, n-polygons, i.e., these graphs on a plane with n straight line segments not

on the same line connected with one after another. There are no 1 and 2-polygons

in an Euclid plane geometry since every point is euclidean. The definition of n-

polygons in a planar map geometry (M,µ) is similar to that of an Euclid plane

geometry.

Definition 4.3.1 An n-polygon in a planar map geometry (M,µ) is defined to be

a graph on (M,µ) with n m-line segments two by two without self-intersections and

connected with one after another.

Although their definition is similar, the situation is more complex in a planar

map geometry (M,µ). We have found a necessary and sufficient condition for 1-

polygon in Theorem 4.2.1, i.e., 1-polygons maybe exist in a planar map geometry.

In general, we can find n-polygons in a planar map geometry for any integer n, n ≥ 1.
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Examples of polygon in a planar map geometry (M,µ) are shown in Fig.4.6,

in where (a) is a 1-polygon with u, v, w and t being non-euclidean points, (b) is a

2-polygon with vertices A,B and non-euclidean points u, v, (c) is a triangle with

vertices A,B,C and a non-euclidean point u and (d) is a quadrilateral with vertices

A,B,C and D.

Fig.4.6

Theorem 4.3.1 There exists a 1-polygon in a planar map geometry (M,µ) if and

only if there are non-euclidean points u1, u2, · · · , ul with l ≥ 3 such that

l∑

i=1

f(ui) = (l − 2)π,

where f(ui) denotes the angle function value at the point ui, 1 ≤ i ≤ l.

Proof According to Theorem 4.2.1, an m-line passing through l non-euclidean

points u1, u2, · · · , ul is simply closed if and only if

l∑

i=1

f(ui) = (l − 2)π,

i.e., 1-polygon exists in (M,µ) if and only if there are non-euclidean points u1, u2, · · · , ul
with the above formula hold.

Whence, we only need to prove l ≥ 3. Since there are no 1-polygons or 2-

polygons in an Euclid plane geometry, we must have l ≥ 3 by the Hilbert’s axiom

I − 2. In fact, for l = 3 we can really find a planar map geometry (M,µ) with a

1-polygon passing through three non-euclidean points u, v and w. Look at Fig.4.7,
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Fig.4.7

in where the angle function values are f(u) = f(v) = f(w) = 2
3
π at u, v and w. ♮

Similarly, for 2-polygons we get the following result.

Theorem 4.3.2 There are 2-polygons in a planar map geometry (M,µ) only if there

are at least one non-euclidean point in (M,µ).

Proof In fact, if there is a non-euclidean point u in (M,µ), then each straight

line enter u will turn an angle θ = π − f(u)
2

or f(u)
2
− π from the initial straight line

dependent on that u is elliptic or hyperbolic. Therefore, we can get a 2-polygon in

(M,µ) by choice a straight line AB passing through euclidean points in (M,µ), such

as the graph shown in Fig.4.8.

Fig.4.8

This completes the proof. ♮

For the existence of n-polygons with n ≥ 3, we have a general result as in the

following.

Theorem 4.3.3 For any integer n, n ≥ 3, there are n-polygons in a planar map

geometry (M,µ).

Proof Since in an Euclid plane geometry, there are n-polygons for any integer

n, n ≥ 3. Therefore, there are also n-polygons in a planar map geometry (M,µ) for

any integer n, n ≥ 3. ♮
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4.3.2. Sum of internal angles

For the sum of the internal angles in an n-polygon, we have the following result.

Theorem 4.3.4 Let
∏

be an n-polygon in a map geometry with its edges passing

through non-euclidean points x1, x2, · · · , xl. Then the sum of internal angles in
∏

is

(n + l − 2)π −
l∑

i=1

f(xi),

where f(xi) denotes the value of the angle function f at the point xi, 1 ≤ i ≤ l.

Proof Denote by U, V the sets of elliptic points and hyperbolic points in

x1, x2, · · · , xl and |U | = p, |V | = q, respectively. If an m-line segment passes through

an elliptic point u, add an auxiliary line segment AB in the plane as shown in

Fig.4.9(1). Then we get that

6 a = 6 1 + 6 2 = π − f(u).

If an m-line passes through a hyperbolic point v, also add an auxiliary line

segment AB in the plane as that shown in Fig.4.9(2). Then we get that

angle b = angle3 + angle4 = f(v)− π.

Fig.4.9

Since the sum of internal angles of an n-polygon in a plane is (n−2)π whenever

it is a convex or concave polygon, we know that the sum of the internal angles in
∏

is

(n− 2)π +
∑

x∈U
(π − f(x))−

∑

y∈V
(f(y)− π)
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= (n+ p+ q − 2)π −
l∑

i=1

f(xi)

= (n+ l − 2)π −
l∑

i=1

f(xi).

This completes the proof. ♮

A triangle is called euclidean, elliptic or hyperbolic if its edges only pass through

one kind of euclidean, elliptic or hyperbolic points. As a consequence of Theorem

4.3.4, we get the sum of the internal angles of a triangle in a map geometry which

is consistent with these already known results .

Corollary 4.3.1 Let △ be a triangle in a planar map geometry (M,µ). Then

(i) the sum of its internal angles is equal to π if △ is euclidean;

(ii) the sum of its internal angles is less than π if △ is elliptic;

(iii) the sum of its internal angles is more than π if △ is hyperbolic.

Proof Notice that the sum of internal angles of a triangle is

π +
l∑

i=1

(π − f(xi))

if it passes through non-euclidean points x1, x2, · · · , xl. By definition, if these xi, 1 ≤
i ≤ l are one kind of euclidean, elliptic, or hyperbolic, then we have that f(xi) = π,

or f(xi) < π, or f(xi) > π for any integer i, 1 ≤ i ≤ l. Whence, the sum of internal

angles of an euclidean, elliptic or hyperbolic triangle is equal to, or lees than, or

more than π. ♮

4.3.3. Area of a polygon

As it is well-known, calculation for the area A(△) of a triangle △ with two sides a, b

and the value of their include angle θ or three sides a, b and c in an Euclid plane is

simple. Formulae for its area are

A(△) =
1

2
ab sin θ or A(△) =

√
s(s− a)(s− b)(s− c),

where s = 1
2
(a + b + c). But in a planar map geometry, calculation for the area of

a triangle is complex since each of its edge maybe contains non-euclidean points.
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Where, we only present a programming for calculation the area of a triangle in a

planar map geometry.

STEP 1 Divide a triangle into triangles in an Euclid plane such that no edges

contain non-euclidean points unless their endpoints;

STEP 2 Calculate the area of each triangle;

STEP 3 Sum up all of areas of these triangles to get the area of the given

triangle in a planar map geometry.

The simplest cases for triangle is the cases with only one non-euclidean point

such as those shown in Fig.4.10(1) and (2) with an elliptic point u or with a hyper-

bolic point v.

Fig.4.10

Add an auxiliary line segment AB in Fig.4.10. Then by formulae in the plane

trigonometry, we know that

A(△ABC) =
√
s1(s1 − a)(s1 − b)(s1 − t) +

√
s2(s2 − c)(s2 − d)(s2 − t)

for case (1) in Fig.4.10 and

A(△ABC) =
√
s1(s1 − a)(s1 − b)(s1 − t)−

√
s2(s2 − c)(s2 − d)(s2 − t)

for case (2) in Fig.4.10, where

t =

√

c2 + d2 − 2cd cos
f(x)

2

with x = u or v and
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s1 =
1

2
(a + b+ t), s2 =

1

2
(c + d+ t).

Generally, let △ABC be a triangle with its edge AB passing through p elliptic

or p hyperbolic points x1, x2, · · · , xp simultaneously, as those shown in Fig.4.11(1)

and (2).

Fig.4.11

Where |AC| = a, |BC| = b and |Ax1| = c1, |x1x2| = c2, · · · , |xp−1xp| = cp and

|xpB| = cp+1. Adding auxiliary line segments Ax2, Ax3, · · · , Axp, AB in Fig.4.11,

then we can find its area by the programming STEP 1 to STEP 3. By formulae in

the plane trigonometry, we get that

|Ax2| =
√

c21 + c22 − 2c1c2 cos
f(x1)

2
,

6 Ax2x1 = cos−1 c
2
1 − c22 − |Ax1|2

2c2|Ax2|
,

6 Ax2x3 =
f(x2)

2
− 6 Ax2x1 or 2π − f(x2)

2
− 6 Ax2x1,

|Ax3| =
√

|Ax2|2 + c23 − 2|Ax2|c3 cos(
f(x2)

2
− 6 Ax2x3),

6 Ax3x2 = cos−1 |Ax2|2 − c23 − |Ax3|2
2c3|Ax3|

,

6 Ax2x3 =
f(x3)

2
− 6 Ax3x2 or 2π − f(x3)

2
− 6 Ax3x2,
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· · · · · · · · · · · · · · · · · · · · · · · · · · ·

and generally, we get that

|AB| =
√
|Axp|2 + c2p+1 − 2|Axp|cp+1 cos 6 AxpB.

Then the area of the triangle △ABC is

A(△ABC) =
√
sp(sp − a)(sp − b)(sp − |AB|)

+
p∑

i=1

√
si(si − |Axi|)(si − ci+1)(si − |Axi+1|)

for case (1) in Fig.4.11 and

A(△ABC) =
√
sp(sp − a)(sp − b)(sp − |AB|)

−
p∑

i=1

√
si(si − |Axi|)(si − ci+1)(si − |Axi+1|)

for case (2) in Fig.4.11, where for any integer i, 1 ≤ i ≤ p− 1,

si =
1

2
(|Axi|+ ci+1 + |Axi+1|)

and

sp =
1

2
(a+ b+ |AB|).

Certainly, this programming can be also applied to calculate the area of an

n-polygon in a planar map geometry in general.

§4.4 Circles in a Planar Map Geometry

The length of an m-line segment in a planar map geometry is defined in the following

definition.

Definition 4.4.1 The length |AB| of an m-line segment AB consisted by k straight

line segments AC1, C1C2, C2C3, · · ·,Ck−1B in a planar map geometry (M,µ) is de-

fined by
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|AB| = |AC1|+ |C1C2|+ |C2C3|+ · · ·+ |Ck−1B|.

As that shown in Chapter 3, there are not always exist a circle with any center

and a given radius in a planar map geometry in the sense of the Euclid’s definition.

Since we have introduced angle function on a planar map geometry, we can likewise

the Euclid’s definition to define an m-circle in a planar map geometry in the next

definition.

Definition 4.4.2 A closed curve C without self-intersection in a planar map geom-

etry (M,µ) is called an m-circle if there exists an m-point O in (M,µ) and a real

number r such that |OP | = r for each m-point P on C.

Two Examples for m-circles in a planar map geometry (M,µ) are shown in

Fig.4.12(1) and (2). The m-circle in Fig.4.12(1) is a circle in the Euclid’s sense, but

(2) is not. Notice that in Fig.4.12(2), m-points u and v are elliptic and the length

|OQ| = |Ou|+ |uQ| = r for an m-point Q on the m-circle C, which seems likely an

ellipse but it is not. The m-circle C in Fig.4.12(2) also implied that m-circles are

more complex than those in an Euclid plane geometry.

Fig.4.12

We have a necessary and sufficient condition for the existence of an m-circle in

a planar map geometry.

Theorem 4.4.1 Let (M,µ) be a planar map geometry on a plane
∑

and O an

m-point on (M,µ). For a real number r, there is an m-circle of radius r with center

O if and only if O is in a non-outer face of M or O is in the outer face of M but

for any ǫ, r > ǫ > 0, the initial and final intersection points of a circle of radius ǫ

with M in an Euclid plane
∑

are euclidean points.
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Proof If there is a solitary non-euclidean point A with |OA| < r, then by those

materials in Chapter 3, there are no m-circles in (M,µ) of radius r with center O.

Now if O is in the outer face of M but there exists a number ǫ, r > ǫ > 0 such

that one of the initial and final intersection points of a circle of radius ǫ with M

on
∑

is non-euclidean point, then points with distance r to O in (M,µ) at least

has a gap in a circle with an Euclid sense. See Fig.4.13 for details, in where u is a

non-euclidean point and the shade field denotes the map M . Therefore there are no

m-circles in (M,µ) of radius r with center O.

Fig.4.13

Now if O in the outer face of M but for any ǫ, r > ǫ > 0, the initial and final

intersection points of a circle of radius ǫ with M on
∑

are euclidean points or O is

in a non-outer face of M , then by the definition of angle functions, we know that

all points with distance r to O is a closed smooth curve on
∑

, for example, see

Fig.4.14(1) and (2).

Fig.4.14

Whence it is an m-circle. ♮

We construct a polar axis OX with center O in a planar map geometry as that

in an Euclid geometry. Then each m-point A has a coordinate (ρ, θ), where ρ is the

length of the m-line segment OA and θ is the angle between OX and the straight
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line segment of OA containing the point A. We get an equation for an m-circle of

radius r which has the same form as that in the analytic geometry of plane.

Theorem 4.4.2 In a planar geometry (M,µ) with a polar axis OX of center O, the

equation of each m-circle of radius r with center O is

ρ = r.

Proof By the definition of an m-circle C of radius r, every m-point on C has a

distance r to its center O. Whence, its equation is ρ = r in a planar map geometry

with a polar axis OX of center O. ♮

§4.5 Line Bundles in a Planar Map Geometry

The behaviors of m-line bundles is need to clarify from a geometrical sense. Among

those m-line bundles the most important is parallel bundles defined in the next

definition, which is also motivated by the Euclid’s fifth postulate discussed in the

reference [54] first.

Definition 4.5.1 A family L of infinite m-lines not intersecting each other in a

planar geometry (M,µ) is called a parallel bundle.

In Fig.4.15, we present all cases of parallel bundles passing through an edge

in planar geometries, where, (a) is the case with the same type points u, v and

ρM(u)µ(u) = ρM(v)µ(v) = 2π, (b) and (c) are the same type cases with ρM(u)µ(u) >

ρM(v)µ(v) or ρM (u)µ(u) = ρM (v)µ(v) > 2π or < 2π and (d) is the case with an

elliptic point u but a hyperbolic point v.

Fig.4.15
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Here, we assume the angle at the intersection point is in clockwise, that is, a line

passing through an elliptic point will bend up and passing through a hyperbolic

point will bend down, such as those cases (b),(c) in the Fig.4.15. Generally, we

define a sign function sign(f) of an angle function f as follows.

Definition 4.5.2 For a vector
−→
O on the Euclid plane called an orientation, a sign

function sign(f) of an angle function f at an m-point u is defined by

sign(f)(u) =





1, if u is elliptic,

0, if u is euclidean,

−1, if u is hyperbolic.

We classify parallel bundles in planar map geometries along an orientation
−→
O

in this section.

4.5.1. A condition for parallel bundles

We investigate the behaviors of parallel bundles in a planar map geometry (M,µ).

Denote by f(x) the angle function value at an intersection m-point of an m-line L

with an edge (u, v) of M and a distance x to u on (u, v) as shown in Fig.4.15(a).

Then we get an elementary result as in the following.

Theorem 4.5.1 A family L of parallel m-lines passing through an edge (u, v) is a

parallel bundle if and only if

df

dx

∣∣∣∣∣
+

≥ 0.

Proof If L is a parallel bundle, then any two m-lines L1, L2 will not intersect

after them passing through the edge uv. Therefore, if θ1, θ2 are the angles of L1, L2

at the intersection m-points of L1, L2 with (u, v) and L2 is far from u than L1, then

we know θ2 ≥ θ1. Thereby we know that

f(x+ ∆x)− f(x) ≥ 0

for any point with distance x from u and ∆x > 0. Therefore, we get that
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df

dx

∣∣∣∣∣
+

= lim
∆x→+0

f(x+ ∆x)− f(x)

∆x
≥ 0.

As that shown in the Fig.4.15.

Now if df
dx

∣∣∣
+
≥ 0, then f(y) ≥ f(x) if y ≥ x. Since L is a family of parallel

m-lines before meeting uv, any two m-lines in L will not intersect each other after

them passing through (u, v). Therefore, L is a parallel bundle. ♮

A general condition for a family of parallel m-lines passing through a cut of a

planar map being a parallel bundle is the following.

Theorem 4.5.2 Let (M,µ) be a planar map geometry, C = {(u1, v1), (u2, v2), · · · ,
(ul, vl)} a cut of the map M with order (u1, v1), (u2, v2), · · · , (ul, vl) from the left

to the right, l ≥ 1 and the angle functions on them are f1, f2, · · · , fl (also seeing

Fig.4.16), respectively.

Fig.4.16

Then a family L of parallel m-lines passing through C is a parallel bundle if and

only if for any x, x ≥ 0,

sign(f1)(x)f
′
1+(x) ≥ 0

sign(f1)(x)f
′
1+(x) + sign(f2)(x)f

′
2+(x) ≥ 0

sign(f1)(x)f
′
1+(x) + sign(f2)(x)f

′
2+(x) + sign(f3)(x)f

′
3+(x) ≥ 0

· · · · · · · · · · · ·
sign(f1)(x)f

′
1+(x) + sign(f2)(x)f

′
2+(x) + · · ·+ sign(fl)(x)f

′
l+(x) ≥ 0.

Proof According to Theorem 4.5.1, we know thatm-lines will not intersect after

them passing through (u1, v1) and (u2, v2) if and only if for ∀∆x > 0 and x ≥ 0,
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sign(f2)(x)f2(x+ ∆x) + sign(f1)(x)f
′
1+(x)∆x ≥ sign(f2)(x)f2(x),

seeing Fig.4.17 for an explanation.

Fig.4.17

That is,

sign(f1)(x)f
′
1+(x) + sign(f2)(x)f

′
2+(x) ≥ 0.

Similarly, m-lines will not intersect after them passing through (u1, v1), (u2, v2)

and (u3, v3) if and only if for ∀∆x > 0 and x ≥ 0,

sign(f3)(x)f3(x+ ∆x) + sign(f2)(x)f
′
2+(x)∆x

+sign(f1)(x)f
′
1+(x)∆x ≥ sign(f3)(x)f3(x).

That is,

sign(f1)(x)f
′
1+(x) + sign(f2)(x)f

′
2+(x) + sign(f3)(x)f

′
3+(x) ≥ 0.

Generally, m-lines will not intersect after them passing through (u1, v1), (u2, v2), · · · ,
(ul−1, vl−1) and (ul, vl) if and only if for ∀∆x > 0 and x ≥ 0,

sign(fl)(x)fl(x+ ∆x) + sign(fl−1)(x)f
′
l−1+(x)∆x+

· · ·+ sign(f1)(x)f
′
1+(x)∆x ≥ sign(fl)(x)fl(x).

Whence, we get that
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sign(f1)(x)f
′
1+(x) + sign(f2)(x)f

′
2+(x) + · · ·+ sign(fl)(x)f

′
l+(x) ≥ 0.

Therefore, a family L of parallel m-lines passing through C is a parallel bundle

if and only if for any x, x ≥ 0, we have that

sign(f1)(x)f
′
1+(x) ≥ 0

sign(f1)(x)f
′
1+(x) + sign(f2)(x)f

′
2+(x) ≥ 0

sign(f1)(x)f
′
1+(x) + sign(f2)(x)f

′
2+(x) + sign(f1)(x)f

′
3+(x) ≥ 0

· · · · · · · · · · · ·
sign(f1)(x)f

′
1+(x) + sign(f2)(x)f

′
2+(x) + · · ·+ sign(f1)(x)f

′
l+(x) ≥ 0.

This completes the proof. ♮.

Corollary 4.5.1 Let (M,µ) be a planar map geometry, C = {(u1, v1), (u2, v2), · · · ,
(ul, vl)} a cut of the map M with order (u1, v1), (u2, v2), · · · , (ul, vl) from the left to

the right, l ≥ 1 and the angle functions on them are f1, f2, · · · , fl, respectively. Then

a family L of parallel lines passing through C is still parallel lines after them leaving

C if and only if for any x, x ≥ 0,

sign(f1)(x)f
′
1+(x) ≥ 0

sign(f1)(x)f
′
1+(x) + sign(f2)(x)f

′
2+(x) ≥ 0

sign(f1)(x)f
′
1+(x) + sign(f2)(x)f

′
2+(x) + sign(f1)(x)f

′
3+(x) ≥ 0

· · · · · · · · · · · ·
sign(f1)(x)f

′
1+(x) + sign(f2)(x)f

′
2+(x) + · · ·+ sign(f1)(x)f

′
l−1+(x) ≥ 0.

and

sign(f1)(x)f
′
1+(x) + sign(f2)(x)f

′
2+(x) + · · ·+ sign(f1)(x)f

′
l+(x) = 0.

Proof According to Theorem 4.5.2, we know the condition is a necessary and

sufficient condition for L being a parallel bundle. Now since lines in L are parallel
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lines after them leaving C if and only if for any x ≥ 0 and ∆x ≥ 0, there must be

that

sign(fl)fl(x+∆x)+sign(fl−1)f
′
l−1+(x)∆x+· · ·+sign(f1)f

′
1+(x)∆x = sign(fl)fl(x).

Therefore, we get that

sign(f1)(x)f
′
1+(x) + sign(f2)(x)f

′
2+(x) + · · ·+ sign(f1)(x)f

′
l+(x) = 0. ♮

When do some parallel m-lines parallel the initial parallel lines after them

passing through a cut C in a planar map geometry? The answer is in the next

result.

Theorem 4.5.3 Let (M,µ) be a planar map geometry, C = {(u1, v1), (u2, v2), · · · ,
(ul, vl)} a cut of the map M with order (u1, v1), (u2, v2), · · · , (ul, vl) from the left to

the right, l ≥ 1 and the angle functions on them are f1, f2, · · · , fl, respectively. Then

the parallel m-lines parallel the initial parallel lines after them passing through C if

and only if for ∀x ≥ 0,

sign(f1)(x)f
′
1+(x) ≥ 0

sign(f1)(x)f
′
1+(x) + sign(f2)(x)f

′
2+(x) ≥ 0

sign(f1)(x)f
′
1+(x) + sign(f2)(x)f

′
2+(x) + sign(f1)(x)f

′
3+(x) ≥ 0

· · · · · · · · · · · ·
sign(f1)(x)f

′
1+(x) + sign(f2)(x)f

′
2+(x) + · · ·+ sign(f1)(x)f

′
l−1+(x) ≥ 0.

and

sign(f1)f1(x) + sign(f2)f2(x) + · · ·+ sign(f1)(x)fl(x) = lπ.

Proof According to Theorem 4.5.2 and Corollary 4.5.1, we know that these

parallel m-lines satisfying conditions of this theorem is a parallel bundle.

We calculate the angle α(i, x) of an m-line L passing through an edge uivi, 1 ≤
i ≤ l with the line before it meeting C at the intersection of L with the edge
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(ui, vi), where x is the distance of the intersection point to u1 on (u1, v1), see also

Fig.4.18. By definition, we know the angle α(1, x) = sign(f1)f(x) and α(2, x) =

sign(f2)f2(x)− (π − sign(f1)f1(x)) = sign(f1)f1(x) + sign(f2)f2(x)− π.

Now if α(i, x) = sign(f1)f1(x)+sign(f2)f2(x)+· · ·+sign(fi)fi(x)−(i−1)π, then

we know that α(i + 1, x) = sign(fi+1)fi+1(x) − (π − α(i, x)) = sign(fi+1)fi+1(x) +

α(i, x)− π similar to the case i = 2. Thereby we get that

α(i+ 1, x) = sign(f1)f1(x) + sign(f2)f2(x) + · · ·+ sign(fi+1)fi+1(x)− iπ.

Notice that an m-line L parallel the initial parallel line after it passing through

C if and only if α(l, x) = π, i.e.,

sign(f1)f1(x) + sign(f2)f2(x) + · · ·+ sign(fl)fl(x) = lπ.

This completes the proof. ♮

4.5.2. Linear conditions and combinatorial realization for parallel bundles

For the simplicity, we can assume even that the function f(x) is linear and denoted

it by fl(x). We calculate fl(x) in the first.

Theorem 4.5.4 The angle function fl(x) of an m-line L passing through an edge

(u, v) at a point with distance x to u is

fl(x) = (1− x

d(u, v)
)
ρ(u)µ(v)

2
+

x

d(u, v)

ρ(v)µ(v)

2
,

where, d(u, v) is the length of the edge (u, v).

Proof Since fl(x) is linear, we know that fl(x) satisfies the following equation.

fl(x)− ρ(u)µ(u)
2

ρ(v)µ(v)
2
− ρ(u)µ(u)

2

=
x

d(u, v)
,

Calculation shows that

fl(x) = (1− x

d(u, v)
)
ρ(u)µ(v)

2
+

x

d(u, v)

ρ(v)µ(v)

2
. ♮
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Corollary 4.5.2 Under the linear assumption, a family L of parallel m-lines passing

through an edge (u, v) is a parallel bundle if and only if

ρ(u)

ρ(v)
≤ µ(v)

µ(u)
.

Proof According to Theorem 4.5.1, a family of parallel m-lines passing through

an edge (u, v) is a parallel bundle if and only if f ′(x) ≥ 0 for ∀x, x ≥ 0, i.e.,

ρ(v)µ(v)

2d(u, v)
− ρ(u)µ(u)

2d(u, v)
≥ 0.

Therefore, a family L of parallel m-lines passing through an edge (u, v) is a

parallel bundle if and only if

ρ(v)µ(v) ≥ ρ(u)µ(u).

Whence,

ρ(u)

ρ(v)
≤ µ(v)

µ(u)
. ♮

For a family of parallel m-lines passing through a cut, we get the following

condition.

Theorem 4.5.5 Let (M,µ) be a planar map geometry, C = {(u1, v1), (u2, v2), · · · ,
(ul, vl)} a cut of the map M with order (u1, v1), (u2, v2), · · · , (ul, vl) from the left to

the right, l ≥ 1. Then under the linear assumption, a family L of parallel m-lines

passing through C is a parallel bundle if and only if the angle factor µ satisfies the

following linear inequality system

ρ(v1)µ(v1) ≥ ρ(u1)µ(u1)

ρ(v1)µ(v1)

d(u1, v1)
+
ρ(v2)µ(v2)

d(u2, v2)
≥ ρ(u1)µ(u1)

d(u1, v1)
+
ρ(u2)µ(u2)

d(u2, v2)

· · · · · · · · · · · ·
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ρ(v1)µ(v1)

d(u1, v1)
+

ρ(v2)µ(v2)

d(u2, v2)
+ · · ·+ ρ(vl)µ(vl)

d(ul, vl)

≥ ρ(u1)µ(u1)

d(u1, v1)
+
ρ(u2)µ(u2)

d(u2, v2)
+ · · ·+ ρ(ul)µ(ul)

d(ul, vl)
.

Proof Under the linear assumption, for any integer i, i ≥ 1 we know that

f ′
i+(x) =

ρ(vi)µ(vi)− ρ(ui)µ(ui)

2d(ui, vi)

by Theorem 4.5.4. Thereby according to Theorem 4.5.2, we get that a family L of

parallel m-lines passing through C is a parallel bundle if and only if the angle factor

µ satisfies the following linear inequality system

ρ(v1)µ(v1) ≥ ρ(u1)µ(u1)

ρ(v1)µ(v1)

d(u1, v1)
+
ρ(v2)µ(v2)

d(u2, v2)
≥ ρ(u1)µ(u1)

d(u1, v1)
+
ρ(u2)µ(u2)

d(u2, v2)

· · · · · · · · · · · ·

ρ(v1)µ(v1)

d(u1, v1)
+

ρ(v2)µ(v2)

d(u2, v2)
+ · · ·+ ρ(vl)µ(vl)

d(ul, vl)

≥ ρ(u1)µ(u1)

d(u1, v1)
+
ρ(u2)µ(u2)

d(u2, v2)
+ · · ·+ ρ(ul)µ(ul)

d(ul, vl)
.

This completes the proof. ♮

For planar maps underlying a regular graph, we have an interesting consequence

for parallel bundles in the following.

Corollary 4.5.3 Let (M,µ) be a planar map geometry with M underlying a reg-

ular graph, C = {(u1, v1), (u2, v2), · · · , (ul, vl)} a cut of the map M with order

(u1, v1), (u2, v2), · · · , (ul, vl) from the left to the right, l ≥ 1. Then under the lin-

ear assumption, a family L of parallel lines passing through C is a parallel bundle if

and only if the angle factor µ satisfies the following linear inequality system.
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µ(v1) ≥ µ(u1)

µ(v1)

d(u1, v1)
+

µ(v2)

d(u2, v2)
≥ µ(u1)

d(u1, v1)
+

µ(u2)

d(u2, v2)

· · · · · · · · · · · ·

µ(v1)

d(u1, v1)
+

µ(v2)

d(u2, v2)
+ · · ·+ µ(vl)

d(ul, vl)
≥ µ(u1)

d(u1, v1)
+

µ(u2)

d(u2, v2)
+ · · ·+ µ(ul)

d(ul, vl)

and particularly, if assume that all the lengths of edges in C are the same, then

µ(v1) ≥ µ(u1)

µ(v1) + µ(v2) ≥ µ(u1) + µ(u2)

· · · · · · · · · · · · · · ·
µ(v1) + µ(v2) + · · ·+ µ(vl) ≥ µ(u1) + µ(u2) + · · ·+ µ(ul).

Certainly, by choice different angle factors, we can also get combinatorial con-

ditions for the existence of parallel bundles under the linear assumption.

Theorem 4.5.6 Let (M,µ) be a planar map geometry, C = {(u1, v1), (u2, v2), · · · ,
(ul, vl)} a cut of the map M with order (u1, v1), (u2, v2), · · · , (ul, vl) from the left to

the right, l ≥ 1. If

ρ(ui)

ρ(vi)
≤ µ(vi)

µ(ui)

for any integer i, i ≥ 1, then a family L of parallel m-lines passing through C is a

parallel bundle under the linear assumption.

Proof Under the linear assumption we know that

f ′
i+(x) =

ρ(vi)µ(vi)− ρ(ui)µ(ui)

2d(ui, vi)

for any integer i, i ≥ 1 by Theorem 4.5.4. Thereby f ′
i+(x) ≥ 0 for i = 1, 2, · · · , l. We

get that
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f ′
1(x) ≥ 0

f ′
1+(x) + f ′

2+(x) ≥ 0

f ′
1+(x) + f ′

2+(x) + f ′
3+(x) ≥ 0

· · · · · · · · · · · ·
f ′

1+(x) + f ′
2+(x) + · · ·+ f ′

l+(x) ≥ 0.

By Theorem 4.5.2 we know that a family L of parallel m-lines passing through

C is still a parallel bundle. ♮

§4.6 Examples of Planar Map Geometries

By choice different planar maps and define angle factors on their vertices, we can get

various planar map geometries. In this section, we present some concrete examples

for planar map geometries.

Example 4.6.1 A complete planar map K4

We take a complete map K4 embedded on a plane
∑

with vertices u, v, w and

t and angle factors

µ(u) =
π

2
, µ(v) = µ(w) = π and µ(t) =

2π

3
,

such as shown in Fig.4.18 where each number on the side of a vertex denotes

ρM(x)µ(x) for x = u, v, w and t.

Fig.4.18

We assume the linear assumption is holds in this planar map geometry (M,µ). Then

we get a classifications for m-points in (M,µ) as follows.
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Vel = {points in (uA \ {A})
⋃

(uB \ {B})
⋃

(ut \ {t})},

where A and B are euclidean points on (u, w) and (u, v), respectively.

Veu = {A,B, t}
⋃

(P \ E(K4))

and

Vhy = {points in (wA \ {A})
⋃

(wt \ {t})
⋃

wv
⋃

(tv \ {t})
⋃

(vB \ {B})}.

Edges in K4 are classified into (u, t) ∈ C1
E , (t, w), (t, v) ∈ C3

E , (u, w), (u, v) ∈ C5
E

and (w, u) ∈ C6
E.

Various m-lines in this planar map geometry are shown in Fig.4.19.

Fig.4.19

There are no 1-polygons in this planar map geometry. One 2-polygon and

various triangles are shown in Fig.4.20.

Fig.4.20
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Example 4.6.2 A wheel planar map W1.4

We take a wheel W1.4 embedded on a plane
∑

with vertices O and u, v, w, t and

angle factors

µ(O) =
π

2
, and µ(u) = µ(v) = µ(w) = µ(t) =

4π

3
,

such as shown in Fig.4.21.

Fig.4.21

There are no elliptic points in this planar map geometries. Euclidean and

hyperbolic points Veu, Vhy are as follows.

Veu = P
⋃
\(E(W1.4) \ {O})

and

Vhy = E(W1.4) \ {O}.

Edges are classified into (O, u), (O, v), (O,w), (O, t) ∈ C3
E and (u, v), (v, w),

(w, t), (t, u) ∈ C6
E . Various m-lines and one 1-polygon are shown in Fig.4.22 where

each m-line will turn to its opposite direction after it meeting W1.4 such as those

m-lines L1, L2 and L4, L5 in Fig.4.22.

Fig.4.22
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Example 4.6.3 A parallel bundle in a planar map geometry

We choose a planar ladder and define its angle factor as shown in Fig.4.23 where

each number on the side of a vertex u denotes the number ρM(u)µ(u). Then we find

a parallel bundle {Li; 1 ≤ i ≤ 6} as those shown in Fig.4.23.

Fig.4.23

§4.7 Remarks and Open Problems

4.7.1. Unless the Einstein’s relativity theory, nearly all other branches of physics

use an Euclid space as their spacetime model. This has their own reason, also due

to one’s sight because the moving of an object is more likely as it is described by

an Euclid geometry. As a generalization of an Euclid geometry of plane by the

Smarandache’s notion, planar map geometries were introduced in the references [54]

and [62]. The same research can be also done for an Euclid geometry of a space R3

and open problems are selected in the following.

Problem 4.7.1 Establish Smarandache geometries of a space R3 and classify their

fundamental elements, such as points, lines, polyhedrons, · · ·, etc..

Problem 4.7.2 Determine various surfaces in a Smarandache geometry of a space

R3, such as a sphere, a surface of cylinder, circular cone, a torus, a double torus

and a projective plane, a Klein bottle, · · ·, also determine various convex polyhedrons

such as a tetrahedron, a pentahedron, a hexahedron, · · ·, etc..

Problem 4.7.3 Define the conception of volume and find formulae for volumes of
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convex polyhedrons in a Smarandache geometry of a space R3, such as a tetrahedron,

a pentahedron or a hexahedron, · · ·, etc..

Problem 4.7.4 Apply Smarandache geometries of a space R3 to find knots and

characterize them.

4.7.2. As those proved in Chapter 3, we can also research these map geometries on

a locally orientable surfaces and find its fundamental elements in a surface, such as

a sphere, a torus, a double torus, · · · and a projective plane, a Klein bottle, · · ·, i.e.,

to establish an intrinsic geometry on a surface. For this target, open problems for

surfaces with small genus should be solved in the first.

Problem 4.7.5 Establish an intrinsic geometry by map geometries on a sphere or

a torus and find its fundamental elements.

Problem 4.7.6 Establish an intrinsic geometry on a projective or a Klein bottle

and find its fundamental elements.

Problem 4.7.7 Define various measures of map geometries on a locally orientable

surface S and apply them to characterize the surface S.

Problem 4.7.8 Define the conception of curvature for a map geometry (M,µ) on

a locally orientable surface and calculate the sum ω(M) of curvatures on all edges

in M .

Conjecture 4.7.1 ω(M) = 2πχ(M)s(M), where s(M) denotes the sum of length

of edges in M .



Chapter 5. Pseudo-Plane Geometries

The essential idea in planar map geometries is to associate each point in a planar map

with an angle factor which turns flatness of a plane to tortuous as we have seen in

Chapter 4. When the order of a planar map tends to infinite and its diameter of each

face tends to zero (such planar maps exist, for example, triangulations of a plane),

we get a tortuous plane at the limiting point, i.e., a plane equipped with a vector and

straight lines maybe not exist. We concentrate on discussing these pseudo-planes in

this chapter. A relation for integral curves with differential equations is established,

which enables us to find good behaviors of plane curves.

§5.1 Pseudo-Planes

In the classical analytic geometry of plane, each point is correspondent with the

Descartes coordinate (x, y), where x and y are real numbers which ensures the

flatness of a plane. Motivated by the ideas in Chapters 3 and 4, we find a new

kind of planes, called pseudo-planes which distort the flatness of a plane and can be

applied to classical mathematics.

Definition 5.1.1 Let
∑

be an Euclid plane. For ∀u ∈ ∑
, if there is a continuous

mapping ω : u → ω(u) where ω(u) ∈ Rn for an integer n, n ≥ 1 such that for any

chosen number ǫ > 0, there exists a number δ > 0 and a point v ∈ ∑
, ‖u− v‖ < δ

such that ‖ω(u) − ω(v)‖ < ǫ, then
∑

is called a pseudo-plane, denoted by (
∑
, ω),

where ‖u− v‖ denotes the norm between points u and v in
∑

.

An explanation for Definition 5.1.1 is shown in Fig.5.1, in where n = 1 and
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ω(u) is an angle function ∀u ∈ ∑
.

Fig.5.1

We can also explain ω(u), u ∈ P to be the coordinate z in u = (x, y, z) ∈ R3

by taking also n = 1. Thereby a pseudo-plane can be also seen as a projection of an

Euclid space Rn+2 on an Euclid plane. This fact implies that some characteristic of

the geometry of space may reflected by a pseudo-plane.

We only discuss the case of n = 1 and explain ω(u), u ∈ ∑
being a periodic

function in this chapter, i.e., for any integer k, 4kπ + ω(u) ≡ ω(u)(mod 4π). Not

loss of generality, we assume that 0 < ω(u) ≤ 4π for ∀u ∈ ∑
. Similar to map

geometries, points in a pseudo-plane are classified into three classes, i.e., elliptic

points Vel, euclidean points Veu and hyperbolic points Vhy, defined by

Vel = {u ∈
∑
|ω(u) < 2π},

Veu = {v ∈
∑
|ω(v) = 2π}

and

Vhy = {w ∈
∑
|ω(w) > 2π}.

We define a sign function sign(v) on a point of a pseudo-plane (
∑
, ω)

sign(v) =





1, if v is elliptic,

0, if v is euclidean,

−1, if v is hyperbolic.

Then we get a result as in the following.

Theorem 5.1.1 There is a straight line segment AB in a pseudo-plane (
∑
, ω) if

and only if for ∀u ∈ AB, ω(u) = 2π, i.e., every point on AB is euclidean.
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Proof Since ω(u) is an angle function for ∀u ∈ ∑
, we know that AB is a

straight line segment if and only if for ∀u ∈ AB,

ω(u)

2
= π,

i.e., ω(u) = 2π, u is an euclidean point. ♮

Theorem 5.1.1 implies that not every pseudo-plane has straight line segments.

Corollary 5.1.1 If there are only finite euclidean points in a pseudo-plane (
∑
, ω),

then there are no straight line segments in (
∑
, ω).

Corollary 5.1.2 There are not always exist a straight line between two given points

u and v in a pseudo-plane (P, ω).

By the intermediate value theorem in calculus, we know the following result for

points in a pseudo-plane.

Theorem 5.1.2 In a pseudo-plane (
∑
, ω), if Vel 6= ∅ and Vhy 6= ∅, then

Veu 6= ∅.

Proof By these assumptions, we can choose points u ∈ Vel and v ∈ Vhy.

Consider points on line segment uv in an Euclid plane
∑

. Since ω(u) < 2π and

ω(v) > 2π, there exists at least a point w,w ∈ uv such that ω(w) = 2π, i.e., w ∈ Veu
by the intermediate value theorem in calculus. Whence, Veu 6= ∅. ♮

Corollary 5.1.3 In a pseudo-plane (
∑
, ω), if Veu = ∅, then every point of (

∑
, ω) is

elliptic or every point of
∑

is hyperbolic.

According to Corollary 5.1.3, pseudo-planes can be classified into four classes

as follows.

C1
P (euclidean): pseudo-planes whose each point is euclidean.

C2
P (elliptic): pseudo-planes whose each point is elliptic.

C3
P (hyperbolic): pseudo-planes whose each point is hyperbolic.

C4
P (Smarandache’s): pseudo-planes in which there are euclidean, elliptic and

hyperbolic points simultaneously.
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For the existence of an algebraic curve C in a pseudo-plane (
∑
, ω), we get a

criteria as in the following.

Theorem 5.1.3 There is an algebraic curve F (x, y) = 0 passing through (x0, y0) in

a domain D of a pseudo-plane (
∑
, ω) with Descartes coordinate system if and only

if F (x0, y0) = 0 and for ∀(x, y) ∈ D,

(π − ω(x, y)

2
)(1 + (

dy

dx
)2) = sign(x, y).

Proof By the definition of pseudo-planes in the case of that ω being an angle

function and the geometrical meaning of the differential value of a function at a

point, we know that an algebraic curve F (x, y) = 0 exists in a domain D of (
∑
, ω)

if and only if

(π − ω(x, y)

2
) = sign(x, y)

d(arctan( dy
dx

)

dx
,

for ∀(x, y) ∈ D, i.e.,

(π − ω(x, y)

2
) =

sign(x, y)

1 + ( dy
dx

)2
,

such as shown in Fig.5.2, where θ = π − 6 2 + 6 1 , lim
△x→0

θ = ω(x, y) and (x, y) is an

elliptic point.

Fig.5.2

Therefore we get that

(π − ω(x, y)

2
)(1 + (

dy

dx
)2) = sign(x, y). ♮

A plane curve C is called elliptic or hyperbolic if sign(x, y) = 1 or −1 for each

point (x, y) on C. We know a result for the existence of an elliptic or a hyperbolic
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curve in a pseudo-plane.

Corollary 5.1.4 An elliptic curve F (x, y) = 0 exists in a pseudo-plane (
∑
, ω) with

the Descartes coordinate system passing through (x0, y0) if and only if there is a

domain D ⊂ ∑
such that F (x0, y0) = 0 and for ∀(x, y) ∈ D,

(π − ω(x, y)

2
)(1 + (

dy

dx
)2) = 1

and there exists a hyperbolic curve H(x, y) = 0 in a pseudo-plane (
∑
, ω) with the

Descartes coordinate system passing through (x0, y0) if and only if there is a domain

U ⊂ ∑
such that for H(x0, y0) = 0 and ∀(x, y) ∈ U ,

(π − ω(x, y)

2
)(1 + (

dy

dx
)2) = −1.

Now construct a polar axis (ρ, θ) in a pseudo-plane (
∑
, ω). Then we get a result

as in the following.

Theorem 5.1.4 There is an algebraic curve f(ρ, θ) = 0 passing through (ρ0, θ0) in

a domain F of a pseudo-plane (
∑
, ω) with a polar coordinate system if and only if

f(ρ0, θ0) = 0 and for ∀(ρ, θ) ∈ F ,

π − ω(ρ, θ)

2
= sign(ρ, θ)

dθ

dρ
.

Proof Similar to the proof of Theorem 5.1.3, we know that lim
△x→0

θ = ω(x, y)

and θ = π − 6 2 + 6 1 if (ρ, θ) is elliptic, or θ = π − 6 1 + 6 2 if (ρ, θ) is hyperbolic in

Fig.5.2. Whence, we get that

π − ω(ρ, θ)

2
= sign(ρ, θ)

dθ

dρ
.

Corollary 5.1.5 An elliptic curve F (ρ, θ) = 0 exists in a pseudo-plane (
∑
, ω) with

a polar coordinate system passing through (ρ0, θ0) if and only if there is a domain

F ⊂ ∑
such that F (ρ0, θ0) = 0 and for ∀(ρ, θ) ∈ F ,

π − ω(ρ, θ)

2
=
dθ

dρ
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and there exists a hyperbolic curve h(x, y) = 0 in a pseudo-plane (
∑
, ω) with a polar

coordinate system passing through (ρ0, θ0) if and only if there is a domain U ⊂ ∑

such that h(ρ0, θ0) = 0 and for ∀(ρ, θ) ∈ U ,

π − ω(ρ, θ)

2
= −dθ

dρ
.

Now we discuss a kind of expressions in an Euclid plane R2 for points in R3

and its characteristics.

Definition 5.1.2 For a point P = (x, y, z) ∈ R3 with center O, let ϑ be the angle of

vector
−→
OP with the plane XOY . Then define an angle function ω : (x, y)→ 2(π−ϑ),

i.e., the presentation of a point (x, y, z) in R3 is a point (x, y) with ω(x, y) = 2(π−
6 (
−→
OP,XOY )) in a pseudo-plane (

∑
, ω).

An explanation for Definition 5.2.1 is shown in Fig.5.3 where θ is an angle

between the vector
−→
OP and plane XOY .

Fig.5.3

Theorem 5.1.5 Let (
∑
, ω) be a pseudo-plane and P = (x, y, z) a point in R3.

Then the point (x, y) is elliptic, euclidean or hyperbolic if and only if z > 0, z = 0

or z < 0.

Proof By Definition 5.1.2, we know that ω(x, y) > 2π, = 2π or < 2π if and

only if θ > 0,= 0 or < 0 since −π
2
≤ θ ≤ π

2
. Those conditions are equivalent to

z > 0, = 0 or < 0. ♮

The following result reveals the shape of points with a constant angle function

value in a pseudo-plane (
∑
, ω).

Theorem 5.1.6 For a constant η, 0 < η ≤ 4π, all points (x, y, z) in R3 with

ω(x, y) = η consist an infinite circular cone with vertex O and an angle π − η

2
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between its generatrix and the plane XOY .

Proof Notice that ω(x1, y1) = ω(x2, y2) for two points A,B in R3 with A =

(x1, y1, z1) and B = (x2, y2, z2) if and only if

6 (
−→
OA,XOY ) = 6 (

−−→
OB,XOY ) = π − η

2
,

that is, points A and B is on a circular cone with vertex O and an angle π − η

2

between
−→
OA or

−−→
OB and the plane XOY . Since z → +∞, we get an infinite circular

cone in R3 with vertex O and an angle π − η

2
between its generatrix and the plane

XOY . ♮

§5.2 Integral Curves

An integral curve in an Euclid plane is defined by the next definition.

Definition 5.2.1 If the solution of a differential equation

dy

dx
= f(x, y)

with an initial condition y(x0) = y0 exists, then all points (x, y) consisted by their

solutions of this initial problem on an Euclid plane
∑

is called an integral curve.

By the ordinary differential equation theory, a well-known result for the unique

solution of an ordinary differential equation is stated in the following. See also the

reference [3] for details.

If the following conditions hold:

(i) f(x, y) is continuous in a field F :

F : x0 − a ≤ x ≤ x0 + a, y0 − b ≤ y ≤ y0 + b

(ii) there exist a constant ς such that for ∀(x, y), (x, y) ∈ F ,

|f(x, y)− f(x, y)| ≤ ς|y − y|,

then there is an unique solution
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y = ϕ(x), ϕ(x0) = y0

for the differential equation

dy

dx
= f(x, y)

with an initial condition y(x0) = y0 in the interval [x0 − h0, x0 + h0], where h0 =

min(a, b
M

), M = max
(x,y)∈R

|f(x, y)|.

The conditions in this theorem are complex and can not be applied conveniently.

As we have seen in Section 5.1 of this chapter, a pseudo-plane (
∑
, ω) is related with

differential equations in an Euclid plane
∑

. Whence, by a geometrical view, to find

an integral curve in a pseudo-plane (
∑
, ω) is equivalent to solve an initial problem

for an ordinary differential equation. Thereby we concentrate on to find integral

curves in a pseudo-plane in this section.

According to Theorem 5.1.3, we get the following result.

Theorem 5.2.1 A curve C,

C = {(x, y(x))|dy
dx

= f(x, y), y(x0) = y0}

exists in a pseudo-plane (
∑
, ω) if and only if there is an interval I = [x0−h, x0 +h]

and an angle function ω :
∑→ R such that

ω(x, y(x)) = 2(π − sign(x, y(x))

1 + f 2(x, y)
)

for ∀x ∈ I with

ω(x0, y(x0)) = 2(π − sign(x, y(x))

1 + f 2(x0, y(x0))
).

Proof According to Theorem 5.1.3, a curve passing through the point (x0, y(x0))

in a pseudo-plane (
∑
, ω) if and only if y(x0) = y0 and for ∀x ∈ I,

(π − ω(x, y(x))

2
)(1 + (

dy

dx
)2) = sign(x, y(x)).

Solving ω(x, y(x)) from this equation, we get that
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ω(x, y(x)) = 2(π − sign(x, y(x))

1 + ( dy
dx

)2
) = 2(π − sign(x, y(x))

1 + f 2(x, y)
). ♮

Now we consider curves with an constant angle function value at each of its

point.

Theorem 5.2.2 Let (
∑
, ω) be a pseudo-plane. Then for a constant 0 < θ ≤ 4π,

(i) a curve C passing through a point (x0, y0) and ω(x, y) = η for ∀(x, y) ∈ C
is closed without self-intersections on (

∑
, ω) if and only if there exists a real number

s such that

sη = 2(s− 2)π.

(ii) a curve C passing through a point (x0, y0) with ω(x, y) = θ for ∀(x, y) ∈ C
is a circle on (

∑
, ω) if and only if

η = 2π − 2

r
,

where r =
√
x2

0 + y2
0, i.e., C is a projection of a section circle passing through a

point (x0, y0) on the plane XOY .

Proof Similar to Theorem 4.3.1, we know that a curve C passing through a

point (x0, y0) in a pseudo-plane (
∑
, ω) is closed if and only if

s∫

0

(π − ω(s)

2
)ds = 2π.

Now since ω(x, y) = η is constant for ∀(x, y) ∈ C, we get that

s∫

0

(π − ω(s)

2
)ds = s(π − η

2
).

Whence, we get that

s(π − η

2
) = 2π,

i.e.,

sη = 2(s− 2)π.
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Now if C is a circle passing through a point (x0, y0) with ω(x, y) = θ for

∀(x, y) ∈ C, then by the Euclid plane geometry we know that s = 2πr, where

r =
√
x2

0 + y2
0. Therefore, there must be that

η = 2π − 2

r
.

This completes the proof. ♮

Two spiral curves without self-intersections are shown in Fig.5.4, in where (a)

is an input but (b) an output curve.

Fig.5.4

We call the curve in Fig.5.4(a) an elliptic in-spiral and Fig.5.4(b) an elliptic out-

spiral, correspondent to the right hand rule. In a polar coordinate system (ρ, θ), a

spiral curve has equation

ρ = ceθt,

where c, t are real numbers and c > 0. If t < 0, then the curve is an in-spiral as

the curve shown in Fig.5.4(a). If t > 0, then the curve is an out-spiral as shown in

Fig.5.4(b).

For the case t = 0, we get a circle ρ = c (or x2 + y2 = c2 in the Descartes

coordinate system).

Now in a pseudo-plane, we can easily find conditions for in-spiral or out-spiral

curves. That is the following theorem.

Theorem 5.2.3 Let (
∑
, ω) be a pseudo-plane and let η, ζ be constants. Then an

elliptic in-spiral curve C with ω(x, y) = η for ∀(x, y) ∈ C exists in (
∑
, ω) if and

only if there exist numbers s1 > s2 > · · · > sl > · · ·, si > 0 for i ≥ 1 such that
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siη < 2(si − 2i)π

for any integer i, i ≥ 1 and an elliptic out-spiral curve C with ω(x, y) = ζ for

∀(x, y) ∈ C exists in (
∑
, ω) if and only if there exist numbers s1 > s2 > · · · > sl >

· · ·, si > 0 for i ≥ 1 such that

siζ > 2(si − 2i)π

for any integer i, i ≥ 1.

Proof Let L be an m-line like an elliptic in-spiral shown in Fig.5.5, in where

x1, x2,· · ·, xn are non-euclidean points and x1x6 is an auxiliary line segment.

Fig.5.5

Then we know that

6∑

i=1

(π − f(x1)) < 2π,

12∑

i=1

(π − f(x1)) < 4π,

· · · · · · · · · · · · · · · · · · .

Similarly from any initial point O to a point P far s to O on C, the sum of lost

angles at P is

s∫

0

(π − η

2
)ds = (π − η

2
)s.
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Whence, the curve C is an elliptic in-spiral if and only if there exist numbers s1 >

s2 > · · · > sl > · · ·, si > 0 for i ≥ 1 such that

(π − η

2
)s1 < 2π,

(π − η

2
)s2 < 4π,

(π − η

2
)s3 < 6π,

· · · · · · · · · · · · · · · · · · ,

(π − η

2
)sl < 2lπ.

Therefore, we get that

siη < 2(si − 2i)π

for any integer i, i ≥ 1.

Similarly, consider an m-line like an elliptic out-spiral with x1, x2,· · ·, xn non-

euclidean points. We can also find that C is an elliptic out-spiral if and only if there

exist numbers s1 > s2 > · · · > sl > · · ·, si > 0 for i ≥ 1 such that

(π − ζ

2
)s1 > 2π,

(π − ζ

2
)s2 > 4π,

(π − ζ

2
)s3 > 6π,

· · · · · · · · · · · · · · · · · · ,

(π − ζ

2
)sl > 2lπ.

Whence, we get that
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siη < 2(si − 2i)π.

for any integer i, i ≥ 1. ♮

Similar to elliptic in or out-spirals, we can also define a hyperbolic in-spiral

or hyperbolic out-spiral correspondent to the left hand rule, which are mirrors of

curves in Fig.5.4. We get the following result for a hyperbolic in or out-spiral in a

pseudo-plane.

Theorem 5.2.4 Let (
∑
, ω) be a pseudo-plane and let η, ζ be constants. Then a

hyperbolic in-spiral curve C with ω(x, y) = η for ∀(x, y) ∈ C exists in (
∑
, ω) if and

only if there exist numbers s1 > s2 > · · · > sl > · · ·, si > 0 for i ≥ 1 such that

siη > 2(si − 2i)π

for any integer i, i ≥ 1 and a hyperbolic out-spiral curve C with ω(x, y) = ζ for

∀(x, y) ∈ C exists in (
∑
, ω) if and only if there exist numbers s1 > s2 > · · · > sl >

· · ·, si > 0 for i ≥ 1 such that

siζ < 2(si − 2i)π

for any integer i, i ≥ 1.

Proof The proof for (i) and (ii) is similar to the proof of Theorem 5.2.3. ♮

§5.3 Stability of a Differential Equation

For an ordinary differential equation system

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (A∗)

where t is a time parameter, the Euclid plane XOY with the Descartes coordinate

system is called its a phase plane and the orbit (x(t), y(t)) of its a solution x =

x(t), y = y(t) is called an orbit curve. If there exists a point (x0, y0) on XOY such

that



222 Linfan Mao: Smarandache Multi-Spaces Theory

P (x0, y0) = Q(x0, y0) = 0,

then there is an obit curve which is only a point (x0, y0) on XOY . The point (x0, y0)

is called a singular point of (A∗). Singular points of an ordinary differential equation

are classified into four classes: knot, saddle, focal and central points. Each of these

classes are introduced in the following.

Class 1. Knots

A knot O of a differential equation is shown in Fig.5.6 where (a) denotes that

O is stable but (b) is unstable.

Fig.5.6

A critical knot O of a differential equation is shown in Fig.5.7 where (a) denotes

that O is stable but (b) is unstable.

Fig.5.7

A degenerate knot O of a differential equation is shown in Fig.5.8 where (a)

denotes that O is stable but (b) is unstable.
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Fig.5.8

Class 2. Saddle points

A saddle point O of a differential equation is shown in Fig.5.9.

Fig.5.9

Class 3. Focal points

A focal point O of a differential equation is shown in Fig.5.10 where (a) denotes

that O is stable but (b) is unstable.

Fig.5.10
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Class 4. Central points

A central point O of a differential equation is shown in Fig.5.11, which is just

the center of a circle.

Fig.5.11

In a pseudo-plane (
∑
, ω), not all kinds of singular points exist. We get a result

for singular points in a pseudo-plane as in the following.

Theorem 5.3.1 There are no saddle points and stable knots in a pseudo-plane plane

(
∑
, ω).

Proof On a saddle point or a stable knot O, there are two rays to O, see-

ing Fig.5.6(a) and Fig.5.10 for details. Notice that if this kind of orbit curves in

Fig.5.6(a) or Fig.5.10 appears, then there must be that

ω(O) = 4π.

Now according to Theorem 5.1.1, every point u on those two rays should be eu-

clidean, i.e., ω(u) = 2π, unless the point O. But then ω is not continuous at the

point O, which contradicts Definition 5.1.1. ♮

If an ordinary differential equation system (A∗) has a closed orbit curve C but

all other orbit curves are not closed in a neighborhood of C nearly enough to C and

those orbits curve tend to C when t→ +∞ or t→ −∞, then C is called a limiting

ring of (A∗) and stable or unstable if t→ +∞ or t→ −∞.

Theorem 5.3.2 For two constants ρ0, θ0, ρ0 > 0 and θ0 6= 0, there is a pseudo-plane

(
∑
, ω) with

ω(ρ, θ) = 2(π − ρ0

θ0ρ
)
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or

ω(ρ, θ) = 2(π +
ρ0

θ0ρ
)

such that

ρ = ρ0

is a limiting ring in (
∑
, ω).

Proof Notice that for two given constants ρ0, θ0, ρ0 > 0 and θ0 6= 0, the equation

ρ(t) = ρ0e
θ0θ(t)

has a stable or unstable limiting ring

ρ = ρ0

if θ(t)→ 0 when t→ +∞ or t→ −∞. Whence, we know that

θ(t) =
1

θ0
ln

ρ0

ρ(t)
.

Therefore,

dθ

dρ
=

ρ0

θ0ρ(t)
.

According to Theorem 5.1.4, we get that

ω(ρ, θ) = 2(π − sign(ρ, θ)
dθ

dρ
),

for any point (ρ, θ) ∈ ∑
, i.e.,

ω(ρ, θ) = 2(π − ρ0

θ0ρ
)

or

ω(ρ, θ) = 2(π +
ρ0

θ0ρ
). ♮

A general pseudo-space is discussed in the next section which enables us to

know the Finsler geometry is a particular case of Smnarandache geometries.
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§5.4 Remarks and Open Problems

Definition 5.1.1 can be generalized as follows, which enables us to enlarge our fields

of mathematics for further research.

Definition 5.4.1 Let U and W be two metric spaces with metric ρ, W ⊆ U . For

∀u ∈ U , if there is a continuous mapping ω : u → ω(u), where ω(u) ∈ Rn for an

integer n, n ≥ 1 such that for any number ǫ > 0, there exists a number δ > 0 and a

point v ∈ W , ρ(u − v) < δ such that ρ(ω(u)− ω(v)) < ǫ, then U is called a metric

pseudo-space if U = W or a bounded metric pseudo-space if there is a number N > 0

such that ∀w ∈W , ρ(w) ≤ N , denoted by (U, ω) or (U−, ω), respectively.

By choice different metric spaces U and W in this definition, we can get various

metric pseudo-spaces. For the case n = 1, we can also explain ω(u) being an angle

function with 0 < ω(u) ≤ 4π, i.e.,

ω(u) =




ω(u)(mod4π), if u ∈W,

2π, if u ∈ U \W (∗)

and get some interesting metric pseudo-spaces.

5.4.1. Bounded pseudo-plane geometries Let C be a closed curve in an Euclid

plane
∑

without self-intersections. Then C divides
∑

into two domains. One of

them is finite. Denote by Dfin the finite one. Call C a boundary of Dfin. Now let

U =
∑

and W = Dfin in Definition 5.4.1 for the case of n = 1. For example, choose

C be a 6-polygon such as shown in Fig.5.12.

Fig.5.12

Then we get a geometry (
∑−, ω) partially euclidean and partially non-euclidean.

Problem 5.4.1 Similar to Theorem 4.5.2, find conditions for parallel bundles on
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(
∑−, ω).

Problem 5.4.2 Find conditions for existing an algebraic curve F (x, y) = 0 on

(
∑−, ω).

Problem 5.4.3 Find conditions for existing an integer curve C on (
∑−, ω).

5.4.2. Pseudo-Space geometries For any integer m,m ≥ 3 and a point u ∈ Rm.

Choose U = W = Rm in Definition 5.4.1 for the case of n = 1 and ω(u) an angle

function. Then we get a pseudo-space geometry (Rm, ω) on Rm.

Problem 5.4.4 Find conditions for existing an algebraic surface F (x1, x2, · · · , xm) =

0 in (Rm, ω), particularly, for an algebraic surface F (x1, x2, x3) = 0 existing in

(R3, ω).

Problem 5.4.5 Find conditions for existing an integer surface in (Rm, ω).

If we take U = Rm and W a bounded convex point set of Rm in Definition

5.4.1. Then we get a bounded pseudo-space (Rm−, ω), which is partially euclidean

and partially non-euclidean.

Problem 5.4.6 For a bounded pseudo-space (Rm−, ω), solve Problems 5.4.4 and

5.4.5 again.

5.4.3. Pseudo-Surface geometries For a locally orientable surface S and ∀u ∈ S,

we choose U = W = S in Definition 5.4.1 for n = 1 and ω(u) an angle function.

Then we get a pseudo-surface geometry (S, ω) on the surface S.

Problem 5.4.7 Characterize curves on a surface S by choice angle function ω.

Whether can we classify automorphisms on S by applying pseudo-surface geometries

(S, ω)?

Notice that Thurston had classified automorphisms of a surface S, χ(S) ≤ 0

into three classes in [86]: reducible, periodic or pseudo-Anosov.

If we take U = S and W a bounded simply connected domain of S in Definition

5.4.1. Then we get a bounded pseudo-surface (S−, ω).

Problem 5.4.8 For a bounded pseudo-surface (S−, ω), solve Problem 5.4.7.
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5.4.4. Pseudo-Manifold geometries For an m-manifold Mm and ∀u ∈ Mm,

choose U = W = Mm in Definition 5.4.1 for n = 1 and ω(u) a smooth function. Then

we get a pseudo-manifold geometry (Mm, ω) on the m-manifold Mm. This geometry

includes the Finsler geometry, i.e., equipped each m-manifold with a Minkowski

norm defined in the following ([13], [39]).

A Minkowski norm on Mm is a function F : Mm → [0,+∞) such that

(i) F is smooth on Mm \ {0};
(ii) F is 1-homogeneous, i.e., F (λu) = λF (u) for u ∈Mm and λ > 0;

(iii) for ∀y ∈Mm \ {0}, the symmetric bilinear form gy : Mm×Mm → R with

gy(u, v) =
1

2

∂2F 2(y + su+ tv)

∂s∂t
|t=s=0

.

is positive definite.

Then a Finsler manifold is a manifold Mm and a function F : TMm → [0,+∞)

such that

(i) F is smooth on TMm \ {0} =
⋃{TxMm \ {0} : x ∈Mm};

(ii) F |TxMm → [0,+∞) is a Minkowski norm for ∀x ∈Mm.

As a special case of pseudo-manifold geometries, we choose ω(x) = F (x) for

x ∈ Mm, then (Mm, ω) is a Finsler manifold, particularly, if ω(x) = gx(y, y) =

F 2(x, y), then (Mm, ω) is a Riemann manifold. Thereby, Smarandache geometries,

particularly pseudo-manifold geometries include the Finsler geometry.

Open problems for pseudo-manifold geometries are presented in the following.

Problem 5.4.9 Characterize these pseudo-manifold geometries (Mm, ω) without

boundary and apply them to classical mathematics and to classical mechanics.

Similarly, if we take U = Mm and W a bounded submanifold of Mm in Defini-

tion 5.4.1. Then we get a bounded pseudo-manifold (Mm−, ω).

Problem 5.4.10 Characterize these pseudo-manifold geometries (Mm−, ω) with

boundary and apply them to classical mathematics and to classical mechanics, par-

ticularly, to hamiltonian mechanics.
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Whether are there finite, or infinite cosmoses? Is there just one? What is the

dimension of our cosmos? Those simpler but more puzzling problems have confused

the eyes of human beings thousands years and one does not know the answer even

until today. The dimension of the cosmos in the eyes of the ancient Greeks is 3,

but Einstein’s is 4. In recent decades, 10 or 11 is the dimension of our cosmos in

superstring theory or M-theory. All these assumptions acknowledge that there is

just one cosmos. Which one is the correct and whether can human beings realize

the cosmos or cosmoses? By applying results gotten in Chapters 3-5, we tentatively

answer those problems and explain the Einstein’s or Hawking’s model for cosmos in

this chapter.

§6.1 Pseudo-Faces of Spaces

Throughout this chapter, Rn denotes an Euclid space of dimensional n. In this

section, we consider a problem related to how to represent an Euclid space in another.

First, we introduce the conception of pseudo-faces of Euclid spaces in the following.

Definition 6.1.1 Let Rm and (Rn, ω) be an Euclid space and a pseudo-metric space.

If there is a continuous mapping p : Rm → (Rn, ω), then the pseudo-metric space

(Rn, ω(p(Rm))) is called a pseudo-face of Rm in (Rn, ω).

Notice that these pseudo-faces of R3 in R2 have been considered in Chapter 5.

For the existence of a pseudo-face of an Euclid space Rm in Rn, we have a result as

in the following.
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Theorem 6.1.1 Let Rm and (Rn, ω) be an Euclid space and a pseudo-metric space.

Then there exists a pseudo-face of Rm in (Rn, ω) if and only if for any number

ǫ > 0, there exists a number δ > 0 such that for ∀u, v ∈ Rm with ‖u− v‖ < δ,

‖ω(p(u))− ω(p(v))‖ < ǫ,

where ‖u‖ denotes the norm of a vector u in the Euclid space.

Proof We only need to prove that there exists a continuous mapping p : Rm →
(Rn, ω) if and only if all of these conditions in this theorem hold. By the definition

of a pseudo-space (Rn, ω), since ω is continuous, we know that for any number ǫ > 0,

‖ω(x) − ω(y)‖ < ǫ for ∀x, y ∈ Rn if and only if there exists a number δ1 > 0 such

that ‖x− y)‖ < δ1.

By definition, a mapping q : Rm → Rn is continuous between Euclid spaces

if and only if for any number δ1 > 0, there exists a number δ2 > 0 such that

‖q(x)− q(y)‖ < δ1 for ∀u, v ∈ Rm with ‖u− v)‖ < δ2.

Combining these assertions, we know that p : Rm → (Rn, ω) is continuous if

and only if for any number ǫ > 0, there is number δ = min{δ1, δ2} such that

‖ω(p(u))− ω(p(v))‖ < ǫ

for ∀u, v ∈ Rm with ‖u− v)‖ < δ. ♮

Corollary 6.1.1 If m ≥ n + 1, let ω : Rn → Rm−n be a continuous mapping, then

(Rn, ω(p(Rm))) is a pseudo-face of Rm in (Rn, ω) with

p(x1, x2, · · · , xn, xn+1, · · · , xm) = ω(x1, x2, · · · , xn).

Particularly, if m = 3, n = 2 and ω is an angle function, then (Rn, ω(p(Rm))) is a

pseudo-face with p(x1, x2, x3) = ω(x1, x2).

There is a simple relation for a continuous mapping between Euclid spaces and

that of between pseudo-faces established in the next result.

Theorem 6.1.2 Let g : Rm → Rm and p : Rm → (Rn, ω) be continuous mappings.

Then pgp−1 : (Rn, ω)→ (Rn, ω) is also a continuous mapping.
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Proof Because a composition of continuous mappings is a continuous mapping,

we know that pgp−1 is continuous.

Now for ∀ω(x1, x2, · · · , xn) ∈ (Rn, ω), assume that p(y1, y2, · · · , ym) = ω(x1, x2,

· · · , xn), g(y1, y2, · · · , ym) = (z1, z2, · · · , zm) and p(z1, z2, · · · , zm) = ω(t1, t2, · · · , tn).
Then calculation shows that

pgp−(ω(x1, x2, · · · , xn)) = pg(y1, y2, · · · , ym)

= p(z1, z2, · · · , zm) = ω(t1, t2, · · · , tn) ∈ (Rn, ω).

Whence, pgp−1 is a continuous mapping and pgp−1 : (Rn, ω)→ (Rn, ω). ♮

Corollary 6.1.2 Let C(Rm) and C(Rn, ω) be sets of continuous mapping on an

Euclid space Rm and an pseudo-metric space (Rn, ω). If there is a pseudo-space for

Rm in (Rn, ω). Then there is a bijection between C(Rm) and C(Rn, ω).

For a body B in an Euclid space Rm, its shape in a pseudo-face (Rn, ω(p(Rm)))

of Rm in (Rn, ω) is called a pseudo-shape of B. We get results for pseudo-shapes of

a ball in the following.

Theorem 6.1.3 Let B be an (n + 1)-ball of radius R in a space Rn+1, i.e.,

x2
1 + x2

2 + · · ·+ x2
n + t2 ≤ R2.

Define a continuous mapping ω : Rn → Rn by

ω(x1, x2, · · · , xn) = ςt(x1, x2, · · · , xn)

for a real number ς and a continuous mapping p : Rn+1 → Rn by

p(x1, x2, · · · , xn, t) = ω(x1, x2, · · · , xn).

Then the pseudo-shape of B in (Rn, ω) is a ball of radius
√
R2−t2
ςt

for any parameter

t,−R ≤ t ≤ R. Particularly, for the case of n = 2 and ς = 1
2
, it is a circle of radius√

R2 − t2 for parameter t and an elliptic ball in R3 as shown in Fig.6.1.
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Fig.6.1

Proof For any parameter t, an (n+ 1)-ball

x2
1 + x2

2 + · · ·+ x2
n + t2 ≤ R2

can be transferred to an n-ball

x2
1 + x2

2 + · · ·+ x2
n ≤ R2 − t2

of radius
√
R2 − t2. Whence, if we define a continuous mapping on Rn by

ω(x1, x2, · · · , xn) = ςt(x1, x2, · · · , xn)

and

p(x1, x2, · · · , xn, t) = ω(x1, x2, · · · , xn),

then we get an n-ball

x2
1 + x2

2 + · · ·+ x2
n ≤

R2 − t2
ς2t2

,

of B under p for any parameter t, which is the pseudo-face of B for a parameter t

by definition.

For the case of n = 2 and ς = 1
2
, since its pseudo-face is a circle in an Euclid

plane and −R ≤ t ≤ R, we get an elliptic ball as shown in Fig.6.1. ♮
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Similarly, if we define ω(x1, x2, · · · , xn) = 2 6 (
−→
OP,Ot) for a point P = (x1, x2, · · · ,

xn, t), i.e., an angle function, then we can also get a result like Theorem 6.1.2 for

these pseudo-shapes of an (n+ 1)-ball.

Theorem 6.1.4 Let B be an (n + 1)-ball of radius R in a space Rn+1, i.e.,

x2
1 + x2

2 + · · ·+ x2
n + t2 ≤ R2.

Define a continuous mapping ω : Rn → Rn by

ω(x1, x2, · · · , xn) = 2 6 (
−→
OP,Ot)

for a point P on B and a continuous mapping p : Rn+1 → Rn by

p(x1, x2, · · · , xn, t) = ω(x1, x2, · · · , xn).

Then the pseudo-shape of B in (Rn, ω) is a ball of radius
√
R2 − t2 for any parameter

t,−R ≤ t ≤ R. Particularly, for the case of n = 2, it is a circle of radius
√
R2 − t2

for parameter t and a body in R3 with equations

∮
arctan(

t

x
) = 2π and

∮
arctan(

t

y
) = 2π

for curves of its intersection with planes XOT and Y OT .

Proof The proof is similar to the proof of Theorem 6.1.3. For these equations

∮
arctan(

t

x
) = 2π or

∮
arctan(

t

y
) = 2π

of curves on planes XOT or Y OT in the case of n = 2, they are implied by the

geometrical meaning of an angle function. ♮

For an Euclid space Rn, we can get a subspace sequence

R0 ⊃ R1 ⊃ · · · ⊃ Rn−1 ⊃ Rn,

where the dimensional of Ri is n − i for 1 ≤ i ≤ n and Rn is just a point. But we

can not get a sequence reversing the order, i.e., a sequence

R0 ⊂ R1 ⊂ · · · ⊂ Rn−1 ⊂ Rn
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in classical space theory. By applying Smarandache multi-spaces, we can really find

this kind of sequence by the next result, which can be used to explain a well-known

model for our cosmos in M-theory.

Theorem 6.1.5 Let P = (x1, x2, · · · , xn) be a point of Rn. Then there are subspaces

of dimensional s in P for any integer s, 1 ≤ s ≤ n.

Proof Notice that in an Euclid space Rn, there is a basis e1 = (1, 0, 0, · · · , 0),

e2 = (0, 1, 0, · · · , 0), · · ·, ei = (0, · · · , 0, 1, 0, · · · , 0) (every entry is 0 unless the i-th

entry is 1), · · ·, en = (0, 0, · · · , 0, 1) such that

(x1, x2, · · · , xn) = x1e1 + x2e2 + · · ·+ xnen

for any point (x1, x2, · · · , xn) of Rn. Now we consider a linear space R− = (V,+new, ◦new)

on a field F = {ai, bi, ci, · · · , di; i ≥ 1}, where

V = {x1, x2, · · · , xn}.

Not loss of generality, we assume that x1, x2, · · · , xs are independent, i.e., if there

exist scalars a1, a2, · · · , as such that

a1 ◦new x1 +new a2 ◦new x2 +new · · ·+new as ◦new xs = 0,

then a1 = a2 = · · · = 0new and there are scalars bi, ci, · · · , di with 1 ≤ i ≤ s in R−

such that

xs+1 = b1 ◦new x1 +new b2 ◦new x2 +new · · ·+new bs ◦new xs;

xs+2 = c1 ◦new x1 +new c2 ◦new x2 +new · · ·+new cs ◦new xs;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ;

xn = d1 ◦new x1 +new d2 ◦new x2 +new · · ·+new ds ◦new xs.

Therefore, we get a subspace of dimensional s in a point P of Rn. ♮
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Corollary 6.1.3 Let P be a point of an Euclid space Rn. Then there is a subspace

sequence

R−
0 ⊂ R−

1 ⊂ · · · ⊂ R−
n−1 ⊂ R−

n

such that R−
n = {P} and the dimensional of the subspace R−

i is n − i, where 1 ≤
i ≤ n.

Proof Applying Theorem 6.1.5 repeatedly, we get the desired sequence. ♮

§6.2. Relativity Theory

In theoretical physics, these spacetimes are used to describe various states of particles

dependent on the time parameter in an Euclid space R3. There are two kinds of

spacetimes. An absolute spacetime is an Euclid space R3 with an independent time,

denoted by (x1, x2, x3|t) and a relative spacetime is an Euclid space R4, where time

is the t-axis, seeing also in [30]− [31] for details.

A point in a spacetime is called an event, i.e., represented by

(x1, x2, x3) ∈ R3 and t ∈ R+

in an absolute spacetime in the Newton’s mechanics and

(x1, x2, x3, t) ∈ R4

with time parameter t in a relative space-time used in the Einstein’s relativity theory.

For two events A1 = (x1, x2, x3|t1) and A2 = (y1, y2, y3|t2), the time interval △t
is defined by △t = t1 − t2 and the space interval △(A1, A2) by

△(A1, A2) =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

Similarly, for two events B1 = (x1, x2, x3, t1) and B2 = (y1, y2, y3, t2), the space-

time interval △s is defined by

△2s = −c2△t2 +△2(B1, B2),

where c is the speed of the light in vacuum. In Fig.6.2, a spacetime only with two

parameters x, y and the time parameter t is shown.
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Fig.6.2

The Einstein’s spacetime is an uniform linear space. By the assumption of

linearity of a spacetime and invariance of the light speed, it can be shown that the

invariance of the space-time intervals, i.e.,

For two reference systems S1 and S2 with a homogenous relative velocity, there

must be

△s2 = △s′2.

We can also get the Lorentz transformation of spacetimes or velocities by this

assumption. For two parallel reference systems S1 and S2, if the velocity of S2

relative to S1 is v along x-axis such as shown in Fig.6.3,

Fig.6.3

then we know the Lorentz transformation of spacetimes




x2 = x1−vt1√
1−( v

c
)2

y2 = y1

z2 = z1

t2 =
t1− v

c
x1√

1−( v
c
)2
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and the transformation of velocities





vx2 =
vx1−v

1− vvx1
c2

vy2 =
vy1

√
1−( v

c
)2

1− vvx1
c2

vz2 =
vz1

√
1−( v

c
)2

1− vvx1
c2

.

In the relative spacetime, the general interval is defined by

ds2 = gµνdx
µdxν ,

where gµν = gµν(x
σ, t) is a metric dependent on the space and time. We can also

introduce the invariance of general intervals, i.e.,

ds2 = gµνdx
µdxν = g′µνdx

′µdx′ν .

Then the Einstein’s equivalence principle says that

There are no difference for physical effects of the inertial force and the gravita-

tion in a field small enough.

An immediately consequence of the Einstein’s equivalence principle is the idea

of the geometrization of gravitation, i.e., considering the curvature at each point in

a spacetime to be all effect of gravitation([18]), which is called a gravitational factor

at this point.

Combining these discussions in Section 6.1 with the Einstein’s idea of the ge-

ometrization of gravitation, we get a result for spacetimes in the theoretical physics.

Theorem 6.2.1 Every spacetime is a pseudo-face in an Euclid pseudo-space, espe-

cially, the Einstein’s space-time is Rn in (R4, ω) for an integer n, n ≥ 4.

By the uniformity of a spacetime, we get an equation by equilibrium of vectors

in a cosmos.

Theorem 6.2.2 By the assumption of uniformity for a spacetime in (R4, ω), there

exists an anti-vector ω−
O of ωO along any orientation

−→
O in R4 such that

ωO + ω−
O = 0.
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Proof Since R4 is uniformity, By the principle of equilibrium in a uniform

space, along any orientation
−→
O in R4, there must exists an anti-vector ω−

O of ωO

such that

ωO + ω−
O = 0. ♮

Theorem 6.2.2 has many useful applications. For example, let

ωµν = Rµν −
1

2
Rgµν + λgµν ,

then we know that

ω−
µν = −8πGTµν .

in a gravitational field. Whence, we get the Einstein’s equation of gravitational field

Rµν −
1

2
Rgµν + λgµν = −8πGTµν

by the equation in Theorem 6.2.2 which is widely used for our cosmos by physicists.

In fact, there are two assumptions for our cosmos in the following. One is partially

adopted from the Einstein’s, another is just suggested by ours.

Postulate 6.2.1 At the beginning our cosmos is homogenous.

Postulate 6.2.2 Human beings can only survey pseudo-faces of our cosmos by

observations and experiments.

Applying these postulates, the Einstein’s equation of gravitational field and the

cosmological principle, i.e., there are no difference at different points and different

orientations at a point of a cosmos on the metric 104l.y., we can get a standard model

of cosmos, also called the Friedmann cosmos, seeing [18],[26], [28],[30]− [31],[79] and

[95] for details. In this model, its line element ds is

ds2 = −c2dt2 + a2(t)[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdϕ2)]

and cosmoses are classified into three types:

Static Cosmos: da/dt = 0;

Contracting Cosmos: da/dt < 0;
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Expanding Cosmos: da/dt > 0.

By the Einstein’s view, our living cosmos is the static cosmos. That is why

he added a cosmological constant λ in his equation of gravitational field. But un-

fortunately, our cosmos is an expanding cosmos found by Hubble in 1929. As a

by-product, the shape of our cosmos described by S.Hawking in [30] − [32] is coin-

cide with these results gotten in Section 6.1.

§6.3 A Multi-Space Model for Cosmoses

6.3.1. What is M-theory

Today, we have know that all matter are made of atoms and sub-atomic particles,

held together by four fundamental forces: gravity, electro-magnetism, strong nuclear

force and weak force. Their features are partially explained by the quantum theory

and the relativity theory. The former is a theory for the microcosm but the later

is for the macrocosm. However, these two theories do not resemble each other in

any way. The quantum theory reduces forces to the exchange of discrete packet

of quanta, while the relativity theory explains the cosmic forces by postulating the

smooth deformation of the fabric spacetime.

As we known, there are two string theories : the E8 × E8 heterotic string, the

SO(32) heterotic string and three superstring theories: the SO(32) Type I string, the

Type IIA and Type IIB in superstring theories. Two physical theories are dual to

each other if they have identical physics after a certain mathematical transformation.

There are T-duality and S-duality in superstring theories defined in the following

table 6.1([15]).

fundamental string dual string

T − duality Radius↔ 1/(radius) charge↔ 1/(charge)

Kaluza −Klein↔Winding Electric↔Magnet

S − duality charge↔ 1/(charge) Radius↔ 1/(Radius)

Electric↔Magnetic Kaluza−Klein↔ Winding

table 6.1

We already know some profound properties for these spring or superspring

theories, such as:
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(i) Type IIA and IIB are related by T-duality, as are the two heterotic theories.

(ii) Type I and heterotic SO(32) are related by S-duality and Type IIB is also

S-dual with itself.

(iii) Type II theories have two supersymmetries in the 10-dimensional sense,

but the rest just one.

(iv) Type I theory is special in that it is based on unoriented open and closed

strings, but the other four are based on oriented closed strings.

(v) The IIA theory is special because it is non-chiral(parity conserving), but the

other four are chiral(parity violating).

(vi) In each of these cases there is an 11th dimension that becomes large at

strong coupling. For substance, in the IIA case the 11th dimension is a circle and

in IIB case it is a line interval, which makes 11-dimensional spacetime display two

10-dimensional boundaries.

(vii) The strong coupling limit of either theory produces an 11-dimensional

spacetime.

(viii) · · ·, etc..

The M-theory was established by Witten in 1995 for the unity of those two

string theories and three superstring theories, which postulates that all matter and

energy can be reduced to branes of energy vibrating in an 11 dimensional space. This

theory gives us a compelling explanation of the origin of our cosmos and combines

all of existed string theories by showing those are just special cases of M-theory such

as shown in table 6.2.

M − theory





E8 × E8 heterotic string

SO(32) heterotic string

SO(32) Type I string

Type IIA

Type IIB.

Table 6.2

See Fig.6.4 for the M-theory planet in which we can find a relation of M-theory

with these two strings or three superstring theories.
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Fig.6.4

As it is widely accepted that our cosmos is in accelerating expansion, i.e., our

cosmos is most possible an accelerating cosmos of expansion, it should satisfies the

following condition

d2a

dt2
> 0.

The Kasner type metric

ds2 = −dt2 + a(t)2d2
R3 + b(t)2ds2(Tm)
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solves the 4 +m dimensional vacuum Einstein equations if

a(t) = tµ and b(t) = tν

with

µ =
3±

√
3m(m+ 2)

3(m+ 3)
, ν =

3∓
√

3m(m+ 2)

3(m+ 3)
.

These solutions in general do not give an accelerating expansion of spacetime

of dimension 4. However, by using the time-shift symmetry

t→ t+∞ − t, a(t) = (t+∞ − t)µ,

we see that yields a really accelerating expansion since

da(t)

dt
> 0 and

d2a(t)

dt2
> 0.

According to M-theory, our cosmos started as a perfect 11 dimensional space

with nothing in it. However, this 11 dimensional space was unstable. The original

11 dimensional spacetime finally cracked into two pieces, a 4 and a 7 dimensional

cosmos. The cosmos made the 7 of the 11 dimensions curled into a tiny ball, allowing

the remaining 4 dimensional cosmos to inflate at enormous rates. This origin of our

cosmos implies a multi-space result for our cosmos verified by Theorem 6.1.5.

Theorem 6.3.1 The spacetime of M-theory is a multi-space with a warping R7 at

each point of R4.

Applying Theorem 6.3.1, an example for an accelerating expansion cosmos of

4-dimensional cosmos from supergravity compactification on hyperbolic spaces is

the Townsend-Wohlfarth type in which the solution is

ds2 = e−mφ(t)(−S6dt2 + S2dx2
3) + r2

Ce
2φ(t)ds2

Hm
,

where

φ(t) =
1

m− 1
(lnK(t)− 3λ0t), S2 = K

m
m−1 e−

m+2
m−1

λ0t

and
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K(t) =
λ0ζrc

(m− 1) sin[λ0ζ |t+ t1|]

with ζ =
√

3 + 6/m. This solution is obtainable from space-like brane solution and

if the proper time ς is defined by dς = S3(t)dt, then the conditions for expansion

and acceleration are dS
dς
> 0 and d2S

dς2
> 0. For example, the expansion factor is 3.04

if m = 7, i.e., a really expanding cosmos.

6.3.2. A pseudo-face model for p-branes

In fact, M-theory contains much more than just strings, which is also implied in

Fig.6.4. It contains both higher and lower dimensional objects, called branes. A

brane is an object or subspace which can have various spatial dimensions. For any

integer p ≥ 0, a p-brane has length in p dimensions, for example, a 0-brane is just a

point; a 1-brane is a string and a 2-brane is a surface or membrane · · ·.
Two branes and their motion have been shown in Fig.6.5 where (a) is a 1-brane

and (b) is a 2-brane.

Fig.6.5

Combining these ideas in the pseudo-spaces theory and in M-theory, a model

for Rm is constructed in the below.
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Model 6.3.1 For each m-brane B of a space Rm, let (n1(B), n2(B), · · · , np(B))

be its unit vibrating normal vector along these p directions and q : Rm → R4 a

continuous mapping. Now for ∀P ∈ B, define

ω(q(P )) = (n1(P ), n2(P ), · · · , np(P )).

Then (R4, ω) is a pseudo-face of Rm, particularly, if m = 11, it is a pseudo-face for

the M-theory.

For the case of p = 4, interesting results are obtained by applying results in

Chapters 5.

Theorem 6.3.2 For a sphere-like cosmos B2, there is a continuous mapping q :

B2 → R2 such that its spacetime is a pseudo-plane.

Proof According to the classical geometry, we know that there is a projection

q : B2 → R2 from a 2-ball B2 to an Euclid plane R2, as shown in Fig.6.6.

Fig.6.6

Now for any point u ∈ B2 with an unit vibrating normal vector (x(u), y(u), z(u)),

define

ω(q(u)) = (z(u), t),

where t is the time parameter. Then (R2, ω) is a pseudo-face of (B2, t). ♮

Generally, we can also find pseudo-surfaces as a pseudo-face of sphere-like cos-

moses.
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Theorem 6.3.3 For a sphere-like cosmos B2 and a surface S, there is a continuous

mapping q : B2 → S such that its spacetime is a pseudo-surface on S.

Proof According to the classification theorem of surfaces, an surface S can be

combinatorially represented by a 2n-polygon for an integer n, n ≥ 1. If we assume

that each edge of this polygon is at an infinite place, then the projection in Fig.6.6

also enables us to get a continuous mapping q : B2 → S. Thereby we get a pseudo-

face on S for the cosmos B2. ♮

Furthermore, we can construct a combinatorial model for our cosmos by apply-

ing materials in Section 2.5.

Model 6.3.2 For each m-brane B of a space Rm, let (n1(B), n2(B), · · · , np(B))

be its unit vibrating normal vector along these p directions and q : Rm → R4 a

continuous mapping. Now construct a graph phase (G, ω,Λ) by

V (G) = {p− branes q(B)},

E(G) = {(q(B1), q(B2))|there is an action between B1 and B2},

ω(q(B)) = (n1(B), n2(B), · · · , np(B)),

and

Λ(q(B1), q(B2)) = forces between B1 and B2.

Then we get a graph phase (G, ω,Λ) in R4. Similarly, if m = 11, it is a graph phase

for the M-theory.

If there are only finite p-branes in our cosmos, then Theorems 6.3.2 and 6.3.3

can be restated as follows.

Theorem 6.3.4 For a sphere-like cosmos B2 with finite p-branes and a surface S,

its spacetime is a map geometry on S.

Now we consider the transport of a graph phase (G, ω,Λ) in Rm by applying

results in Sections 2.3 and 2.5.
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Theorem 6.3.5 A graph phase (G1, ω1,Λ1) of space Rm is transformable to a graph

phase (G2, ω2,Λ2) of space Rn if and only if G1 is embeddable in Rn and there is a

continuous mapping τ such that ω2 = τ(ω1) and Λ2 = τ(Λ1).

Proof By the definition of transformations, if (G1, ω1,Λ1) is transformable to

(G2, ω2,Λ2), then there must be G1 is embeddable in Rn and there is a continuous

mapping τ such that ω2 = τ(ω1) and Λ2 = τ(Λ1).

Now if G1 is embeddable in Rn and there is a continuous mapping τ such that

ω2 = τ(ω1), Λ2 = τ(Λ1), let ς : G1 → G2 be a continuous mapping from G1 to G2,

then (ς, τ) is continuous and

(ς, τ) : (G1, ω1,Λ1)→ (G2, ω2,Λ2).

Therefore (G1, ω1,Λ1) is transformable to (G2, ω2,Λ2). ♮

Theorem 6.3.5 has many interesting consequences as by-products.

Corollary 6.3.1 A graph phase (G1, ω1,Λ1) in Rm is transformable to a planar

graph phase (G2, ω2,Λ2) if and only if G2 is a planar embedding of G1 and there is

a continuous mapping τ such that ω2 = τ(ω1), Λ2 = τ(Λ1) and vice via, a planar

graph phase (G2, ω2,Λ2) is transformable to a graph phase (G1, ω1,Λ1) in Rm if and

only if G1 is an embedding of G2 in Rm and there is a continuous mapping τ−1 such

that ω1 = τ−1(ω2), Λ1 = τ−1(Λ2).

Corollary 6.3.2 For a continuous mapping τ , a graph phase (G1, ω1,Λ1) in Rm is

transformable to a graph phase (G2, τ(ω1), τ(Λ1)) in Rn with m,n ≥ 3.

Proof This result follows immediately from Theorems 2.3.2 and 6.3.5. ♮

This theorem can be also used to explain the problems of travelling between

cosmoses or getting into the heaven or hell for a person. For example, water will

go from a liquid phase to a steam phase by heating and then will go to a liquid

phase by cooling because its phase is transformable between the steam phase and

the liquid phase. For a person on the earth, he can only get into the heaven or hell

after death because the dimension of the heaven is more than 4 and that of the hell

is less than 4 and there does not exist a transformation for an alive person from

our cosmos to the heaven or hell by the biological structure of his body. Whence,

if black holes are really these tunnels between different cosmoses, the destiny for a
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cosmonaut unfortunately fell into a black hole is only the death ([30][32]). Perhaps,

there are really other kind of beings in cosmoses or mankind in the further who can

freely change from one phase in a space Rm to another in Rn with m 6= n, then the

travelling between cosmoses is possible for those beings or mankind in that time.

6.3.3. A multi-space model of cosmos

Until today, many problems in cosmology are puzzling one’s eyes. Comparing with

these vast cosmoses, human beings are very tiny. In spite of this depressed fact, we

can still investigate cosmoses by our deeply thinking. Motivated by this belief, a

multi-space model for cosmoses is constructed in the following.

Model 6.3.3 A mathematical cosmos is constructed by a triple (Ω,∆, T ), where

Ω =
⋃

i≥0

Ωi, ∆ =
⋃

i≥0

Oi

and T = {ti; i ≥ 0} are respectively called the cosmos, the operation or the time set

with the following conditions hold.

(1) (Ω,∆) is a Smarandache multi-space dependent on T , i.e., the cosmos

(Ωi, Oi) is dependent on the time parameter ti for any integer i, i ≥ 0.

(2) For any integer i, i ≥ 0, there is a sub-cosmos sequence

(S) : Ωi ⊃ · · · ⊃ Ωi1 ⊃ Ωi0

in the cosmos (Ωi, Oi) and for two sub-cosmoses (Ωij , Oi) and (Ωil, Oi), if Ωij ⊃ Ωil,

then there is a homomorphism ρΩij ,Ωil : (Ωij , Oi)→ (Ωil, Oi) such that

(i) for ∀(Ωi1, Oi), (Ωi2, Oi)(Ωi3, Oi) ∈ (S), if Ωi1 ⊃ Ωi2 ⊃ Ωi3, then

ρΩi1,Ωi3 = ρΩi1,Ωi2 ◦ ρΩi2,Ωi3,

where�◦�denotes the composition operation on homomorphisms.

(ii) for ∀g, h ∈ Ωi, if for any integer i, ρΩ,Ωi(g) = ρΩ,Ωi(h), then g = h.

(iii) for ∀i, if there is an fi ∈ Ωi with

ρΩi,Ωi
⋂

Ωj
(fi) = ρΩj ,Ωi

⋂
Ωj

(fj)
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for integers i, j,Ωi

⋂
Ωj 6= ∅, then there exists an f ∈ Ω such that ρΩ,Ωi(f) = fi for

any integer i.

Notice that this model is a multi-cosmos model. In the Newton’s mechanics,

the Einstein’s relativity theory or the M-theory, there is just one cosmos Ω and these

sub-cosmos sequences are

R3 ⊃ R2 ⊃ R1 ⊃ R0 = {P},

R4 ⊃ R3 ⊃ R2 ⊃ R1 ⊃ R0 = {P}

and

R4 ⊃ R3 ⊃ R2 ⊃ R1 ⊃ R0 = {P} ⊃ R−
7 ⊃ · · · ⊃ R−

1 ⊃ R−
0 = {Q}.

These conditions in (2) are used to ensure that a mathematical cosmos posses

a general structure sheaf of a topological space, for instance if we equip each multi-

space (Ωi, Oi) with an abelian group Gi for an integer i, i ≥ 0, then we get a

structure sheaf on a mathematical cosmos. For general sheaf theory, one can see

in the reference [29] for details. This structure enables that a being in a cosmos of

higher dimension can supervises those in lower dimension.

Motivated by this multi-space model of cosmos, we present a number of con-

jectures on cosmoses in the following. The first is on the number of cosmoses and

their dimension.

Conjecture 6.3.1 There are infinite many cosmoses and all dimensions of cosmoses

make up an integer interval [1,+∞].

A famous proverbs in Chinese says that seeing is believing but hearing is un-

believing, which is also a dogma in the pragmatism. Today, this view should be

abandoned by a mathematician if he wish to investigate the 21st mathematics. On

the first, we present a conjecture on the problem of travelling between cosmoses.

Conjecture 6.3.2 There must exists a kind of beings who can get from one cosmos

into another. There must exists a kind of being who can goes from a space of higher

dimension into its subspace of lower dimension, especially, on the earth.
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Although nearly every physicist acknowledges the existence of black holes, those

holes are really found by mathematical calculation. On the opposite, we present the

next conjecture.

Conjecture 6.3.3 Contrary to black holes, there are also white holes at where no

matters can arrive including the light in our cosmos.

Conjecture 6.3.4 Every black hole is also a white hole in a cosmos.

Our cosmonauts is good luck if Conjecture 6.3.4 is true since they do not need to

worry about attracted by these black holes in our cosmos. Today, a very important

task in theoretical and experimental physics is looking for dark matters. However,

we do not think this would be success by the multi-model of cosmoses. This is

included in the following conjecture.

Conjecture 6.3.5 One can not find dark matters by experiments since they are in

spatial can not be found by human beings.

Few consideration is on the relation of the dark energy with dark matters. But

we believe there exists a relation between the dark energy and dark matters such as

stated in the next conjecture.

Conjecture 6.3.6 Dark energy is just the effect of dark matters.
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Abstract

A Smarandache multi-space is a union of n different spaces equipped with

some different structures for an integer n ≥ 2, which can be both used for

discrete or connected spaces, particularly for geometries and spacetimes in

theoretical physics. This monograph concentrates on characterizing vari-

ous multi-spaces including three parts altogether. The first part is on al-

gebraic multi-spaces with structures, such as those of multi-groups, multi-

rings, multi-vector spaces, multi-metric spaces, multi-operation systems and

multi-manifolds, also multi-voltage graphs, multi-embedding of a graph in

an n-manifold,· · ·, etc.. The second discusses Smarandache geometries, in-

cluding those of map geometries, planar map geometries and pseudo-plane

geometries, in which the Finsler geometry, particularly the Riemann ge-

ometry appears as a special case of these Smarandache geometries. The

third part of this book considers the applications of multi-spaces to theoret-

ical physics, including the relativity theory, the M-theory and the cosmol-

ogy. Multi-space models for p-branes and cosmos are constructed and some

questions in cosmology are clarified by multi-spaces. The first two parts

are relative independence for reading and in each part open problems are

included for further research of interested readers.




