On a dual of the Pseudo-Smarandache function

József Sándor

Babeș-Bolyai University, 3400 Cluj-Napoca, Romania

1 Introduction

In paper [3] we have defined certain generalizations and extensions of the Smarandache function. Let \(f : \mathbb{N}^* \rightarrow \mathbb{N}^* \) be an arithmetic function with the following property: for each \(n \in \mathbb{N}^* \) there exists at least a \(k \in \mathbb{N}^* \) such that \(n \mid f(k) \). Let

\[
F_f : \mathbb{N}^* \rightarrow \mathbb{N}^* \text{ defined by } F_f(n) = \min\{k \in \mathbb{N}^* : n \mid f(k)\}. \quad (1)
\]

This function generalizes many particular functions. For \(f(k) = k! \) one gets the Smarandache function, while for \(f(k) = \frac{k(k+1)}{2} \) one has the Pseudo-Smarandache function \(Z \) (see [1], [4-5]). In the above paper [3] we have defined also dual arithmetic functions as follows: Let \(g : \mathbb{N}^* \rightarrow \mathbb{N}^* \) be a function having the property that for each \(n \geq 1 \) there exists at least a \(k \geq 1 \) such that \(g(k) \mid n \).

Let

\[
G_g(n) = \max\{k \in \mathbb{N}^* : g(k) \mid n\}. \quad (2)
\]

For \(g(k) = k! \) we obtain a dual of the Smarandache function. This particular function, denoted by us as \(S_e \) has been studied in the above paper. By putting \(g(k) = \frac{k(k+1)}{2} \) one obtains a dual of the Pseudo-Smarandache function. Let us denote this function, by analogy by \(Z_\ast \). Our aim is to study certain elementary properties of this arithmetic function.
2 The dual of yhe Pseudo-Smarandache function

Let

\[Z_*(n) = \max \left\{ m \in \mathbb{N}^* : \frac{m(m+1)}{2} | n \right\}. \]

(3)

Recall that

\[Z(n) = \min \left\{ k \in \mathbb{N}^* : n | \frac{k(k+1)}{2} \right\}. \]

(4)

First remark that

\[Z_*(1) = 1 \quad \text{and} \quad Z_*(p) = \begin{cases} 2, & p = 3 \\ 1, & p \neq 3 \end{cases} \]

(5)

where \(p \) is an arbitrary prime. Indeed, \(\frac{2 \cdot 3}{2} = 3 | 3 \) but \(\frac{m(m+1)}{2} | p \) for \(p \neq 3 \) is possible only for \(m = 1 \). More generally, let \(s \geq 1 \) be an integer, and \(p \) a prime. Then:

Proposition 1.

\[Z_*(p^s) = \begin{cases} 2, & p = 3 \\ 1, & p \neq 3 \end{cases} \]

(6)

Proof. Let \(\frac{m(m+1)}{2} | p^s \). If \(m = 2M \) then \(M(2M+1)|p^s \) is impossible for \(M > 1 \) since \(M \) and \(2M + 1 \) are relatively prime. For \(M = 1 \) one has \(m = 2 \) and \(3 | p^s \) only if \(p = 3 \). For \(m = 2M - 1 \) we get \((2M - 1)M | p^s \), where for \(M > 1 \) we have \((M, 2M - 1) = 1 \) as above, while for \(M = 1 \) we have \(m = 1 \).

The function \(Z_* \) can take large values too, since remark that for e.g. \(n \equiv 0(\text{mod}6) \) we have \(\frac{3 \cdot 4}{2} = 6 | n \), so \(Z_*(n) \geq 3 \). More generally, let \(a \) be a given positive integer and \(n \) selected such that \(n \equiv 0(\text{mod}(2a + 1)) \). Then

\[Z_*(n) \geq 2a. \]

(7)

Indeed, \(\frac{2a(2a+1)}{2} = a(2a+1)|n \) implies \(Z_*(n) \geq 2a \).

A similar situation is in

Proposition 2. Let \(q \) be a prime such that \(p = 2q - 1 \) is a prime, too. Then

\[Z_*(pq) = p. \]

(8)
Proof. \(\frac{p(p+1)}{2} = pq \) so clearly \(Z_p(pq) = p \).

Remark. Examples are \(Z_5(5 \cdot 3) = 5, Z_{13}(13 \cdot 7) = 13 \), etc. It is a difficult open problem that for infinitely many \(q \), the number \(p \) is prime, too (see e.g. [2]).

Proposition 3. For all \(n \geq 1 \) one has

\[1 \leq Z(n) \leq Z(n). \tag{9} \]

Proof. By (3) and (4) we can write \(\frac{m(m+1)}{2} | \frac{k(k+1)}{2} \), therefore \(m(m+1)|k(k+1) \).

If \(m > k \) then clearly \(m(m+1) > k(k+1) \), a contradiction.

Corollary. One has the following limits:

\[\lim_{n \to \infty} Z(n) = 0, \quad \lim_{n \to \infty} \frac{Z(n)}{Z(n)} = 1. \tag{10} \]

Proof. Put \(n = p \) (prime) in the first relation. The first result follows by (6) for \(s = 1 \) and the well-known fact that \(Z(p) = p \). Then put \(n = \frac{a(a+1)}{2} \), when \(\frac{Z(n)}{Z(n)} = 1 \) and let \(a \to \infty \).

As we have seen,

\[Z \left(\frac{a(a+1)}{2} \right) = Z \left(\frac{a(a+1)}{2} \right) = a. \]

Indeed, \(\frac{a(a+1)}{2} \left(\frac{k(k+1)}{2} \right) \) is true for \(k = a \) and is not true for any \(k < a \). In the same manner, \(\frac{m(m+1)}{2} | \frac{a(a+1)}{2} \) is valid for \(m = a \) but not for any \(m > a \). The following problem arises: What are the solutions of the equation \(Z(n) = Z(n) \)?

Proposition 4. All solutions of equation \(Z(n) = Z(n) \) can be written in the form

\[n = \frac{r(r+1)}{2} \ (r \in \mathbb{N}^*). \]

Proof. Let \(Z(n) = Z(n) = t \). Then \(n | \frac{t(t+1)}{2} | n \) so \(\frac{t(t+1)}{2} = n \). This gives \(t^2 + t - 2n = 0 \) or \((2t+1)^2 = 8n + 1 \), implying \(t = \frac{\sqrt{8n+1} - 1}{2} \), where \(8n + 1 = m^2 \). Here \(m \) must be odd, let \(m = 2r + 1, \) so \(n = \frac{(m-1)(m+1)}{8} \) and \(t = \frac{m-1}{2} \). Then \(m-1 = 2r, m+1 = 2(r+1) \) and \(n = \frac{r(r+1)}{2} \).

Proposition 5. One has the following limits:

\[\lim_{n \to \infty} \sqrt[\infty]{Z(n)} = \lim_{n \to \infty} \sqrt{Z(n)} = 1. \tag{11} \]
Proof. It is known that \(Z(n) \leq 2n - 1 \) with equality only for \(n = 2^k \) (see e.g. [5]). Therefore, from (9) we have

\[
1 \leq \sqrt[n]{Z_*(n)} \leq \sqrt[n]{Z(n)} \leq \sqrt[2n-1]{1},
\]

and by taking \(n \to \infty \) since \(\sqrt[2n-1]{1} \to 1 \), the above simple result follows.

As we have seen in (9), upper bounds for \(Z(n) \) give also upper bounds for \(Z_*(n) \). E.g. for \(n = \) odd, since \(Z(n) \leq n - 1 \), we get also \(Z_*(n) \leq n - 1 \). However, this upper bound is too large. The optimal one is given by:

Proposition 6.

\[
Z_*(n) \leq \frac{\sqrt[8n+1]{1} - 1}{2} \text{ for all } n. \tag{12}
\]

Proof. The definition (3) implies with \(Z_*(n) = m \) that \(\frac{m(m+1)}{2} \mid n \), so \(\frac{m(m+1)}{2} \leq n \), i.e. \(m^2 + m - 2n \leq 0 \). Resolving this inequality in the unknown \(m \), easily follows (12).

Inequality (12) cannot be improved since for \(n = \frac{p(p+1)}{2} \) (thus for infinitely many \(n \)) we have equality. Indeed,

\[
\left(\sqrt[\sqrt{8(p+1)p + 1}]{1} - 1 \right)/2 = \left(\sqrt[2]{4p(p+1) + 1} - 1 \right)/2 = [(2p + 1) - 1]/2 = p.
\]

Corollary.

\[
\lim_{n \to \infty} \frac{Z_*(n)}{\sqrt{n}} = 0, \quad \lim_{n \to \infty} \frac{Z_*(n)}{\sqrt{2n}} = \sqrt{2}. \tag{13}
\]

Proof. While the first limit is trivial (e.g. for \(n = \) prime), the second one is a consequence of (12). Indeed, (12) implies \(Z_*(n)/\sqrt{n} \leq \sqrt{2} \left(\sqrt{1 + \frac{1}{8n}} - \sqrt{1/8n} \right) \), i.e.

\[
\lim_{n \to \infty} \frac{Z_*(n)}{\sqrt{n}} \leq \sqrt{2}. \quad \text{But this upper limit is exact for } n = \frac{p(p+1)}{2} \quad (p \to \infty).
\]

Similar and other relations on the functions \(S \) and \(Z \) can be found in [4-5].

An inequality connecting \(S_*(ab) \) with \(S_*(a) \) and \(S_*(b) \) appears in [3]. A similar result holds for the functions \(Z \) and \(Z_*. \)

Proposition 7. For all \(a, b \geq 1 \) one has

\[
Z_*(ab) \geq \max\{Z_*(a), Z_*(b)\}, \tag{14}
\]
\[Z(ab) \geq \max\{Z(a), Z(b)\} \geq \max\{Z_*(a), Z_*(b)\}. \] (15)

Proof. If \(m = Z_*(a) \), then \(\frac{m(m+1)}{2} | \alpha \). Since \(\alpha | ab \) for all \(b \geq 1 \), clearly \(\frac{m(m+1)}{2} | ab \), implying \(Z_*(ab) \geq m = Z_*(a) \). In the same manner, \(Z_*(ab) \geq Z_*(b) \), giving (14).

Let now \(k = Z(ab) \). Then, by (4) we can write \(ab|\frac{k(k+1)}{2} \). By \(\alpha | ab \) it results \(a|\frac{k(k+1)}{2} \), implying \(Z(a) \leq k = Z(ab) \). Analogously, \(Z(b) \leq Z(ab) \), which via (9) gives (15).

Corollary. \(Z_*(3^s \cdot p) \geq 2 \) for any integer \(s \geq 1 \) and any prime \(p \).

Indeed, by (14), \(Z_*(3^s \cdot p) \geq \max\{Z_*(3^s), Z(p)\} = \max\{2, 1\} = 2 \), by (6).

We now consider two irrational series.

Proposition 8. The series \(\sum_{n=1}^\infty \frac{Z_*(n)}{n!} \) and \(\sum_{n=1}^\infty \frac{(-1)^{n-1}Z_*(n)}{n!} \) are irrational.

Proof. For the first series we apply the following irrationality criterion ([6]). Let \((v_n)\) be a sequence of nonnegative integers such that

(i) \(v_n < n \) for all large \(n \);

(ii) \(v_n < n - 1 \) for infinitely many \(n \);

(iii) \(v_n > 0 \) for infinitely many \(n \).

Then \(\sum_{n=1}^\infty \frac{v_n}{n!} \) is irrational.

Let \(v_n = Z_*(n) \). Then, by (12) \(Z_*(n) < n - 1 \) follows from \(\frac{\sqrt{n+1} - 1}{2} < n - 1 \), i.e. (after some elementary fact, which we omit here) \(n > 3 \). Since \(Z_*(n) \geq 1 \), conditions (i)-(iii) are trivially satisfied.

For the second series we will apply a criterion from [7]:

Let \((a_k), (b_k)\) be sequences of positive integers such that

(i) \(k|a_1 a_2 \ldots a_k \);

(ii) \(\frac{b_{k+1}}{a_{k+1}} < b_k < a_k \) \((k \geq k_0) \). Then \(\sum_{k=1}^\infty (-1)^{k-1} \frac{b_k}{a_1 a_2 \ldots a_k} \) is irrational.

Let \(a_k = k, b_k = Z_*(k) \). Then (i) is trivial, while (ii) is \(\frac{Z_*(k+1)}{k+1} < Z_*(k) < k \). Here \(Z_*(k) < k \) for \(k \geq 2 \). Further \(Z_*(k+1) < (k+1)Z_*(k) \) follows by \(1 \leq Z_*(k) \) and \(Z_*(k+1) < k+1 \).
References

