ON THE 82-TH SMARANDACHE'S PROBLEM

Fu Ruiqin
School of Science, Department of Mathematics, Xi'an Shiyou University, Xi'an, Shaanxi, P.R.China

Yang Hai

Research Center for Basic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R.China

Abstract

The main purpose of this paper is using the elementary method to study the asymptotic properties of the integer part of the k-th root positive integer, and give two interesting asymptotic formulae.

Keywords: $\quad k$-th root; Integer part; Asymptotic formula.

§1. Introduction And Results

For any positive integer n , let $s_{k}(n)$ denote the integer part of k-th root of n . For example, $s_{k}(1)=1, s_{k}(2)=1, s_{k}(3)=1, s_{k}(4)=1, \cdots$, $s_{k}\left(2^{k}\right)=2, s_{k}\left(2^{k}+1\right)=2, \cdots, s_{k}\left(3^{k}\right)=3, \cdots$. In problem 82 of [1], Professor F.Smarandache asked us to study the properties of the sequence $s_{k}(n)$. About this problem, some authors had studied it, and obtained some interesting results. For instance, the authors [5] used the elementary method to study the mean value properties of $S\left(s_{k}(n)\right)$, where Smarandache function $S(n)$ is defined as following:

$$
S(n)=\min \{m: m \in N, n \mid m!\} .
$$

In this paper, we use elementary method to study the asymptotic properties of this sequence in the following form: $\sum_{n \leq x} \frac{\varphi\left(s_{k}(n)\right)}{s_{k}(n)}$ and $\sum_{n \leq x} \frac{1}{\varphi\left(s_{k}(n)\right)}$, where $x \geq 1$ be a real number, $\varphi(n)$ be the Euler totient function, and give two interesting asymptotic formulae. That is, we shall prove the following:
Theorem 1. For any real number $x>1$ and any fixed positive integer $k>1$, we have the asymptotic formula

$$
\sum_{n \leq x} \frac{\varphi\left(s_{k}(n)\right)}{s_{k}(n)}=\frac{6}{\pi^{2}} x+O\left(x^{1-\frac{1}{k}-\varepsilon}\right)
$$

where ε is any real number.

Theorem 2. For any real number $x>1$ and any fixed positive integer $k>1$, we have the asymptotic formula

$$
\sum_{n \leq x} \frac{1}{\varphi\left(s_{k}(n)\right)}=\frac{k \zeta(2) \zeta(3)}{(k-1) \zeta(6)} x^{1-\frac{1}{k}}+A+O\left(x^{1-\frac{2}{k}} \log x\right)
$$

where $A=\gamma \sum_{n=1}^{\infty} \frac{\mu^{2}(n)}{n \varphi(n)}-\sum_{n=1}^{\infty} \frac{\mu^{2}(n) \log n}{n \varphi(n)}$.

§2. Proof of Theorems

In this section, we will complete the proof of Theorems. First we come to prove Theorem 1. For any real number $x>1$, let M be a fixed positive integer with $M^{k} \leq x \leq(M+1)^{k}$, from the definition of $s_{k}(n)$ we have

$$
\begin{align*}
\sum_{n \leq x} \frac{\varphi\left(s_{k}(n)\right)}{s_{k}(n)} & =\sum_{t=1}^{M} \sum_{(t-1)^{k} \leq n<t^{k}} \frac{\varphi\left(s_{k}(n)\right)}{s_{k}(n)}+\sum_{M^{k} \leq n<x} \frac{\varphi\left(s_{k}(n)\right)}{s_{k}(n)} \\
& =\sum_{t=1}^{M-1} \sum_{t^{k} \leq n<(t+1)^{k}} \frac{\varphi\left(s_{k}(n)\right)}{s_{k}(n)}+\sum_{M^{k} \leq n \leq x} \frac{\varphi(M)}{M} \\
& =\sum_{t=1}^{M-1}\left[(t+1)^{k}-t^{k}\right] \frac{\varphi(t)}{t}+O\left(\sum_{M^{k} \leq n<(M+1)^{k}} \frac{\varphi(M)}{M}\right) \\
& =k \sum_{t=1}^{M} t^{k-1} \frac{\varphi(t)}{t}+O\left(M^{k-1-\varepsilon}\right) \tag{1}
\end{align*}
$$

where we have used the estimate $\frac{\varphi(n)}{n} \ll n^{-\varepsilon}$.
Note that(see reference [3])

$$
\begin{equation*}
\sum_{n \leq x} \frac{\varphi(n)}{n}=\frac{6}{\pi^{2}} x+O\left((\log x)^{\frac{2}{3}}(\log \log x)^{\frac{4}{3}}\right) \tag{2}
\end{equation*}
$$

Let $B(y)=\sum_{t \leq y} \frac{\varphi(t)}{t}$, then by Abel's identity (see Theorem 4.2 of [2]) and (2), we can easily deduce that

$$
\begin{align*}
\sum_{t=1}^{M} t^{k-1} \frac{\varphi(t)}{t} & =M^{k-1} B(M)-B(1)-(k-1) \int_{1}^{M} y^{k-2} B(y) d y \\
& =M^{k-1}\left(\frac{6}{\pi^{2}} M+O\left((\log M)^{\frac{2}{3}}(\log \log M)^{\frac{4}{3}}\right)\right) \\
& -(k-1) \int_{1}^{M}\left(y^{k-2}\left(\frac{6}{\pi^{2}} y+O\left((\log y)^{\frac{2}{3}}(\log \log y)^{\frac{4}{3}}\right)\right) d y\right. \\
& =\frac{6}{k \pi^{2}} M^{k}+O\left((\log M)^{\frac{2}{3}}(\log \log M)^{\frac{4}{3}}\right) \tag{3}
\end{align*}
$$

Applying (1) and (3) we can obtain the asymptotic formula

$$
\begin{equation*}
\sum_{n \leq x} \frac{\varphi\left(s_{k}(n)\right)}{s_{k}(n)}=\frac{6}{\pi^{2}} M^{k}+O\left(M^{k-1-\varepsilon}\right) \tag{4}
\end{equation*}
$$

On the other hand, note that the estimate

$$
\begin{equation*}
0 \leq x-M^{k}<(M+1)^{k}-M^{k} \ll x^{\frac{k-1}{k}} \tag{5}
\end{equation*}
$$

Now combining (4) and (5) we can immediately obtain the asymptotic formula

$$
\sum_{n \leq x} \frac{\varphi\left(s_{k}(n)\right)}{s_{k}(n)}=\frac{6}{\pi^{2}} x+O\left(x^{1-\frac{1}{k}-\varepsilon}\right)
$$

This proves Theorem 1.
Similarly, note that(see reference [4])

$$
\sum_{n \leq x} \frac{1}{\varphi(n)}=\frac{\zeta(2) \zeta(3)}{\zeta(6)} \log x+A+O\left(\frac{\log x}{x}\right)
$$

where $A=\gamma \sum_{n=1}^{\infty} \frac{\mu^{2}(n)}{n \varphi(n)}-\sum_{n=1}^{\infty} \frac{\mu^{2}(n) \log n}{n \varphi(n)}$. We can use the same method to obtain the result of Theorem 2.

References

[1] F. Smarandache, Only Problems, Not Solutions, Chicago: Xiquan Publishing House, 1993.
[2] Tom M. Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1976.
[3] A. Walfisz, Weylsche Exponential summen in der neueren Zahlentheorie, Berlin, 1963.
[4] H. L. Montgomery, Primes in arithmetic progressions. Mich. Math. J. 17(1970), 33-39.
[5] Zhang Wenpeng, Research on Smarandache Problems in Number theory, Hexis, 2004, pp. 119-122.

