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Trajectories Generated by Special Smarandache Curves
According to Positional Adapted Frame

Kahraman Esen Özen1, Murat Tosun2,∗

∗E-mail: tosun@sakarya.edu.tr (corresponding author)
1,2Sakarya University, Faculty of Arts and Sciences, Department of Mathematics, Sakarya, Turkey

Abstract

In differential geometry, the theory of curves has an important place. The concept of moving frames
defined on curves is an important part of this theory. Recently, Özen and Tosun have introduced a new mov-
ing frame for the trajectories with non-vanishing angular momentum in 3-dimensional Euclidean space (J.
Math. Sci. Model. 4(1), 2021). This frame is denoted by {T,M,Y} and called as positional adapted frame.
In the present study, we investigate the special trajectories generated by TM, TY and MY−Smarandache
curves according to positional adapted frame in E3 and we calculate the Serret-Frenet apparatus of these
trajectories. Later, we consider a specific curve and obtain the parametric equations of the aforesaid special
trajectories for this curve. Finally, we give the graphics of these obtained special trajectories which were
drawn with the mathematica program. The results obtained here are new contributions to the field. We
expect that these results will be useful in some specific applications of differential geometry and particle
kinematics in the future.

Keywords: Angular momentum; Kinematics of a particle; Moving frame; Smarandache curves.

1 Introduction and Preliminaries

The local theory of space curves plays an important role in differential geometry. The concept of moving
frames is one of the most important concepts in the theory of curves. Despite its long history, it is still an issue
of interest. The discovery of the Serret-Frenet frame was a milestone for the researchers interested in this topic.
Until now, many researchers have carried out many interesting studies on the local theory of space curves by
using Serret-Frenet frame.

There is a very close relationship between the kinematics of a moving particle and the differential geometry
of the trajectory which is the oriented curve traced out by this particle. As a result of this case, Serret-Frenet
frame has been used to investigate the kinematics of a moving particle, as well. From past to present, many
researchers have developed new moving frames which have a common base vector with the Serret-Frenet frame
(see [1, 2, 3] for some examples). One of the newest of them is the study [4] presented by Özen and Tosun. They
introduced the Positional Adapted Frame (PAF) for the trajectories with non-vanishing angular momentum in
this study.

Let the Euclidean 3-space E3 be taken into account with the standard scalar product 〈G,H〉 = g1h1 +
g2h2 + g3h3 where G = (g1 , g2 , g3), H = (h1 , h2 , h3) are any vectors in E3. The norm of G is given as
‖G‖ =

√
〈G , G〉. If a differentiable curve α = α (s) : I ⊂ R → E3 satisfies

∥∥dα
ds

∥∥ = 1 for all s ∈ I ,
it is called a unit speed curve. In that case, s is said to be arc-length parameter of α. A differentiable curve
is called as regular curve if its derivative is not equal to zero along the curve. An arbitrary regular curve can
be reparameterized by the arc-length of itself [5]. Throughout the paper, the differentiation with respect to the
arc-length parameter s will be shown with a dash.

In Euclidean 3-space E3, assume that a point particle of constant mass moves on a unit speed curve
α = α(s). Let {T (s) , N (s) , B (s)} show the Serret-Frenet frame of the curve α = α (s). T (s) =

α′(s), N (s) = α′′(s)
‖α′′(s)‖ and B (s) = T(s) ∧ N(s) are called the unit tangent, unit principal normal and
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unit binormal vectors, respectively. Also, the Serret-Frenet formulas are given as in the following:T′

N′

B′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 T
N
B

 (1.1)

where κ (s) = ‖T ′ (s)‖ is the curvature function and τ (s) = −〈B ′ (s) ,N (s))〉 is the torsion function [5].
Another thing that can be of importance is the angular momentum vector of the aforesaid particle about ori-

gin. It has an important place in Newtonian mechanics. It is determined by vector product of the position vector
and linear momentum vector of the particle. It always lies on the instantaneous normal plane Sp {N(s),B(s)}.
Suppose that this vector does not equal to zero vector along the trajectory α = α (s). This assumption ensures
that the functions 〈α(s),N(s)〉 and 〈α(s),B(s)〉 do not equal to zero simultaneously during the motion of
the aforesaid particle. So, it can be said that the tangent line of α = α(s) never passes through the origin.
Then, there exists Positional adapted frame (PAF) shown with {T(s),M(s),Y(s)} along α = α(s). Take
into consideration the vector whose starting point is the foot of the perpendicular (from origin to instantaneous
rectifying plane) and endpoint is the foot of the perpendicular (from origin to instantaneous osculating plane).
The equivalent of it at the point α (s) determines the vector Y(s). Thus, Y(s) is given as in the following (see
[4] for more details):

Y(s) =
〈−α(s),N(s)〉√

〈α(s),N(s)〉2 + 〈α(s),B(s)〉2
N(s) +

〈α(s),B(s)〉√
〈α(s),N(s)〉2 + 〈α(s),B(s)〉2

B(s). (1.2)

On the other hand, the vector M(s) is obtained by vector product Y(s) ∧T (s) as follows:

M(s) =
〈α(s),B(s)〉√

〈α(s),N(s)〉2 + 〈α(s),B(s)〉2
N(s) +

〈α(s),N(s)〉√
〈α(s),N(s)〉2 + 〈α(s),B(s)〉2

B(s). (1.3)

Because T(s) is mutual in both PAF and Serret-Frenet frame, N(s), B(s), M(s) and Y(s) lie on the same
plane. Therefore, there is a relation between the Serret-Frenet frame and PAF as in the following:T (s)

M(s)
Y(s)

 =

1 0 0
0 cos Ω(s) − sin Ω(s)
0 sin Ω(s) cos Ω(s)

T(s)
N(s)
B(s)

 (1.4)

where Ω(s) is the angle between the vectors B(s) and Y(s) which is positively oriented from B(s) to Y(s)(see
Figure 1). Also, the derivative formulas of PAF are given byT′(s)

M′(s)
Y′(s)

 =

 0 k1(s) k2(s)
−k1(s) 0 k3(s)
−k2(s) −k3(s) 0

 T(s)
M(s)
Y(s)

 (1.5)

where

k1(s) = κ(s) cos Ω(s)

k2(s) = κ(s) sin Ω(s)

k3(s) = τ(s)− Ω′(s) (1.6)

κ2(s) = k1
2(s) + k2

2(s)

k2(s)

k1(s)
= tan Ω(s).
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The aforesaid angle Ω(s) is calculated as follows:

Ω(s) =



arctan
(
− 〈α(s),N(s)〉
〈α(s),B(s)〉

)
if 〈α(s), B(s)〉 > 0

arctan
(
− 〈α(s),N(s)〉
〈α(s),B(s)〉

)
+ π if 〈α(s), B(s)〉 < 0

−π
2 if 〈α(s), B(s)〉 = 0 , 〈α(s), N(s)〉 > 0

π
2 if 〈α(s), B(s)〉 = 0 , 〈α(s), N(s)〉 < 0.

(1.7)

Any element of the set {T(s),M(s),Y(s), k1(s), k2(s), k3(s)} is called PAF apparatus of α = α (s) [4].
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(a)
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Sp{N(s),B(s)} 

(b)

Figure 1: An illustration for the Positional Adapted Frame (PAF)

This paper is organized as follows. In Section 2, we study the special trajectories generated by TM, TY
and MY−Smarandache curves according to PAF in three-dimensional Euclidean space and we calculate the
Serret-Frenet apparatus of them. In Section 3, we provide an example involving illustrative figures for the
obtained results.

2 Some Special Trajectories Generated by Smarandache Curves According to
PAF

In the study [6], A. T. Ali defined special Smarandache curves in the Euclidean space. He took into consider-
ation a unit speed regular curve γ = γ(s) with its Serret-Frenet frame {T, N, B} and expressed TN, NB,
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TNB− Smarandache curves as in the following:

β(s∗) =
1√
2

(T + N)

β(s∗) =
1√
2

(N + B)

β(s∗) =
1√
3

(T + N + B),

respectively. Some studies [6, 7, 8, 9, 10, 11, 12] on Smarandache curves can be found in the literature.
In this section, we continue to consider any moving point particle satisfying the aforesaid assumption and

to denote the unit speed parameterization of the trajectory by α = α(s). We will investigate special trajectories
generated by Smarandache curves according to PAF in E3.

We must emphasize that {Tα(s), Mα(s), Yα(s), k1(s), k2(s), k3(s)} will show the PAF apparatus of
α = α (s) throughout the paper. Finally, note that we will follow similar steps given in [13] in this section.

Definition 1. The special trajectories generated by TαMα−Smarandache curves may be defined as

σ(s∗) =
1√
2

(Tα + Mα) . (2.1)

For convenience, they are said to be TαMα−Smarandache trajectories.

Now, we investigate Serret-Frenet apparatus of TαMα−Smarandache trajectories. Differentiating the
equation (2.1) with respect to s, we obtain

σ′ =
dσ

ds∗
ds∗

ds
=

1√
2

(−k1Tα + k1Mα + (k2 + k3)Yα)

and so

Tσ
ds∗

ds
=

1√
2

(−k1Tα + k1Mα + (k2 + k3)Yα) . (2.2)

From the equation (2.2),

ds∗

ds
=

√
k1

2 +
(k2 + k3)

2

2
(2.3)

can be found. Therefore, the equation (2.2) can be rewritten as

Tσ

√
k1

2 +
(k2 + k3)

2

2
=

1√
2

(−k1Tα + k1Mα + (k2 + k3)Yα) . (2.4)

The equation (2.4) yields the tangent vector of σ:

Tσ =
1√

2k1
2 + (k2 + k3)

2
(−k1Tα + k1Mα + (k2 + k3)Yα) . (2.5)

Differentiating the last equation with respect to s, we get

dTσ

ds∗
ds∗

ds
=
(

2k1
2 + (k2 + k3)

2
)−3/2

(µ1Tα + µ2Mα + µ3Yα) (2.6)
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where

µ1 = −2k1
4 +

[
k1k
′
2 + k1k

′
3 − k12k2 − k12k3 − k′1 (k2 + k3)− k2

(
2k1

2 + (k2 + k3)
2
)]

(k2 + k3)

µ2 = −2k1
4 +

[
−k1k′2 − k1k′3 − k12k2 − k12k3 + k′1 (k2 + k3)− k3

(
2k1

2 + (k2 + k3)
2
)]

(k2 + k3)

µ3 = 2k1
2
[
k′2 + k′3 + k1k3 − k1k2

]
+
[
−2k′1 − k22 + k3

2
]
k1 (k2 + k3) .

Taking into consideration the equation (2.3) in the equation (2.6), we obtain

dTσ

ds∗
=
√

2
(

2k1
2 + (k2 + k3)

2
)−2

(µ1Tα + µ2Mα + µ3Yα) .

In this case, the curvature and principal normal vector of σ are obtained as follows:

κσ =

∥∥∥∥dTσ

ds∗

∥∥∥∥ =

√
2 (µ12 + µ22 + µ32)(

2k1
2 + (k2 + k3)

2
)2

and

Nσ =
1√

µ12 + µ22 + µ32
(µ1Tα + µ2Mα + µ3Yα) .

Finally, we can immediately find the binormal vector of σ as

Bσ =
1√(

2k1
2 + (k2 + k3)

2) (µ1
2 + µ2

2 + µ3
2)

[(k1µ3 − k2µ2 − k3µ2)Tα + (k2µ1 + k3µ1 + k1µ3)Mα − (k1µ2 + k1µ1)Yα]

by vector product Tσ ∧Nσ.

Definition 2. The special trajectories generated by TαYα−Smarandache curves may be defined by

σ(s∗) =
1√
2

(Tα + Yα) . (2.7)

For convenience, they are called as TαYα−Smarandache trajectories.

Now, we discuss the Serret-Frenet apparatus of TαYα−Smarandache trajectories. Differentiating the equa-
tion (2.7) with respect to s, we get

σ′ =
dσ

ds∗
ds∗

ds
=

1√
2

(−k2Tα + (k1 − k3)Mα + k2Yα)

and so

Tσ
ds∗

ds
=

1√
2

(−k2Tα + (k1 − k3)Mα + k2Yα) . (2.8)

From the equation (2.8), we can find

ds∗

ds
=

√
k2

2 +
(k1 − k3)2

2
. (2.9)

Therefore, the equation (2.8) can be rewritten as follows:

Tσ

√
k2

2 +
(k1 − k3)2

2
=

1√
2

(−k2Tα + (k1 − k3)Mα + k2Yα) . (2.10)
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The equation (2.10) gives us the tangent vector of σ:

Tσ =
1√

2k2
2 + (k1 − k3)2

(−k2Tα + (k1 − k3)Mα + k2Yα) . (2.11)

If we differentiate the equation (2.11) with respect to s, then we find

dTσ

ds∗
ds∗

ds
=
(

2k2
2 + (k1 − k3)2

)−3/2
(υ1Tα + υ2Mα + υ3Yα) (2.12)

where

υ1 = −2k2
4 +

[
−k2

(
k′1 − k′3

)
+ 2k1k2

2 − k′2 (k3 − k1)− k22 (k3 − k1) + k1(k3 − k1)2
]

(k3 − k1)

υ2 = 2k2
2
[
k′1 − k′3 − k1k2 − k2k3

]
+
[
−2k′2 − k12 + k3

2k2
(
k′1 − k′3

)]
k2 (k1 − k3)

υ3 = −2k2
4 +

[
k2
(
k′1 − k′3

)
− 2k3k2

2 + k′2 (k3 − k1)− k22 (k3 − k1)− k3(k3 − k1)2
]

(k3 − k1) .

Considering the equation (2.9) in the equation (2.12), we get

dTσ

ds∗
=
√

2
(

2k2
2 + (k1 − k3)2

)−2
(υ1Tα + υ2Mα + υ3Yα) .

Then, the curvature and principal normal vector of σ are found as in the following:

κσ =

∥∥∥∥dTσ

ds∗

∥∥∥∥ =

√
2 (υ12 + υ22 + υ32)(

2k2
2 + (k1 − k3)2

)2
and

Nσ =
1√

υ12 + υ22 + υ32
(υ1Tα + υ2Mα + υ3Yα) .

We can easily obtain the binormal vector of σ as

Bσ =
1√(

2k2
2 + (k1 − k3)

2) (υ12 + υ22 + υ32)
[(k1υ3 − k3υ3 − k2υ2)Tα + (k2υ1 + k2υ3)Mα − (k2υ2 − k3υ1 + k1υ1)Yα]

by vector product of Tσ and Nσ.

Definition 3. The special trajectories generated by MαYα−Smarandache curves can be given by

σ(s∗) =
1√
2

(Mα + Yα) . (2.13)

For convenience, they are said to be MαYα−Smarandache trajectories.

Now, we investigate Serret-Frenet apparatus of MαYα−Smarandache trajectories. Differentiating the
equation (2.13) with respect to the arc-length parameter s, we find

σ′ =
dσ

ds∗
ds∗

ds
=

1√
2

((−k1 − k2)Tα − k3Mα + k3Yα)

and so

Tσ
ds∗

ds
=

1√
2

((−k1 − k2)Tα − k3Mα + k3Yα) . (2.14)

6



From the equation (2.14),

ds∗

ds
=

√
k3

2 +
(k1 + k2)

2

2
(2.15)

can be easily obtained. Thus, we can rewrite the equation (2.14) as follows:

Tσ

√
k3

2 +
(k1 + k2)

2

2
=

1√
2

((−k1 − k2)Tα − k3Mα + k3Yα) . (2.16)

The equation (2.16) yields Tσ

Tσ =
1√

2k3
2 + (k1 + k2)

2
((−k1 − k2)Tα − k3Mα + k3Yα) . (2.17)

If we differentiate the equation (2.17) with respect to s, we find

dTσ

ds∗
ds∗

ds
=
(

2k3
2 + (k1 + k2)

2
)−3/2

(ξ1Tα + ξ2Mα + ξ3Yα) (2.18)

where

ξ1 = 2k3
2
[
k1k3 − k2k3 − k′1 − k′2

]
+
[
2k′3 + k1

2 − k22
]
k3 (k1 + k2)

ξ2 = −2k3
4 +

[
k3
(
k′1 + k′2

)
− 2k1k3

2 − k′3 (k1 + k2)− k32 (k1 + k2)− k1(k1 + k2)
2
]

(k1 + k2)

ξ3 = −2k3
4 +

[
−k3

(
k′1 + k′2

)
− 2k2k3

2 + k′3 (k1 + k2)− k32 (k1 + k2)− k2(k1 + k2)
2
]

(k1 + k2) .

Taking into account of the equation (2.15) in the equation (2.18), we get

dTσ

ds∗
=
√

2
(

2k3
2 + (k1 + k2)

2
)−2

(ξ1Tα + ξ2Mα + ξ3Yα) .

Then, κσ and Bσ are obtained as

κσ =

√
2
(
ξ1

2 + ξ2
2 + ξ3

2
)

(
2k3

2 + (k1 + k2)
2
)2

Nσ =
1√

ξ1
2 + ξ2

2 + ξ3
2

(ξ1Tα + ξ2Mα + ξ3Yα) .

By vector product Tσ ∧Nσ, we can immediately find Bσ as

Bσ =
1√(

2k3
2 + (k1 + k2)

2) (ξ12 + ξ2
2 + ξ3

2
) [−(k3ξ3 + k3ξ2)Tα + (k3ξ1 + k2ξ3 + k1ξ3)Mα − (k1ξ2 + k2ξ2 − k3ξ1)Yα] .

We must note that the torsions of TαMα, TαYα, MαYα-Smarandache trajectories can be obtained similarly.
We leave that to the readers.

3 Applications

In this section, we will consider a point particle P moving on a specific right handed circular helix α = α (s)
and will provide examples to TαMα, TαYα, MαYα-Smarandache trajectories.
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Figure 2: The trajectory of the moving point particle P in Example 1

Example 1. In E3, suppose that a point particle P moves on the trajectory

α :
(

0, 15
√

50
)
→ E3, α (s) =

(
7 cos

s√
50
, 7 sin

s√
50
,
s√
50

)
which is a unit speed curve.
In the light of the information given in the first section, PAF apparatus of this trajectory are obtained as follows:

Tα(s) =

(
−7√
50

sin
s√
50
,

7√
50

cos
s√
50
,

1√
50

)

Mα(s) =



− cos

(
arctan

(
50

s

))
cos

s√
50
− 1√

50
sin

(
arctan

(
50

s

))
sin

s√
50
,

− cos

(
arctan

(
50

s

))
sin

s√
50

+
1√
50

sin

(
arctan

(
50

s

))
cos

s√
50
,

− 7√
50

sin

(
arctan

(
50

s

))



Yα(s) =



− sin

(
arctan

(
50

s

))
cos

s√
50

+
1√
50

cos

(
arctan

(
50

s

))
sin

s√
50
,

− sin

(
arctan

(
50

s

))
sin

s√
50
− 1√

50
cos

(
arctan

(
50

s

))
cos

s√
50
,

7√
50

cos

(
arctan

(
50

s

))


(3.1)

k1(s) =
7

50
cos

(
arctan

(
50

s

))
k2(s) =

7

50
sin

(
arctan

(
50

s

))
k3(s) =

1

50
+

50

2500 + s2
.

Let us show TαMα, TαYα, MαYα−Smarandache trajectories with σ1, σ2, σ3, respectively. In that case,
the parametric equation of σ1 can be easily given as follows:

σ1 =
1√
2



−7√
50

sin
s√
50
− cos

(
arctan

(
50

s

))
cos

s√
50
− 1√

50
sin

(
arctan

(
50

s

))
sin

s√
50
,

7√
50

cos
s√
50
− cos

(
arctan

(
50

s

))
sin

s√
50

+
1√
50

sin

(
arctan

(
50

s

))
cos

s√
50
,

1√
50
− 7√

50
sin

(
arctan

(
50

s

))


.
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See the curve σ1 in Figure 3.

Figure 3: TαMα Smarandache trajectory

Similarly, the parametric equation of σ2 can be immediately given as

σ2 =
1√
2



−7√
50

sin
s√
50
− sin

(
arctan

(
50

s

))
cos

s√
50

+
1√
50

cos

(
arctan

(
50

s

))
sin

s√
50
,

7√
50

cos
s√
50
− sin

(
arctan

(
50

s

))
sin

s√
50
− 1√

50
cos

(
arctan

(
50

s

))
cos

s√
50
,

1√
50

+
7√
50

cos

(
arctan

(
50

s

))


.

See the curve σ2 in Figure 4.

Figure 4: TαYα Smarandache trajectory

Finally, we obtain the parametric equation of σ3 as

σ3 =
1√
2



cos

(
arctan

(
50

s

))(
1√
50

sin
s√
50
− cos

s√
50

)
− sin

(
arctan

(
50

s

))(
1√
50

sin
s√
50

+ cos
s√
50

)
,

sin

(
arctan

(
50

s

))(
1√
50

cos
s√
50
− sin

s√
50

)
− cos

(
arctan

(
50

s

))(
1√
50

cos
s√
50

+ sin
s√
50

)
,

− 7√
50

sin

(
arctan

(
50

s

))
+

7√
50

cos

(
arctan

(
50

s

))


.
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See the curve σ3 in Figure 5.

Figure 5: MαYα Smarandache trajectory

In the light of the above information, one can immediately see Tσi , Nσi , Bσi , κσi , (i = 1, 2, 3) by using
the equation (3.1).
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