ON THE SMARANDACHE FUNCTION AND THE FIXED-POINT THEORY OF NUMBERS

by

Albert A. Mullin

This brief note points out several basic connections between the Smarandache function, fixed-point theory [1] and prime-number theory. First recall that fixed-point theory in function spaces provides elegant, if not short, proofs of the existence of solutions to many kinds of differential equations, integral equations, optimization problems and game-theoretic problems. Further, fixed-point theory in the ring of rational integers and fixed-lattice-point theory provide many results on the existence of solutions in diophantine theory. Here are four fundamental examples of fixed-point theory in number theory. (1) There is the well-known basic result that for \(p > 4 \), \(p \) is prime iff \(S(p) = p \). (2) Recall that the present author defined [2] the number-theoretic function \(\Psi(n) \) as the product of the primes alone in the mosaic of \(n \), where the mosaic of \(n \) is obtained from \(n \) by recursively applying the unique factorization theorem/fundamental theorem of arithmetic to itself! Now the asymptotic density of fixed points of \(\Psi(n) \) is \(7/\pi^2 \), just as the asymptotic density of square-free numbers is \(6/\pi^2 \). Indeed, (3) the theory of perfect numbers is also connected to fixed-point theory, since if one puts \(\delta(n) = \delta(n) - n \), where \(\delta(n) \) is the sum of the divisors on \(n \), then \(n \) is perfect iff \(\delta(n) = n \). Finally, (4) the present author defined [2] the number-theoretic function \(\Psi^*(n) \) as the sum of the primes alone in the mosaic of \(n \). Here we have a striking similarity to the Smarandache function itself (see example (1) above), since \(\Psi^*(n) = n \) iff \(n = 4 \) or \(n = p \) for some prime \(p \); i.e., if \(n > 4 \), \(n \) is prime iff \(\Psi^*(n) = n \). Thus, the distribution function for the fixed points of \(S(n) \) or of \(\Psi^*(n) \) is essentially the distribution function for the primes, \(\Pi(n) \).

Problems

(1) Put \(S^2(n) = S(S(n)) \) and define \(S^m(n) \) recursively, where \(S(n) \) is the Smarandache function. (Note: This approach aligns Smarandache function theory more closely with recursive function theory/computer theory.) For each \(n \), determine the least \(m \) for which \(S^m(n) \) is prime.
(2) Prove that \(S(n) = S(n+3) \) for only finitely many \(n \).
(3) Prove that \(S(n) = S(n+2) \) for only finitely many \(n \).
(4) Prove that \(S(n) = S(n+1) \) for no \(n \).

References

Current address:
506 Seaborn Drive,
Huntsville, AL 35806 (U.S.A.)