SOME PROPERTIES OF THE PSEUDO-SMARANDACHE FUNCTION

RICHARD PINCH

Abstract. Charles Ashbacher [1] has posed a number of questions relating to the pseudo-Smarandache function $Z(n)$. In this note we show that the ratio of consecutive values $Z(n+1)/Z(n)$ and $Z(n)/Z(n-1)$ are unbounded; that $Z(2n)/Z(n)$ is unbounded; that $n/Z(n)$ takes every integer value infinitely often; and that the series $\sum_n 1/Z(n)^\alpha$ is convergent for any $\alpha > 1$.

1. Introduction

We define the m-th triangular number $T(m) = \frac{m(m+1)}{2}$. Kashihara [2] has defined the pseudo-Smarandache function $Z(n)$ by

$$Z(n) = \min\{m : n \mid T(m)\}.$$

Charles Ashbacher [1] has posed a number of questions relating to the pseudo-Smarandache function $Z(n)$. In this note we show that the ratio of consecutive values $Z(n)/Z(n-1)$ and $Z(n)/Z(n+1)$ are unbounded; that $Z(2n)/Z(n)$ is unbounded; and that $n/Z(n)$ takes every integer value infinitely often. He notes that the series $\sum_n 1/Z(n)^\alpha$ is convergent for any $\alpha = 1$ and asks whether it is convergent for $\alpha = 2$. He further suggests that the least value of α for which the series converges “may never be known”. We resolve this problem by showing that the series converges for all $\alpha > 1$.

2. Some properties of the pseudo-Smarandache function

We record some elementary properties of the function Z.

Lemma 1. (1) If $n \geq T(m)$ then $Z(n) \geq m$. $Z(T(m)) = m$.
 (2) For all n we have $\sqrt{n} < Z(n)$.
 (3) $Z(n) \leq 2n - 1$, and if n is odd then $Z(n) \leq n - 1$.
 (4) If p is an odd prime dividing n then $Z(n) \geq p - 1$.
 (5) $Z(2^k) = 2^{k+1} - 1$.
 (6) If p is an odd prime then $Z(p^k) = p^k - 1$ and $Z(2p^k) = p^k - 1$ or p^k according as $p^k \equiv 1$ or $3 \mod 4$.

We shall make use of Dirichlet’s Theorem on primes in arithmetic progression in the following form.

Lemma 2. Let a, b be coprime integers. Then the arithmetic progression $a + bt$ is prime for infinitely many values of t.

Date: 2 April 2005.
1991 Mathematics Subject Classification. Primary 11A25; Secondary 11B83.
3. Successive values of the pseudo-Smarandache function

Using properties (3) and (5), Ashbacher observed that $|Z(2^k) - Z(2^k - 1)| > 2^k$ and so the difference between the consecutive values of Z is unbounded. He asks about the ratio of consecutive values.

Theorem 1. For any given $L > 0$ there are infinitely many values of n such that $Z(n + 1)/Z(n) > L$, and there are infinitely many values of n such that $Z(n - 1)/Z(n) > L$.

Proof. Choose $k \equiv 3 \mod 4$, so that $T(k)$ is even and k divides $T(k)$. We consider the conditions $k \mid m$ and $(k + 1) \mid (m + 1)$. These are satisfied if $m \equiv k \mod k(k + 1)$, that is, $m = k + k(k + 1)t$ for some t. We have $m(m+1) = k(1 + (k + 1)t) \cdot (k + 1)(1 + kt)$, so that if $n = k(k + 1)(1 + kt)/2$ we have $n \mid T(m)$. Now consider $n + 1 = T(k) + 1 + kT(k)t$. We have $k \mid T(k)$, so $T(k) + 1$ is coprime to both k and $T(k)$. Thus the arithmetic progression $T(k) + 1 + kT(k)t$ has initial term coprime to its increment and by Dirichlet’s Theorem contains infinitely many primes. We find that there are thus infinitely many values of t for which $n + 1$ is prime and so $Z(n) \leq m = k + k(k + 1)t$ and $Z(n + 1) = n = T(k)(1 + kt)$. Hence

$$\frac{Z(n + 1)}{Z(n)} \geq \frac{n}{m} = \frac{T(k) + kT(k)t}{k + 2T(k)t} > \frac{k}{3}.$$

A similar argument holds if we consider the arithmetic progression $T(k) + 1 + kT(k)t$. We then find infinitely many values of t for which $n - 1$ is prime and

$$\frac{Z(n - 1)}{Z(n)} \geq \frac{n - 2}{m} = \frac{T(k) - 2 + kT(k)t}{k + 2T(k)t} > \frac{k}{4}.$$

The Theorem follows by taking $k > 4L$. □

We note that this Theorem, combined with Lemma 1(2), gives another proof of the result that the difference of consecutive values is unbounded.

4. Divisibility of the pseudo-Smarandache function

Theorem 2. For any integer $k \geq 2$, the equation $n/Z(n) = k$ has infinitely many solutions n.

Proof. Fix an integer $k \geq 2$. Let p be a prime $\equiv -1 \mod 2k$ and put $p + 1 = 2kt$. Put $n = T(p)/t = p(p + 1)/2t = pk$. Then $n \mid T(p)$ so that $Z(n) \leq p$. We have $p \mid n$, so $Z(n) \geq p - 1$: that is, $Z(n)$ must be either p or $p - 1$. Suppose, if possible, that it is the latter. In this case we have $2n \mid p(p + 1)$ and $2n \mid (p - 1)p$, so $2n$ divides $p(p + 1) - (p - 1)p = 2p$: but this is impossible since $k > 1$ and so $n > p$. We conclude that $Z(n) = p$ and $n/Z(n) = k$ as required. Further, for any given value of k there are infinitely many prime values of p satisfying the congruence condition and hence infinitely many values of $n = T(p)$ such $n/Z(n) = k$. □
5. Another divisibility question

Theorem 3. The ratio $Z(2n)/Z(n)$ is not bounded above.

Proof. Fix an integer k. Let $p \equiv -1 \mod 2^k$ be prime and put $n = T(p)$. Then $Z(n) = p$. Consider $Z(2n) = m$. We have $2^k p \mid p(p+1) = 2n$ and this divides $m(m+1)/2$. We have $m \equiv \epsilon \mod p$ and $m \equiv \delta \mod 2^{k+1}$ where each of ϵ, δ can be either 0 or -1.

Let $m = pt + \epsilon$. Then $m \equiv \epsilon - t \equiv \delta \mod 2^k$: that is, $t \equiv \epsilon - \delta \mod 2^k$. This implies that either $t = 1$ or $t \geq 2^k - 1$. Now if $t = 1$ then $m \leq p$ and $T(m) \leq T(p) = n$, which is impossible since $2n \leq T(m)$. Hence $t \geq 2^k - 1$. Since $Z(2n)/Z(n) = m/p > t/2$, we see that the ratio $Z(2n)/Z(n)$ can be made as large as desired. \hfill \Box

6. Convergence of a series

Ashbacher observes that the series $\sum n^{1/Z(n)^\alpha}$ diverges for $\alpha = 1$ and asks whether it converges for $\alpha = 2$.

In this section we prove convergence for all $\alpha > 1$.

Lemma 3.

$$\log n \leq \sum_{m=1}^{n} \frac{1}{m} \leq 1 + \log n;$$

$$\frac{1}{2} (\log n)^2 - 0.257 \leq \sum_{m=1}^{n} \frac{\log m}{m} \leq \frac{1}{2} (\log n)^2 + 0.110 \text{ for } n \geq 4.$$

Proof. For the first part, we have $1/m \leq 1/t \leq 1/(m - 1)$ for $t \in [m - 1, m]$. Integrating,

$$\frac{1}{m} \leq \int_{m-1}^{m} \frac{1}{t} \, dt \leq \frac{1}{m-1}.$$

Summing,

$$\sum_{2}^{n} \frac{1}{m} \leq \int_{1}^{n} \frac{1}{t} \, dt \leq \sum_{2}^{n} \frac{1}{m-1},$$

that is,

$$\sum_{1}^{n} \frac{1}{m} \leq 1 + \log n \text{ and } \log n \leq \sum_{1}^{n-1} \frac{1}{m}.$$

The result follows.

For the second part, we similarly have $\log m/m \leq \log t/t \leq \log(m-1)/(m-1)$ for $t \in [m - 1, m]$ when $m \geq 4$, since $\log x/x$ is monotonic decreasing for $x > e$. Integrating,

$$\frac{\log m}{m} \leq \int_{m-1}^{m} \frac{\log t}{t} \, dt \leq \frac{\log(m-1)}{m-1}.$$

Summing,

$$\sum_{4}^{n} \frac{\log m}{m} \leq \int_{3}^{n} \frac{\log t}{t} \, dt \leq \sum_{4}^{n} \frac{\log(m-1)}{m-1}.$$
that is,

\[\sum_{1}^{n} \frac{\log m}{m} - \frac{\log 2}{2} - \frac{\log 3}{3} \leq \frac{1}{2} (\log n)^2 - \frac{1}{2} (\log 3)^2 \]

\[\leq \sum_{1}^{n} \frac{\log m}{m} - \frac{\log n}{n} - \frac{\log 2}{2} \]

We approximate the numerical values

\[\frac{\log 2}{2} + \frac{\log 3}{3} - \frac{1}{2} (\log 3)^2 < 0.110 \]

and

\[\frac{\log 2}{2} - \frac{1}{2} (\log 3)^2 > -0.257. \]

to obtain the result. \(\square \)

Lemma 4. Let \(d(m) \) be the function which counts the divisors of \(m \). For \(n \geq 2 \) we have

\[\sum_{m=1}^{n} \frac{d(m)}{m} < 7(\log n)^2. \]

Proof. We verify the assertion numerically for \(n \leq 6 \). Now assume that \(n \geq 8 > e^2 \). We have

\[\sum_{m=1}^{n} \frac{d(m)}{m} = \sum_{m=1}^{n} \sum_{d|m} \frac{1}{m} = \sum_{d \leq n} \sum_{d \leq n} \frac{1}{d} \]

\[= \sum_{d \leq n} \frac{1}{d} \sum_{e \leq n/d} \frac{1}{e} \leq \sum_{d \leq n} \frac{1}{d} (1 + \log(n/d)) \]

\[\leq (1 + \log n)^2 - \frac{1}{2} (\log n)^2 + 0.257 \]

\[= 1.257 + 2 \log n + \frac{1}{2} (\log n)^2 \]

\[< \frac{4}{3} \left(\frac{\log n}{2} \right)^2 + 2 \log n \left(\frac{\log n}{2} \right) + \frac{1}{2} (\log n)^2 \]

\[< 2(\log n)^2. \]

\(\square \)

Lemma 5. Fix an integer \(t \geq 5 \). Let \(e^t > Y > e^{(t-1)/2} \). The number of integers \(n \) with \(e^{t-1} < n \leq e^t \) such that \(Z(n) \leq Y \) is at most \(196Yt^2 \).

Proof. Consider such an \(n \) with \(m = Z(n) \leq Y \). Now \(n \mid m(m+1) \), say \(k_1 n_1 = m \) and \(k_2 n_2 = m + 1 \), with \(n = n_1n_2 \). Thus \(k = k_1k_2 = m(m + 1)/n \) and \(k_1n_1 \leq Y \). The value of \(k \) is bounded below by 2 and above by \(m(m + 1)/n \leq 2Y^2/e^{t-1} = K \), say. Given a pair \((k_1, k_2)\), the possible values of \(n_1 \) are bounded above by \(Y/k_1 \) and must satisfy the congruence condition \(k_1n_1 + 1 \equiv 0 \) modulo \(k_2 \); there are therefore at most \(Y/k_1k_2 + 1 \) such values.
Since \(Y/k \geq Y/K = e^{t-1}/2Y > 1/2e \), we have \(Y/k + 1 < (2e + 1)Y/k < 7Y/k \).

Given values for \(k, k_2 \) and \(n_1 \), the value of \(n_2 \) is fixed as \(n_2 = (k_1n_1 + 1)/k_2 \). There are thus at most \(\sum_{k \leq K} d(k) \) possible pairs \((k_1, k_2)\) and hence at most \(\sum_{k \leq K} 7Yd(k)/k \) possible quadruples \((k_1, k_2, n_1, n_2)\). We have \(K > 2 \) so that the previous Lemma applies and we can deduce that the number of values of \(n \) satisfying the given conditions is at most \(49Y(\log K)^2 \). Now \(K = 2Y^2/e^{t-1} < 2e^{t+1} \) so that \(\log K < t + 1 + \log 2 < 2t \). This establishes the claimed upper bound of \(196Yt^2 \).

Theorem 4. Fix \(\frac{1}{2} < \beta < 1 \) and an integer \(t \geq 5 \). The number of integers \(n \) with \(e^{t-1} < n \leq e^t \) such that \(Z(n) < n^\beta \) is at most \(196e^{t/2} \).

Proof. We apply the previous result with \(Y = e^{t/2} \). The conditions of \(\beta \) ensure that the previous lemma is applicable and the upper bound on the number of such \(n \) is \(196e^{t/2} \) as claimed.

Theorem 5. The series

\[
\sum_{n=1}^{\infty} \frac{1}{Z(n)^\alpha}
\]

is convergent for any \(\alpha > \sqrt{2} \).

Proof. We note that if \(\alpha > 2 \) then \(1/Z(n)^\alpha < 1/n^{\alpha/2} \) and the series is convergent. So we may assume \(\sqrt{2} < \alpha \leq 2 \). Fix \(\beta \) with \(1/\alpha < \beta < \alpha/2 \). We have \(\frac{1}{2} < \beta < \sqrt{1/2} < \alpha/2 \).

We split the positive integers \(n > e^4 \) into two classes \(A \) and \(B \). We let class \(A \) be the union of the \(A_t \) where, for positive integer \(t \geq 5 \) we put into class \(A_t \) those integers \(n \) such that \(e^{t-1} < n \leq e^t \) for integer \(t \) and \(Z(n) \leq n^\beta \). All values of \(n \) with \(Z(n) > n^\beta \) we put into class \(B \). We consider the sum of \(1/Z(n)^\alpha \) over each of the two classes. Since all terms are positive, it is sufficient to prove that each series separately is convergent.

Firstly we observe that for \(n \in B \), we have \(1/Z(n)^\alpha < 1/n^{\alpha\beta} \) and since \(\alpha\beta > 1 \) the series summed over the class \(B \) is convergent.

Consider the elements \(n \) of \(A_t \): so for such \(n \) we have \(e^{t-1} < n \leq e^t \) and \(Z(n) < e^t \). By the previous result, the number of values of \(n \) satisfying these conditions is at most \(196t^2e^{3t} \). For \(n \in A_t \), we have \(Z(n) \geq \sqrt{n} \), so \(1/Z(n)^\alpha \leq 1/n^{\alpha/2} < 1/e^{\alpha(t-1)/2} \). Hence the sum of the subseries \(\sum_{n \in A_t} 1/Z(n)^\alpha \) is at most \(196e^{\alpha/2}e^{(\beta-\alpha/2)t} \). Since \(\beta < \alpha/2 \) for \(\alpha > \sqrt{2} \), the sum over all \(t \) of these terms is finite.

We conclude that \(\sum_{n=1}^{\infty} 1/Z(n)^\alpha \) is convergent for \(\alpha > \sqrt{2} \).

Theorem 6. The series

\[
\sum_{n=1}^{\infty} \frac{1}{Z(n)^\alpha}
\]

is convergent for any \(\alpha > 1 \).

Proof. We fix \(\beta_0 = 1 > \beta_1 > \cdots > \beta_r = \frac{1}{2} \) with \(\beta_j < \alpha \beta_{j+1} \) for \(0 \leq j \leq r-1 \). We define a partition of the integers \(e^{t-1} < n < e^t \) into classes \(B_t \) and \(C_t(j) \), \(1 \leq j \leq r-1 \). Into \(B_t \) place those \(n \) with \(Z(n) > n^{\beta_1} \). Into \(C_t(j) \) place those \(n \)
with \(n^{\beta_{j+1}} < Z(n) < n^{\beta_j} \). Since \(\beta_r = \frac{1}{2} \) we see that every \(n \) with \(e^{t-1} < n < e^t \) is placed into one of the classes.

The number of elements in \(C_t(j) \) is at most \(196t^2e^{\beta_j t} \) and so

\[
\sum_{n \in C_t(j)} \frac{1}{Z(n)^\alpha} < 196t^2e^{\beta_j t}e^{-\beta_{j+1} \alpha (t-1)} = 196e^{\beta_{j+1} \alpha t}t^2e^{(\beta_j - \alpha \beta_{j+1})t}.
\]

For each \(j \) we have \(\beta_j < \alpha \beta_{j+1} \) so each sum over \(t \) converges.

The sum over the union of the \(B_t \) is bounded above by

\[
\sum_n \frac{1}{n^{\alpha \beta_1}},
\]

which is convergent since \(\alpha \beta_1 > \beta_0 = 1 \).

We conclude that \(\sum_{n=1}^{\infty} 1/Z(n)^\alpha \) is convergent. \(\square \)

References

2 Eldon Road, Cheltenham, Glos GL52 6TU, U.K.

E-mail address: rgep@chalcedon.demon.co.uk