Accurate Independent Domination in Graphs

B. Basavanagoud
(Department of Mathematics, Karnatak University, Dharwad-580 003, India)

Sujata Timmanaikar
(Department of Mathematics, Government Engineering College, Haveri-581 110, India)

E-mail: b.basavanagoud@gmail.com, sujata123rk@gmail.com

Abstract: A dominating set D of a graph $G = (V, E)$ is an independent dominating set, if the induced subgraph (D) has no edges. An independent dominating set D of G is an accurate independent dominating set if $V - D$ has no independent dominating set of cardinality $|D|$. The accurate independent domination number $i_a(G)$ of G is the minimum cardinality of an accurate independent dominating set of G. In this paper, we initiate a study of this new parameter and obtain some results concerning this parameter.

Key Words: Domination, independent domination number, accurate independent domination number, Smarandache H-dominating set.

AMS(2010): 05C69.

§1. Introduction

All graphs considered here are finite, nontrivial, undirected with no loops and multiple edges. For graph theoretic terminology we refer to Harary [1].

Let $G = (V, E)$ be a graph with $|V| = p$ and $|E| = q$. Let $\Delta(G)(\delta(G))$ denote the maximum (minimum) degree and $\lceil x \rceil (\lfloor x \rfloor)$ the least (greatest) integer greater(less) than or equal to x. The neighborhood of a vertex u is the set $N(u)$ consisting of all vertices v which are adjacent with u. The closed neighborhood is $N[u] = N(u) \cup \{u\}$. A set of vertices in G is independent if no two of them are adjacent. The largest number of vertices in such a set is called the vertex independence number of G and is denoted by $\beta_o(G)$.

For any set S of vertices of G, the induced subgraph $\langle S \rangle$ is maximal subgraph of G with vertex set S.

The corona of two graphs G_1 and G_2 is the graph $G = G_1 \circ G_2$ formed from one copy of G_1 and $|V(G_1)|$ copies of G_2 where the i^{th} vertex of G_1 is adjacent to every vertex in the i^{th} copy of G_2. A wounded spider is the graph formed by subdividing at most $n - 1$ of the edges of a star $K_{1,n}$ for $n \geq 0$. Let $\Omega(G)$ be the set of all pendant vertices of G, that is, the set of vertices of degree 1. A vertex v is called a support vertex if v is neighbor of a pendant vertex and $d_G(v) > 1$. Denote by $X(G)$ the set of all support vertices in G, $M(G)$ be the set

$\text{Supported by University Grant Commission(UGC), New Delhi, India through UGC-SAP-DRS-III, 2016-2021: F.510/3/DRS-III/2016 (SAP-I).}$

$\text{Received January 11, 2018, Accepted May 25, 2018.}$
of vertices which are adjacent to support vertex and \(J(G) \) be the set of vertices which are not adjacent to a support vertex. The diameter \(\text{diam}(G) \) of a connected graph \(G \) is the maximum distance between two vertices of \(G \), that is \(\text{diam}(G) = \max_{u,v \in V(G)} d_G(u,v) \). A set \(B \subseteq V \) is a 2-packing if for each pair of vertices \(u, v \in B \), \(N_G[u] \cap N_G[v] = \emptyset \).

A proper coloring of a graph \(G = (V(G), E(G)) \) is a function from the vertices of the graph to a set of colors such that any two adjacent vertices have different colors. The chromatic number \(\chi(G) \) is the minimum number of colors needed in a proper coloring of a graph. A dominator coloring of a graph \(G \) is a proper coloring in which each vertex of the graph dominates every vertex of some color class. The dominator chromatic number \(\chi_d(G) \) is the minimum number of color classes in a dominator coloring of a graph \(G \). This concept was introduced by R. Gera et al. [3].

A set \(D \) of vertices in a graph \(G = (V, E) \) is a dominating set of \(G \), if every vertex in \(V - D \) is adjacent to some vertex in \(D \). The domination number \(\gamma(G) \) of \(G \) is the minimum cardinality of a dominating set. For a comprehensive survey of domination in graphs, see [4, 5, 7].

Generally, if \(\langle D \rangle \cong H \), such a dominating set \(D \) is called a Smarandache \(H \)-dominating set. A dominating set \(D \) of a graph \(G = (V, E) \) is an independent dominating set, if the induced subgraph \(\langle D \rangle \) has no edges, i.e., a Smarandache \(H \)-dominating set with \(E(H) = \emptyset \). The independent domination number \(i(G) \) is the minimum cardinality of an independent dominating set.

A dominating set \(D \) of \(G = (V, E) \) is an accurate dominating set if \(V - D \) has no dominating set of cardinality \(|D| \). The accurate domination number \(\gamma_a(G) \) of \(G \) is the minimum cardinality of an accurate dominating set. This concept was introduced by Kulli and Kattimani [6, 9].

An independent dominating set \(D \) of \(G \) is an accurate independent dominating set if \(V - D \) has no independent dominating set of cardinality \(|D| \). The accurate independent domination number \(i_a(G) \) of \(G \) is the minimum cardinality of an accurate independent dominating set of \(G \). This concept was introduced by Kulli [8].

For example, we consider the graph \(G \) in Figure 1. The accurate independent dominating sets are \(\{1, 2, 6, 7\} \) and \(\{1, 3, 6, 7\} \). Therefore \(i_a(G) = 4 \).

![Figure 1](image-url)

\[G : \]

\[2 \]
\[1 \]
\[6 \]
\[7 \]
\[3 \]
\[4 \]
\[5 \]

§2. Results

Observation 2.1

1. Every accurate independent dominating set is independent and dominating. Hence it is a minimal dominating set.
2. Every minimal accurate independent dominating set is a maximal independent dominating set.

Proposition 2.1 For any nontrivial connected graph \(G \), \(\gamma(G) \leq i_a(G) \).

Proof Clearly, every accurate independent dominating set of \(G \) is a dominating set of \(G \). Thus result holds. \(\Box \)

Proposition 2.2 If \(G \) contains an isolated vertex, then every accurate dominating set is an accurate independent dominating set.

Now we obtain the exact values of \(i_a(G) \) for some standard class of graphs.

Proposition 2.3 For graphs \(P_p, W_p \) and \(K_{m,n} \), there are

1. \(i_a(P_p) = \lceil p/3 \rceil \) if \(p \geq 3 \);
2. \(i_a(W_p) = 1 \) if \(p \geq 5 \);
3. \(i_a(K_{m,n}) = m \) for \(1 \leq m < n \).

Theorem 2.1 For any graph \(G \), \(i_a(G) \leq p - \gamma(G) \).

Proof Let \(D \) be a minimal dominating set of \(G \). Then there exist at least one accurate independent dominating set in \((V - D)\) and by proposition 2.1,

\[
i_a(G) \leq |V| - |D| \leq p - \gamma(G).
\]

Notice that the path \(P_4 \) achieves this bound. \(\Box \)

Theorem 2.2 For any graph \(G \),

\[
\left\lceil \frac{p}{\Delta + 1} \right\rceil \leq i_a(G) \leq \left\lfloor \frac{p}{\Delta} / \Delta + 1 \right\rfloor
\]

and these bounds are sharp.

Proof It is known that \(p/\Delta + 1 \leq \gamma(G) \) and by proposition 2.1, we see that the lower bound holds. By Theorem 2.1,

\[
i_a(G) \leq p - \gamma(G),
\]

\[
\leq p - p/\Delta + 1
\]

\[
\leq p \Delta / \Delta + 1.
\]

Notice that the path \(P_p, p \geq 3 \) achieves the lower bound. This completes the proof. \(\Box \)

Proposition 2.4 If \(G = K_{m_1,m_2,m_3,\ldots,m_r} \), \(r \geq 3 \), then

\[
i_a(G) = m_1 \text{ if } m_1 < m_2 < m_3 \cdots < m_r.
\]
Theorem 2.3 For any graph G without isolated vertices $\gamma_a(G) \leq i_a(G)$ if $G \neq K_{m_1,m_2,m_3,\ldots,m_r}$, $r \geq 3$. Furthermore, the equality holds if $G = P_p (p \neq 4, p \geq 3)$, $W_p (p \geq 5)$ or $K_{m,n}$ for $1 \leq m < n$.

Proof Since we have $\gamma(G) \leq \gamma_a(G)$ and by Proposition 2.1, $\gamma_a(G) \leq i_a(G)$.

Let $\gamma_a(G) \leq i_a(G)$. If $G = K_{m_1,m_2,m_3,\ldots,m_r}$, $r \geq 3$ then by Proposition 2.4, $i_a(G) = m_1$ if $m_1 < m_2 < m_3 \cdots < m_r$ and also accurate domination number is $\lceil p/2 \rceil + 1$ i.e., $\gamma_a(G) = \lceil p/2 \rceil + 1 > m_1 = i_a(G)$, a contradiction. □

Corollary 2.1 For any graph G, $i_a(G) = \gamma(G)$ if $\text{diam}(G) = 2$.

Proposition 2.5 For any graph G without isolated vertices $i(G) \leq i_a(G)$. Furthermore, the equality holds if $G = P_p (p \geq 3)$, $W_p (p \geq 5)$ or $K_{m,n}$ for $1 \leq m < n$.

Proof Every accurate independent dominating set is a independent dominating set. Thus result holds. □

Definition 2.1 The double star $S_{n,m}$ is the graph obtained by joining the centers of two stars $K_{1,n}$ and $K_{1,m}$ with an edge.

Proposition 2.6 For any graph G, $i_a(G) \leq \beta_o(G)$. Furthermore, the equality holds if $G = S_{n,m}$.

Proof Since every minimal accurate independent dominating set is a maximal independent dominating set. Thus result holds. □

Theorem 2.4 For any graph G, $i_a(G) \leq p - \alpha_0(G)$.

Proof Let S be a vertex cover of G. Then $V - S$ is an accurate independent dominating set. Then $i_a(G) \leq |V - S| \leq p - \alpha_0(G)$. □

Corollary 2.2 For any graph G, $i_a(G) \leq p - \beta_0(G) + 2$.

Theorem 2.5 If G is any nontrivial connected graph containing exactly one vertex of degree $\triangle(G) = p - 1$, then $\gamma(G) = i_a(G) = 1$.

Proof Let G be any nontrivial connected graph containing exactly one vertex v of degree $\deg(v) = p - 1$. Let D be a minimal dominating set of G containing vertex of degree $\deg(v) = p = 1$. Then D is a minimum dominating set of G i.e.,

$$|D| = \gamma(G) = 1. \quad (1)$$

Also $V - D$ has no dominating set of same cardinality $|D|$. Therefore,

$$|D| = i_a(G). \quad (2)$$

Hence, by (1) and (2) $\gamma(G) = i_a(G) = 1$. □
Theorem 2.6 If G is a connected graph with p vertices then $i_a(G) = p/2$ if and only if $G = H \circ K_1$, where H is any nontrivial connected graph.

Proof Let D be any minimal accurate independent dominating set with $|D| = p/2$. If $G \neq H \circ K_1$ then there exist at least one vertex $v_i \in V(G)$ which is neither a pendant vertex nor a support vertex. Then there exist a minimal accurate independent dominating set D' containing v_i such that

$$|D'| \leq |D| - \{v_i\} \leq p/2 - \{v_i\} \leq p/2 - 1,$$

which is a contradiction to minimality of D.

Conversely, let l be the set of all pendant vertices in $G = H \circ K_1$ such that $|l| = p/2$. If $G = H \circ K_1$, then there exist a minimal accurate independent dominating set $D \subseteq V(G)$ containing all pendant vertices of G. Hence $|D| = |l| = p/2$.

Now we characterize the trees for which $i_a(T) = p - \Delta(T)$.

Theorem 2.7 For any tree T, $i_a(T) = p - \Delta(T)$ if and only if T is a wounded spider and $T \neq K_1, K_{1,1}$.

Proof Suppose T is wounded spider. Then it is easy to verify that $i_a(T) = p - \Delta(T)$.

Conversely, suppose T is a tree with $i_a(T) = p - \Delta(T)$. Let v be a vertex of maximum degree $\Delta(T)$ and u be a vertex in $N(v)$ which has degree 1. If $T - N[v] = \phi$ then T is the star $K_{1,n}, n \geq 2$. Thus T is a double wounded spider. Assume now there is at least one vertex in $T - N[v]$. Let S be a maximal independent set of $(T - N[v])$. Then either $S \cup \{v\}$ or $S \cup \{u\}$ is an accurate independent dominating set of T. Thus $p = i_a(T) + \Delta(T) \leq |S| + 1 + \Delta(T) \leq p$. This implies that $V - N(v)$ is an accurate independent dominating set. Furthermore, $N(v)$ is also an accurate independent dominating set.

The connectivity of T implies that each vertex in $V - N[v]$ must be adjacent to at least one vertex in $N(v)$. Moreover if any vertex in $V - N[v]$ is adjacent to two or more vertices in $N(v)$, then a cycle is formed. Hence each vertex in $V - N[v]$ is adjacent to exactly one vertex in $N(v)$. To show that $\Delta(T) + 1$ vertices are necessary to dominate T, there must be at least one vertex in $N(v)$ which are not adjacent to any vertex in $V - N[v]$ and each vertex in $N(v)$ has either 0 or 1 neighbors in $V - N[v]$. Thus T is a wounded spider.

Proposition 2.7 If G is a path P_p, $p \geq 3$ then $\gamma(P_p) = i_a(P_p)$.

We characterize the class of trees with equal domination and accurate independent domination number in the next section.

§3. Characterization of (γ, i_a)-Trees

For any graph theoretical parameter λ and μ, we define G to be (λ, μ)-graph if $\lambda(G) =$
\(\mu(G) \). Here we provide a constructive characterization of \((\gamma, i_a)\)-trees.

To characterize \((\gamma, i_a)\)-trees we introduce family \(\tau_1 \) of trees \(T = T_k \) that can be obtained as follows. If \(k \) is a positive integer, then \(T_{k+1} \) can be obtained recursively from \(T_k \) by the following operation.

Operation \(O \) Attach a path \(P_3(x,y,z) \) and an edge \(mx \), where \(m \) is a support vertex of a tree \(T \).

\[
\tau = \{ T / \text{obtained from } P_5 \text{ by finite sequence of operations of } O \}
\]

![Tree T belonging to family \(\tau_1 \)](image)

Observation 3.1 If \(T \in \tau \), then

1. \(i_a(T) = \lceil p + 1/3 \rceil \);
2. \(X(T) \) is a minimal dominating set as well as a minimal accurate independent dominating set of \(T \);
3. \((V - D) \) is totally disconnected.

Corollary 3.1 If tree \(T \) with \(p \geq 5 \) belongs to the family \(\tau \) then \(\gamma(T) = |X(T)| \) and \(i_a(T) = |X(T)| \).

Lemma 3.1 If a tree \(T \) belongs to the family \(\tau \) then \(T \) is a \((\gamma, i_a)\)-tree.

Proof If \(T = P_p \), \(p \geq 3 \) then from proposition 2.7 \(T \) is a \((\gamma, i_a)\)-tree. Now if \(T = P_p \), \(p \geq 3 \) then we proceed by induction on the number of operations \(n(T) \) required to construct the tree \(T \). If \(n(T) = 0 \) then \(T \in P_5 \) by proposition 2.7 \(T \) is a \((\gamma, i_a)\)-tree.

Assume now that \(T \) is a tree belonging to the family \(\tau \) with \(n(T) = k \), for some positive integer \(k \) and each tree \(T' \in \tau \) with \(n(T') < k \) and with \(V(T') \geq 5 \) is a \((\gamma, i_a)\)-tree in which \(X(T') \) is a minimal accurate independent dominating set of \(T' \). Then \(T \) can be obtained from a tree \(T' \) belonging to \(\tau \) by operation \(O \) where \(m \in V(T') - (M(T') - \Omega(T')) \) and we add
path \((x, y, z)\) and the edge \(mx\). Then \(z\) is a pendant vertex in \(T\) and \(y\) is a support vertex and \(x \in M(T)\). Thus \(S(T) = X(T') \cup \{y\}\) is a minimal accurate independent dominating set of \(T\). Therefore \(i_a(T) \geq |X(T)| = |X(T')| + 1\). Hence we conclude that \(i_a(T) = i_a(T') + 1\).

By the induction hypothesis and by observation 3.1(2) \(i_a(T') = \gamma(T') = |X(T')|\). In this way \(i_a(T) = |X(T)|\) and in particular \(i_a(T) = \gamma(T)\).

\[\square\]

Lemma 3.2 If \(T\) is a \((\gamma, i_a)\) - tree, then \(T\) belongs to the family \(\tau\).

Proof If \(T\) is a path \(P_p\), \(p \geq 3\) then by proposition 2.7 \(T\) is a \((\gamma, i_a)\) - tree. It is easy to verify that the statement is true for all trees \(T\) with diameter less than or equal to 4. Hence we may assume that \(\text{diam}(T) \geq 4\). Let \(T\) be rooted at a support vertex \(m\) of a longest path \(P\). Let \(P\) be a \(m - z\) path and let \(y\) be the neighbor of \(z\). Further, let \(x\) be a vertex belongs to \(M(T)\). Let \(T\) be a \((\gamma, i_a)\)-tree. Now we proceed by induction on number of vertices \(|V(T)|\) of a \((\gamma, i_a)\) - tree. Let \(T\) be a \((\gamma, i_a)\)-tree and assume that the result holds good for all trees on \(V(T) - 1\) vertices. By observation 3.1(2) since \(T\) is \((\gamma, i_a)\)-tree it contains minimal accurate independent dominating set \(D\) that contains all support vertices of a tree. In particular \(\{m, y\} \subset D\) and the vertices \(x\) and \(z\) are independent in \((V - D)\).

Let \(T' = T - (x, y, z)\). Then \(D - \{y\}\) is dominating set of \(T'\) and so \(\gamma(T') \leq \gamma(T) - 1\).

Any dominating set can be extended to a minimal accurate independent dominating set of \(T\) by adding to it the vertices \((x, y, z)\) and so \(i_a(T) \leq i_a(T') + 1\). Hence, \(i_a(T') \leq \gamma(T') \leq \gamma(T) + 1 \leq i_a(T) - 1 \leq i_a(T')\). Consequently, we must have equality throughout this inequality chain. In particular \(i_a(T') = \gamma(T')\) and \(i_a(T) = i_a(T') + 1\). By inductive hypothesis any minimal accurate independent dominating set of a tree \(T'\) can be extended to minimal accurate independent dominating set of a tree \(T\) by operation \(O\). Thus \(T \in \tau\).

\[\square\]

As an immediate consequence of lemmas 3.1 and 3.2, we have the following characterization of trees with equal domination and accurate independent domination number.

Theorem 3.1 Let \(T\) be a tree. Then \(i_a(T) = \gamma(T)\) if and only if \(T \in \tau\).

\[\square\]

§4. Accurate Independent Domination of Some Graph Families

In this section accurate independent domination of \(\text{fan graph, double fan graph, helm graph and gear graph}\) are considered. We also obtain the corresponding relation between other dominating parameters and dominator coloring of the above graph families.

Definition 4.1 A fan graph, denoted by \(F_n\) can be constructed by joining \(n\) copies of the cycle graph \(C_3\) with a common vertex.

Observation 4.1 Let \(F_n\) be a fan. Then,

1. \(F_n\) is a planar undirected graph with \(2n + 1\) vertices and \(3n\) edges;
2. \(F_n\) has exactly one vertex with \(\Delta(F_n) = p - 1\);
3. \(\text{Diam}(F_n) = 2\).
Theorem 4.1([2]) For a fan graph $F_n, n \geq 2$, $\chi_d(F_n) = 3$.

Proposition 4.1 For a fan graph $F_n, n \geq 2$, $i_a(F_n) = 1$.

Proof By Observation 4.1(2) and Theorem 2.5 result holds. \hfill \Box

Proposition 4.2 For a fan graph $F_n, n \geq 2$, $i_a(F_n) < \chi_d(F_n)$.

Proof By Proposition 4.1 and Theorem 4.1, we know that $\chi_d(F_n) = 3$. This implies that $i_a(F_n) < \chi_d(F_n)$. \hfill \Box

Definition 4.2 A double fan graph, denoted by $F_{2,n}$, isomorphic to $P_n + 2K_1$.

Observation 4.2

1. $F_{2,n}$ is a planar undirected graph with $(n + 2)$ vertices and $(3n - 1)$ edges;
2. $\text{Diam}(G) = 2$.

Theorem 4.2([2]) For a double fan graph $F_{2,n}, n \geq 2$, $\chi_d(F_{2,n}) = 3$.

Theorem 4.3 For a double fan graph $F_{2,n}$, $n \geq 2$, $i_a(F_{2,2}) = 2$, $i_a(F_{2,3}) = 1$, $i_a(F_{2,5}) = 3$ and $i_a(F_{2,n}) = 2$ if $n \geq 7$.

Proof Our proof is divided into cases following.

Case 1. If $n = 2$ and $n \geq 7$, then $F_{2,n}$, $n \geq 2$ has only one accurate independent dominating set D of $|D| = 2$. Hence, $i_a(F_{2,n}) = 2$.

Case 2. If $n = 3$, then $F_{2,3}$ has exactly one vertex of $\Delta(G) = p - 1$. Then by Theorem 2.5, $i_a(F_{2,n}) = 1$.

Case 3. If $n=5$ and D be a independent dominating set of G with $|D| = 2$, then $(V - D)$ also has an independent dominating set of cardinality 2. Hence D is not accurate.

Let D_1 be a independent dominating set with $|D_1| = 3$, then $V - D_1$ has no independent dominating set of cardinality 3. Then D_1 is accurate. Hence, $i_a(F_{2,n}) = 3$.

Case 4. If $n=4$ and 6, there does not exist accurate independent dominating set. \hfill \Box

Proposition 4.3 For a double fan graph $F_{2,n}$, $n \geq 7$,

$\gamma(F_{2,n}) = i(F_{2,n}) = \gamma_a(F_{2,n}) = i_a(F_{2,n}) = 2$

Proof Let $F_{2,n}$, $n \geq 7$ be a Double fan graph. Then $2k_1$ forms a minimal dominating set of $F_{2,n}$ such that $\gamma(F_{2,n}) = 2$. Since this dominating set is independent and in $(V - D)$ there is no independent dominating set of cardinality 2 it is both independent and accurate independent dominating set. Also it is accurate dominating set. Hence,

$\gamma(F_{2,n}) = i(F_{2,n}) = \gamma_a(F_{2,n}) = i_a(F_{2,n}) = 2$. \hfill \Box
Proposition 4.4 For Double fan graph $F_{2,n}$, $n \geq 7$

\[i_a(F_{2,n}) \leq \chi_d(F_{2,n}). \]

Proof The proof follows by Theorems 4.2 and 4.3. \qed

Definition 4.3([1]) For $n \geq 4$, the wheel W_n is defined to be the graph $W_n = C_{n-1} + K_1$. Also it is defined as $W_{1,n} = C_n + K_1$.

Definition 4.4 A helm H_n is the graph obtained from $W_{1,n}$ by attaching a pendant edge at each vertex of the n-cycle.

Observation 4.3 A helm H_n is a planar undirected graph with $(2n+1)$ vertices and $3n$ edges.

Theorem 4.4([2]) For Helm graph H_n, $n \geq 3$, $\chi_d(H_n) = n + 1$.

Proposition 4.5 For a helm graph H_n, $n \geq 3$, $i_a(H_n) = n$.

Proof Let H_n, $n \geq 3$ be a helm graph. Then there exist a minimal independent dominating set D with $|D| = n$ and $(V - D)$ has no independent dominating set of cardinality n. Hence D is accurate. Therefore $i_a(H_n) = n$. \qed

Proposition 4.6 For a helm graph H_n, $n \geq 3$

\[\gamma(H_n) = i(H_n) = \gamma_a(H_n) = i_a(H_n) = n. \]

Proposition 4.7 For a helm graph H_n, $n \geq 3$

\[i_a(H_n) = \chi_d(H_n) - 1. \]

Proof Applying Proposition 4.5, $i_a(H_n) = n + 1 - 1 = \chi_d(H_n) - 1$ by Theorem 4.4, $\chi_d(H_n) = n + 1$. Hence the proof. \qed

Definition 4.5 A gear graph G_n also known as a bipartite wheel graph, is a wheel graph $W_{1,n}$ with a vertex added between each pair of adjacent vertices of the outer cycle.

Observation 4.4 A gear graph G_n is a planar undirected graph with $2n + 1$ vertices and $3n$ edges.

Theorem 4.5([2]) For a gear graph G_n, $n \geq 3$,

\[\chi_d(G_n) = \lceil 2n/3 \rceil + 2. \]
Theorem 4.6 For a gear graph G_n, $n \geq 3$, $i_a(G_n) = n$.

Proof It is clear from the definition of gear graph G_n is obtained from wheel graph $W_{1,n}$ with a vertex added between each pair of adjacent vertices of the outer cycle of wheel graph $W_{1,n}$. These n vertices forms an independent dominating set in G_n such that $(V - D)$ has no independent dominating set of cardinality n. Therefore, the set D with cardinality n is accurate independent dominating set of G_n. Therefore $i_a(G_n) = n$. \(\square\)

Corollary 4.1 For any gear graph G_n, $n \geq 3$, $\gamma(G_n) = i(G_n) = n - 1$.

Proposition 4.8 For a gear graph G_n, $n \geq 3$,

$$i_a(G_n) = \gamma_a(G_n).$$

Proposition 4.9 For a graph G_n, $n \geq 3$,

$$i_a(G_n) = \gamma(G_n) + 1 = i(G_n) + 1.$$

Proof Applying Theorem 4.6 and Corollary 4.1, we know that $i_a(G_n) = n = n - 1 + 1 = \gamma(G_n) + 1 = i(G_n) + 1$. \(\square\)

References