CALCULATING THE SMARANDACHE FUNCTION FOR POWERS OF A PRIME

J. R. SUTTON
(16a Overland Road, Mumbles, SWANSEA SA3 4LP, UK)

Introduction

The Smarandache function is an integer function, S, of an integer variable, n. S is the smallest integer such that $S!$ is divisible by n. If the prime factorisation of n is known

$$n = \prod m_i^p_i$$

where the p_i are primes then it has been shown that

$$S(n) = \text{Max} \left(S(m_i^{p_i}) \right)$$

so a method of calculating S for prime powers will be useful in calculating $S(n)$.

The inverse function

It is easier to start with the inverse problem. For a given prime, p, and a given value of S, a multiple of p, what is the maximum power, m, of p which is a divisor of $S!$? If we consider the case $p=2$ then all even numbers in the factorial contribute a factor of 2, all multiples of 4 contribute another, all multiples of 8 yet another and so on.

$$m = S \text{DIV2} + (S \text{DIV2})\text{DIV2} + ((S \text{DIV2})\text{DIV2})\text{DIV2} + ...$$

In the general case

$$m = S \text{DIV}p + (S \text{DIV}p)\text{DIV}p + ((S \text{DIV}p)\text{DIV}p)\text{DIV}p + ...$$

The series terminates by reaching a term equal to zero. The Pascal program at the end of this paper contains a function inv to calculate this function.
Using the inverse function

If we now look at the values of S for successive powers of a prime, say $p=3$,

\[
\begin{array}{cccccccccccc}
m & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \ldots \\
\ast & * & * & * & * & * & * & * & * & * & * & * \\
S(3^m) & 3 & 6 & 9 & 9 & 12 & 15 & 18 & 18 & 21 & 24 & \ldots \\
\end{array}
\]

where the asterisked values of m are those found by the inverse function, we can see that these latter determine the points after which S increases by p. In the Pascal program the procedure tabsmarpp fills an array with the values of S for successive powers of a prime.

The Pascal program

The program tests the procedure by accepting a prime input from the keyboard, calculating S for the first 1000 powers, reporting the time for this calculation and entering an endless loop of accepting a power value and reporting the corresponding S value as stored in the array.

The program was developed and tested with Acornsoft ISO-Pascal on a BBC Master. The function 'time' is an extension to standard Pascal which delivers the timelapse since last reset in centi-seconds. On a computer with a 65C12 processor running at 2 MHz the 1000 S values are calculated in about 11 seconds, the exact time is slightly larger for small values of the prime.

program TestabSpp(input,output);
var t,p,x: integer;
Smarpp:array[1..1000] of integer;

function invSpp(prime,smar:integer):integer;
var m,x:integer;
begin
 m:=0;
x:=smar;
repeat
 x:=x div prime;
m:=m+x;
until x<prime;
invSpp:=m;
end; {invSpp}
procedure tabsmarpp(prime,tabsize:integer);
var i,s,is:integer;
exit:boolean;
begin
exit:=false;
i:=1;
is:=1;
s:=prime;
repeat
repeat
Smarpp[i]:=s;
i:=i+1;
if i>tabsize then exit:=true;
until (i>is) or exit;
s:=s+prime;
is:=invSpp(prime,s);
until exit;
end; {tabsmarpp}

begin
read(p);
t:=time;
tabsmarpp(p,1000);
writeln((time-t)/100);
repeat
read(x);
writeln('Smarandache for ',p,' to power ',x,' is ',Smarpp[x]);
until false;
end. {testtabspp}