Sebastián Martín Ruiz

Applications of Smarandache Function, and Prime and Coprime Functions

\[C_k(n_1, n_2, \ldots, n_k) = \begin{cases}
0 & \text{if } n_1, n_2, \ldots, n_k \text{ are coprime numbers} \\
1 & \text{otherwise}
\end{cases} \]

American Research Press
Rehoboth
2002
Applications of Smarandache Function, and Prime and Coprime Functions
Contents:

Chapter 1: Smarandache Function applied to perfect numbers
Chapter 2: A result obtained using the Smarandache Function
Chapter 3: A Congruence with the Smarandache Function
Chapter 4: A functional recurrence to obtain the prime numbers using the Smarandache prime function
Chapter 5: The general term of the prime number sequence and the Smarandache prime function
Chapter 6: Expressions of the Smarandache Coprime Function
Chapter 7: New Prime Numbers
Chapter 1: Smarandache function applied to perfect numbers

The Smarandache function is defined as follows:

\[S(n) = \text{the smallest positive integer such that } S(n)! \text{ is divisible by } n. \] [1]

In this article we are going to see that the value this function takes when \(n \) is a perfect number of the form \(n = 2^{k-1} \cdot (2^k - 1) \), \(p = 2^k - 1 \) being a prime number.

Lemma 1: Let \(n = 2^i \cdot p \) when \(p \) is an odd prime number and \(i \) an integer such that:

\[
0 \leq i \leq E\left(\frac{p}{2}\right) + E\left(\frac{p}{2^2}\right) + E\left(\frac{p}{2^3}\right) + \cdots + E\left(\frac{p}{2^{E\left(p \log_2 p\right)}}\right) = e_2(p!)
\]

where \(e_2(p!) \) is the exponent of 2 in the prime number decomposition of \(p! \).

\(E(x) \) is the greatest integer less than or equal to \(x \).

One has that \(S(n) = p \).

Demonstration:
Given that \(GCD(2^i, p) = 1 \) (GCD= greatest common divisor) one has that \(S(n) = \max\{S(2^i), S(p)\} \geq S(p) = p \). Therefore \(S(n) \geq p \).

If we prove that \(p! \) is divisible by \(n \) then one would have the equality.

\[p! = p_1^{e_{p_1}(p!)} \cdot p_2^{e_{p_2}(p!)} \cdots p_s^{e_{p_s}(p!)} \]

where \(p_i \) is the \(i-th \) prime of the prime number decomposition of \(p! \). It is clear that \(p_1 = 2 \), \(p_s = p \), \(e_{p_s}(p!) = 1 \) for which:

\[p! = 2^{e_2(p!)} \cdot p_2^{e_{p_2}(p!)} \cdots p_{s-1}^{e_{p_{s-1}}(p!)} \cdot p \]
From where one can deduce that:

\[
\frac{p!}{n} = 2^{e_2(p^b) - 1} \cdot p_2^{e_{p^2}(p^b)} \cdots p_{n-1}^{e_{p^{n-1}}(p^b)}
\]

is a positive integer since \(e_2(p!) - i \geq 0 \).

Therefore one has that \(S(n) = p \).

Proposition 1: If \(n \) is a perfect number of the form \(n = 2^{k-1} \cdot (2^k - 1) \) with \(k \) is a positive integer, \(2^k - 1 = p \) prime, one has that \(S(n) = p \).

Demonstration:

For the Lemma it is sufficient to prove that \(k - 1 \leq e_2(p!) \).

If we can prove that:

\[
k - 1 \leq 2^{k-1} - \frac{1}{2}
\] (1)

we will have proof of the proposition since:

\[
k - 1 \leq 2^{k-1} - \frac{1}{2} = \frac{2^k - 1}{2} = \frac{p}{2}
\]

As \(k - 1 \) is an integer one has that \(k - 1 \leq E\left(\frac{p}{2}\right) \leq e_2(p!) \)

Proving (1) is the same as proving \(k \leq 2^{k-1} + \frac{1}{2} \) at the same time, since \(k \) is integer, is equivalent to proving \(k \leq 2^{k-1} \) (2).

In order to prove (2) we may consider the function: \(f(x) = 2^{x-1} - x \) \(x \) real number.

This function may be derived and its derivate is \(f'(x) = 2^{x-1} \ln 2 - 1 \).

\(f \) will be increasing when \(2^{x-1} \ln 2 - 1 > 0 \) resolving \(x \):

\[
x > 1 - \frac{\ln(\ln 2)}{\ln 2} \equiv 1.5287
\]

In particular \(f \) will be increasing \(\forall x \geq 2 \).

Therefore \(x \geq 2 \) \(f(x) \geq f(2) = 0 \) that is to say \(2^{x-1} - x \geq 0 \) \(\forall x \geq 2 \).
Therefore: \(2^{k-1} \geq k \forall k \geq 2\) integer.

And thus is proved the proposition.

EXAMPLES:

\[
\begin{align*}
6 &= 2 \cdot 3 & S(6) &= 3 \\
28 &= 2^2 \cdot 7 & S(28) &= 7 \\
496 &= 2^4 \cdot 31 & S(496) &= 31 \\
8128 &= 2^6 \cdot 127 & S(8128) &= 127
\end{align*}
\]

References:

Chapter 2: A result obtained using the Smarandache Function

Smarandache Function is defined as followed:
S(m) = The smallest positive integer so that S(m)! is divisible by m. \[1\]
Let’s see the value which such function takes for \(m = p^n \) with \(n \) integer, \(n \geq 2 \) and \(p \) prime number. To do so a Lemma required.

Lemma 1 \(\forall \ m, n \in \mathbb{N}, \ m, n \geq 2 \)

\[
m^n = E \left[\frac{m^{n+1} - m^n + m}{m} \right] + E \left[\frac{m^{n+1} - m^n + m}{m^2} \right] + \cdots + E \left[\frac{m^{n+1} - m^n + m}{E \left[\log_m \left(m^{n+1} - m^n + m \right) \right]} \right]
\]

where \(E(x) \) gives the greatest integer less than or equal to \(x \).

Proof:

Let’s see in the first place the value taken by \(E \left[\log_m \left(m^{n+1} - m^n + m \right) \right] \).

If \(n \geq 2 \): \(m^{n+1} - m^n + m < m^{n+1} \) and therefore

\[
\log_m \left(m^{n+1} - m^n + m \right) < \log_m m^{n+1} = n + 1.
\]

And if \(m \geq 2 \):

\[
mm^n \geq 2m^n \Rightarrow m^{n+1} \geq 2m^n \Rightarrow m^{n+1} + m \geq 2m^n \Rightarrow m^{n+1} - m^n + m \geq m^n \Rightarrow \log_m \left(m^{n+1} - m^n + m \right) \geq \log_m m^n = n \Rightarrow E \left[\log_m \left(m^{n+1} - m^n + m \right) \right] \geq n
\]

As a result: \(n \leq E \left[\log_m \left(m^{n+1} - m^n + m \right) \right] < n + 1 \) therefore:

\[
E \left[\log_m \left(m^{n+1} - m^n + m \right) \right] = n \quad \text{if} \quad n, m \geq 2
\]

Now let’s see the value which it takes for \(1 \leq k \leq n \):

\[
E \left[\frac{m^{n+1} - m^n + m}{m^k} \right] = E \left[m^{n+1-k} - m^{n-k} + \frac{1}{m^{k-1}} \right]
\]
If $k=1$: \[E \left[\frac{m^{n+1} - m^n + m}{m^k} \right] = m^n - m^{n-1} + 1 \]

If $1 < k \leq n$: \[E \left[\frac{m^{n+1} - m^n + m}{m^k} \right] = m^{n+1-k} - m^{n-k} \]

Let’s see what is the value of the sum:

\[
\begin{align*}
\text{k=1} & \quad m^n \quad -m^{n-1} \quad \ldots \quad \ldots \quad \ldots \quad +1 \\
\text{k=2} & \quad m^{n-1} \quad -m^{n-2} \\
\text{k=3} & \quad m^{n-2} \quad -m^{n-3} \\
& \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \\
\text{k=n-1} & \quad m^2 \quad -m \\
\text{k=n} & \quad m \quad -1
\end{align*}
\]

Therefore:

\[
\sum_{k=1}^{n} E \left[\frac{m^{n+1} - m^n + m}{m^k} \right] = m^n \quad m,n \geq 2
\]

Proposition: \(\forall \quad p \text{ prime number} \quad \forall n \geq 2 : \)

\[
S(p^{p^n}) = p^{n+1} - p^n + p
\]

Proof:

Having \(e_p(k) = \text{exponent of the prime number p in the prime decomposition of k} \).

We get:

\[
e_p(k) = E \left(\frac{k}{p} \right) + E \left(\frac{k}{p^2} \right) + E \left(\frac{k}{p^3} \right) + \ldots + E \left(\frac{k}{E(\log_p k)} \right)
\]
And using the lemma we have

$$e_p \left(\left(p^{n+1} - p^n + p \right)! \right) = E \left[\frac{p^{n+1} - p^n + p}{p} \right] + E \left[\frac{p^{n+1} - p^n + p}{p^2} \right] + \cdots + E \left[\frac{p^{n+1} - p^n + p}{p^{\log_p \left(p^{n+1} - p^n + p \right)}} \right] = p^n$$

Therefore:

$$\frac{(p^{n+1} - p^n + p)!}{p^n} \in \mathbb{N} \quad \text{and} \quad \frac{(p^{n+1} - p^n + p - 1)!}{p^n} \notin \mathbb{N}$$

And:

$$S\left(p^n\right) = p^{n+1} - p^n + p$$

References:

Chapter 3: A Congruence with the Smarandache function

Smarandache’s function is defined thus:

$S(n) =$ the smallest integer such that $S(n)!$ is divisible by n. \[1\]

In this article we are going to look at the value that has $S(2^k - 1) \pmod k$ for all integer, $2 \leq k \leq 97$.

<table>
<thead>
<tr>
<th>k</th>
<th>$S(2^k-1)$</th>
<th>$S(2^k-1) \pmod k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>127</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>73</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>89</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>8191</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>127</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>151</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>257</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>131071</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>73</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>524287</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>41</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>337</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>683</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>178481</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>241</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>1801</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>8191</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>262657</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>127</td>
<td>15</td>
</tr>
<tr>
<td>29</td>
<td>2089</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>331</td>
<td>1</td>
</tr>
<tr>
<td>k</td>
<td>S(2^k-1)</td>
<td>S(2^k-1) (mod k)</td>
</tr>
<tr>
<td>----</td>
<td>------------</td>
<td>------------------</td>
</tr>
<tr>
<td>31</td>
<td>2147483647</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>65537</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>599479</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>131071</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>122921</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>109</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>616318177</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>524287</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>121369</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>61681</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>164511353</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>5419</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>2099863</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>2113</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>23311</td>
<td>1</td>
</tr>
<tr>
<td>46</td>
<td>2796203</td>
<td>1</td>
</tr>
<tr>
<td>47</td>
<td>13264529</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>673</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>4432676798593</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>4051</td>
<td>1</td>
</tr>
<tr>
<td>51</td>
<td>131071</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>8191</td>
<td>27</td>
</tr>
<tr>
<td>53</td>
<td>20394401</td>
<td>1</td>
</tr>
<tr>
<td>54</td>
<td>262657</td>
<td>1</td>
</tr>
<tr>
<td>55</td>
<td>201961</td>
<td>1</td>
</tr>
<tr>
<td>56</td>
<td>15790321</td>
<td>1</td>
</tr>
<tr>
<td>57</td>
<td>1212847</td>
<td>1</td>
</tr>
<tr>
<td>58</td>
<td>3033169</td>
<td>1</td>
</tr>
<tr>
<td>59</td>
<td>3203431780337</td>
<td>1</td>
</tr>
<tr>
<td>60</td>
<td>1321</td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>2305843009213693951</td>
<td>1</td>
</tr>
<tr>
<td>62</td>
<td>2147483647</td>
<td>1</td>
</tr>
<tr>
<td>63</td>
<td>649657</td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>6700417</td>
<td>1</td>
</tr>
<tr>
<td>65</td>
<td>145295143558111</td>
<td>1</td>
</tr>
<tr>
<td>66</td>
<td>599479</td>
<td>1</td>
</tr>
<tr>
<td>67</td>
<td>761838257287</td>
<td>1</td>
</tr>
<tr>
<td>68</td>
<td>131071</td>
<td>35</td>
</tr>
<tr>
<td>k</td>
<td>$S(2^{k-1})$</td>
<td>$S(2^{k-1}) \text{ (mod } k\text{)}$</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>69</td>
<td>10052678938039</td>
<td>1</td>
</tr>
<tr>
<td>70</td>
<td>122921</td>
<td>1</td>
</tr>
<tr>
<td>71</td>
<td>212885833</td>
<td>1</td>
</tr>
<tr>
<td>72</td>
<td>38737</td>
<td>1</td>
</tr>
<tr>
<td>73</td>
<td>9361973132609</td>
<td>1</td>
</tr>
<tr>
<td>74</td>
<td>616318177</td>
<td>1</td>
</tr>
<tr>
<td>75</td>
<td>10567201</td>
<td>1</td>
</tr>
<tr>
<td>76</td>
<td>525313</td>
<td>1</td>
</tr>
<tr>
<td>77</td>
<td>581283643249112959</td>
<td>1</td>
</tr>
<tr>
<td>78</td>
<td>22366891</td>
<td>1</td>
</tr>
<tr>
<td>79</td>
<td>1113491139767</td>
<td>1</td>
</tr>
<tr>
<td>80</td>
<td>4278255361</td>
<td>1</td>
</tr>
<tr>
<td>81</td>
<td>97685839</td>
<td>1</td>
</tr>
<tr>
<td>82</td>
<td>8831418697</td>
<td>1</td>
</tr>
<tr>
<td>83</td>
<td>57912614113275649087721</td>
<td>1</td>
</tr>
<tr>
<td>84</td>
<td>14449</td>
<td>1</td>
</tr>
<tr>
<td>85</td>
<td>9520972806333758431</td>
<td>1</td>
</tr>
<tr>
<td>86</td>
<td>2932031007403</td>
<td>1</td>
</tr>
<tr>
<td>87</td>
<td>9857737155463</td>
<td>1</td>
</tr>
<tr>
<td>88</td>
<td>2931542417</td>
<td>1</td>
</tr>
<tr>
<td>89</td>
<td>618970019642690137449562111</td>
<td>1</td>
</tr>
<tr>
<td>90</td>
<td>18837001</td>
<td>1</td>
</tr>
<tr>
<td>91</td>
<td>23140471537</td>
<td>1</td>
</tr>
<tr>
<td>92</td>
<td>2796203</td>
<td>47</td>
</tr>
<tr>
<td>93</td>
<td>658812288653553079</td>
<td>1</td>
</tr>
<tr>
<td>94</td>
<td>165768537521</td>
<td>1</td>
</tr>
<tr>
<td>95</td>
<td>30327152671</td>
<td>1</td>
</tr>
<tr>
<td>96</td>
<td>22253377</td>
<td>1</td>
</tr>
<tr>
<td>97</td>
<td>13842607235828485645766393</td>
<td>1</td>
</tr>
</tbody>
</table>

One can see from the table that there are only 4 exceptions for $2 \leq k \leq 97$
We can see in detail the 4 exceptions in a table:

- $k=28=2^2\cdot7$ \quad $S(2^{28}-1)\equiv 15 \pmod{28}$
- $k=52=2^2\cdot13$ \quad $S(2^{52}-1)\equiv 27 \pmod{52}$
- $k=68=2^2\cdot17$ \quad $S(2^{68}-1)\equiv 35 \pmod{68}$
- $k=92=2^2\cdot23$ \quad $S(2^{92}-1)\equiv 47 \pmod{92}$

One can observe in these 4 cases that $k=2^p$ with p is a prime and more over $S(2^k-1) \equiv \frac{k}{2} + 1 \pmod{k}$

UNSOLVED QUESTION:

One can obtain a general formula that gives us, in function of k the value $S(2^k-1) \pmod{k}$ for all positive integer values of k.

Reference:

Chapter 4: A functional recurrence to obtain the prime numbers using the Smarandache prime function.

Theorem: We are considering the function:

For \(n \) integer:

\[
F(n) = n + 1 + \sum_{m=2}^{2n} \prod_{i=1}^{m} \left[1 + \left(\sum_{j=1}^{\left\lfloor \frac{i}{j} \right\rfloor} \frac{\left\lfloor \frac{i}{j} \right\rfloor - 1}{j} \right) - 2 \right]
\]

one has: \(p_{k+1} = F(p_k) \) for all \(k \geq 1 \) where \(\{p_k\}_{k \geq 1} \) are the prime numbers and \(\lfloor x \rfloor \) is the greatest integer less than or equal to \(x \).

Observe that the knowledge of \(p_{k+1} \) only depends on knowledge of \(p_k \) and the knowledge of the fore primes is unnecessary.

Proof:

Suppose that we have found a function \(P(i) \) with the following property:

\[
P(i) = \begin{cases}
1 & \text{if } i \text{ is composite} \\
0 & \text{if } i \text{ is prime}
\end{cases}
\]

This function is called Smarandache prime function.(Ref.)

Consider the following product:

\[
\prod_{i=p_k+1}^{m} P(i)
\]

If \(p_k < m < p_{k+1} \), \(\prod_{i=p_k+1}^{m} P(i) = 1 \) since \(i : p_k + 1 \leq i \leq m \) are all composites.
If \(m \geq p_{k+1} \),
\[
\prod_{i = p_k + 1}^{m} P(i) = 0 \quad \text{since } P(p_{k+1}) = 0
\]

Here is the sum:
\[
\sum_{m=p_k+1}^{2p_k} \prod_{i = p_k + 1}^{m} P(i) = \sum_{m=p_k+1}^{p_{k+1} - 1} \prod_{i = p_k + 1}^{m} P(i) + \sum_{m=p_k+1}^{2p_k} \prod_{i = p_k + 1}^{m} P(i) = \sum_{m=p_k+1}^{p_{k+1} - 1} 1 = p_{k+1} - 1 - (p_k + 1) + 1 = p_{k+1} - p_k - 1
\]

The second sum is zero since all products have the factor \(P(p_{k+1}) = 0 \).

Therefore we have the following recurrence relation:
\[
p_{k+1} = p_k + 1 + \sum_{m=p_k+1}^{2p_k} \prod_{i = p_k + 1}^{m} P(i)
\]

Let’s now see we can find \(P(i) \) with the asked property.

Consider:
\[
\begin{bmatrix} \lfloor \frac{i}{j} \rfloor - \lfloor \frac{i-1}{j} \rfloor \end{bmatrix} = \begin{cases} 1 & \text{if } j \mid i \\ 0 & \text{if } j \not{\mid} i \end{cases} \quad j = 1,2,\ldots,i \quad i \geq 1
\]

We deduce of this relation:
\[
d(i) = \sum_{j=1}^{i} \left[\lfloor \frac{i}{j} \rfloor - \lfloor \frac{i-1}{j} \rfloor \right]
\]

where \(d(i) \) is the number of divisors of \(i \).
If \(i \) is prime \(d(i) = 2 \) therefore:

\[
- \left[- \frac{d(i) - 2}{i} \right] = 0
\]

If \(i \) is composite \(d(i) > 2 \) therefore:

\[
0 < \frac{d(i) - 2}{i} < 1 \Rightarrow - \left[- \frac{d(i) - 2}{i} \right] = 1
\]

Therefore we have obtained the Smarandache Prime Function \(P(i) \) which is:

\[
P(i) = \left[- \sum_{j=1}^{i} \left(\left\lfloor \frac{i}{j} \right\rfloor - \left\lfloor \frac{i-1}{j} \right\rfloor \right) \right] - 2 \quad i \geq 2 \quad \text{integer}
\]

With this, the theorem is already proved.

References:

Chapter 5: The general term of the prime number sequence and the Smarandache prime function.

Let is consider the function \(d(i) = \) number of divisors of the positive integer number \(i \). We have found the following expression for this function:

\[
d(i) = \sum_{k=1}^{i} E\left(\frac{i}{k}\right) - E\left(\frac{i-1}{k}\right)
\]

“E(x) = Floor[x]”

We proved this expression in the article “A functional recurrence to obtain the prime numbers using the Smarandache Prime Function”.

We deduce that the following function:

\[
G(i) = -E\left[\frac{d(i) - 2}{i} \right]
\]

This function is called the Smarandache Prime Function (Reference)
It takes the next values:

\[
G(i) = \begin{cases}
0 & \text{if } i \text{ is prime} \\
1 & \text{if } i \text{ is composite}
\end{cases}
\]

Let us consider now \(\pi(n) = \) number of prime numbers smaller or equal than \(n \).
It is simple to prove that:

\[
\pi(n) = \sum_{i=2}^{n} (1 - G(i))
\]
Let is have too:

\[
\begin{align*}
\text{If} & \quad 1 \leq k \leq p_n - 1 \quad \Rightarrow \quad E\left(\frac{\pi(k)}{n}\right) = 0 \\
\text{If} & \quad C_n \geq k \geq p_n \quad \Rightarrow \quad E\left(\frac{\pi(k)}{n}\right) = 1
\end{align*}
\]

We will see what conditions have to carry \(C_n \).

Therefore we have the following expression for \(p_n \), \(n \)-th prime number:

\[
p_n = 1 + \sum_{k=1}^{C_n} (1 - E\left(\frac{\pi(k)}{n}\right))
\]

If we obtain \(C_n \) that only depends on \(n \), this expression will be the general term of the prime numbers sequence, since \(\pi \) is in function with \(G \) and \(G \) does with \(d(i) \) that is expressed in function with \(i \) too. Therefore the expression only depends on \(n \).

Let is consider \(C_n = 2(E(n\log n) + 1) \)

Since \(p_n \approx n\log n \) from of a certain \(n_0 \) it will be true that

\[(1) \quad p_n \leq 2(E(n\log n) + 1)\]

If \(n_0 \) it is not too big, we can prove that the inequality is true for smaller or equal values than \(n_0 \).

It is necessary to that:

\[
E\left[\frac{\pi(2(E(n\log n) + 1))}{n}\right] = 1
\]

If we check the inequality:

\[(2) \quad \pi(2(E(n\log n) + 1)) < 2n\]
We will obtain that:

\[
\frac{\pi(C_n)}{n} < 2 \Rightarrow E\left[\frac{\pi(C_n)}{n}\right] \leq 1 \quad ; C_n \geq p_n \Rightarrow E\left[\frac{\pi(C_n)}{n}\right] = 1
\]

We can experimentaly check this last inequality saying that it checks for a lot of values and the difference tends to increase, wich makes to think that it is true for all \(n \).

Therefore if we prove that the (1) and (2) inequalities are true for all \(n \) which seems to be very probable; we will have that the general term of the prime numbers sequence is:

\[
p_n = 1 + \sum_{k=1}^{2(E(n \log n)+1)} \left(1 - E\left[\sum_{j=2}^{k} \left[1 + E\left[\frac{\sum_{s=1}^{j}(E(j/s) - E((j-1)/s)) - 2}{j} \right] \right] \right] \right) - \sum_{k=1}^{E(n \log n)+1} \left(1 - E\left[\sum_{j=2}^{k} \left[1 + E\left[\frac{\sum_{s=1}^{j}(E(j/s) - E((j-1)/s)) - 2}{j} \right] \right] \right] \right)
\]

Reference:
Http://www.gallup.unm.edu/~Smarandache/primfnct.txt
Chapter 6: Expressions of the Smarandache Coprime Function

Smarandache Coprime function is defined this way:

\[
C_k(n_1, n_2, \ldots, n_k) = \begin{cases}
0 & \text{if } n_1, n_2, \ldots, n_k \text{ are coprime numbers} \\
1 & \text{otherwise}
\end{cases}
\]

We see two expressions of the Smarandache Coprime Function for \(k = 2 \).

EXPRESSION 1:

\[
C_2(n_1, n_2) = \left\lfloor -\frac{n_1 n_2 - \text{lcm}(n_1, n_2)}{n_1 n_2} \right\rfloor
\]

\(\lfloor x \rfloor \) is the biggest integer number smaller or equal than \(x \).

If \(n_1, n_2 \) are coprime numbers:

\[
lcm(n_1, n_2) = n_1 n_2 \quad \text{therefore:} \quad C_2(n_1, n_2) = -\left\lfloor \frac{0}{n_1 n_2} \right\rfloor = 0
\]

If \(n_1, n_2 \) aren’t coprime numbers:

\[
lcm(n_1, n_2) < n_1 n_2 \Rightarrow 0 < \frac{n_1 n_2 - lcm(n_1, n_2)}{n_1 n_2} < 1 \Rightarrow C_2(n_1, n_2) = 1
\]

EXPRESSION 2:

\[
C_2(n_1, n_2) = 1 + \left\lfloor \prod_{d \mid n_1} \prod_{d' \mid n_2} \frac{|d - d'|}{\prod_{d > 1, d' > 1} \prod_{d \mid n_1, d' \mid n_2} (d + d')} \right\rfloor
\]
If \(n_1, n_2 \) are coprime numbers then \(d \neq d' \quad \forall d, d' \neq 1 \)

\[
\prod_{d \mid n_1} \prod_{d' \mid n_2} |d - d'| \\
\Rightarrow 0 < \prod_{d \mid n_1} \prod_{d' \mid n_2} (d + d') \quad < 1 \Rightarrow C_2(n_1, n_2) = 0
\]

If \(n_1, n_2 \) aren’t coprime numbers \(\exists d = d' \quad d > 1, d' > 1 \Rightarrow C_2(n_1, n_2) = 1 \)

EXPRESSION 3:

Smarandache Coprime Function for \(k \geq 2 \):

\[
C_k(n_1, n_2, \ldots, n_k) = \left[\frac{1}{GCD(n_1, n_2, \ldots, n_k)} - 1 \right]
\]

If \(n_1, n_2, \ldots, n_k \) are coprime numbers:

\[
GCD(n_1, n_2, \ldots, n_k) = 1 \Rightarrow C_k(n_1, n_2, \ldots, n_k) = 0
\]

If \(n_1, n_2, \ldots, n_k \) aren’t coprime numbers: \(GCD(n_1, n_2, \ldots, n_k) > 1 \)

\[
0 < \frac{1}{GCD} < 1 \Rightarrow -\left[\frac{1}{GCD} - 1 \right] = 1 = C_k(n_1, n_2, \ldots, n_k)
\]

References:

1. E. Burton, “Smarandache Prime and Coprime Function”
Chapter 7: New Prime Numbers

I have found some new prime numbers using the PROTH program of Yves Gallot.
This program is based on the following theorem:

Proth Theorem (1878):
Let \(N = k \cdot 2^n + 1 \) where \(k < 2^n \). If there is an integer number \(a \) so that
\[
\frac{N-1}{2} \equiv -1 \pmod{N}
\]
therefore \(N \) is prime.

The Proth program is a test for primality of greater numbers defined as
\(k \cdot b^n + 1 \) or \(k \cdot b^n - 1 \). The program is made to look for numbers of less
than 5,000,000 digits and it is optimized for numbers of more than 1000
digits.

Using this Program, I have found the following prime numbers:

- \(3239 \cdot 2^{12345} + 1 \) with 3720 digits \(a = 3, \ a = 7 \)
- \(7551 \cdot 2^{12345} + 1 \) with 3721 digits \(a = 5, \ a = 7 \)
- \(7595 \cdot 2^{12345} + 1 \) with 3721 digits \(a = 3, \ a = 11 \)
- \(9363 \cdot 2^{12321} + 1 \) with 3713 digits \(a = 5, \ a = 7 \)

Since the exponents of the first three numbers are Smarandache number
\(Sm(5) = 12345 \) we can call this type of prime numbers, prime numbers
of Smarandache.

Helped by the MATHEMATICA program, I have also found new prime
numbers which are a variant of prime numbers of Fermat. They are the
following:

\[
2^n \cdot 3^{2^n} - 2^{2^n} - 3^{2^n} \quad \text{for } n=1, 4, 5, 7.
\]

It is important to mention that for \(n=7 \) the number which is obtained has
100 digits.
Chris Nash has verified the values \(n=8 \) to \(n=20 \), this last one being a number of 815,951 digits, obtaining that they are all composite. All of them have a tiny factor except \(n=13 \).

References:

2. Chris Caldwell, The Prime Pages, www.utm.edu/research/primes
A book for people who love numbers:
Smarandache Function applied to perfect numbers, congruences.
Also, the Smarandache Prime and Coprime functions in connection with the expressions of the prime numbers.

$5.95