THE 97-TH PROBLEM OF F.SMARANDACHE *

Yi Yuan
Research Center for Basic Science, Xi’an Jiaotong University Xi'an, Shaanxi, P.R.China yuanyi@mail.xjtu.edu.cn

Abstract \quad| The main purpose of this paper is using the analytic method to study the n-ary |
| :--- |
| sieve sequence, and solved one conjecture about this sequence. |

Keywords: Quad 97-th problem of F.Smarandache; n-ary sieve sequence; Conjecture.

§1. Introduction and results

In 1991, American-Romanian number theorist Florentin Smarandache introduced hundreds of interesting sequences and arithmetical functions, and presented 105 unsolved arithmetical problems and conjectures about these sequences and functions in book [1]. Already many researchers studied these sequences and functions from this book, and obtained important results. Among these problems, the 97 -th unsolved problem is:

Let n be any positive integer with $n \geq 2$, starting to count on the natural numbers set at any step from 1 :

- delete every n-th number;
- delete from the remaining ones, every $\left(n^{2}\right)$-th number;
and so on: delete from the remaining ones, every $\left(n^{k}\right)$-th number, $k=$ $1,2,3, \cdots$.
For this special sequence, there are two conjectures:
(1) there are an infinity of primes that belong to this sequence;
(2) there are an infinity of number of this sequence which are not prime.

In this paper, we shall use the analytic method to study the n-ary sieve sequence, and solved conjecture (2). That is, we have the following conclusion:

Theorem. For any positive integer $n \geq 2$, the conjecture (2) of n-ary sequence is true.

[^0]
§2. Proof of Theorem

In this section, we shall complete the proof of Theorem. For any fixed real number $x \geq 1$ and positive integer k, let $\mathcal{A}_{k}(x)$ denotes the number of remaining ones after deleting $\left(n^{k}\right)$-th number from the interval $[1, x]$. In the interval $[1, x]$, for any $n \in[1, x]$, first we delete n-th number from the interval $[1, x]$, then the number of remaining ones is

$$
\mathcal{A}_{1}(x)=[x]-\left[\frac{x}{n}\right],
$$

where $[x]$ denotes the greatest integer which is not exceeding x, and $x-1 \leq$ $[x] \leq x+1$.

Note that

$$
\begin{equation*}
\mathcal{A}_{1}(x)=[x]-\left[\frac{x}{n}\right] \leq x+1-\frac{x}{n}=x\left(1-\frac{1}{n}\right)+1, \tag{1}
\end{equation*}
$$

if we delete every $\left(n^{2}\right)$-th number from the remaining ones, then the number of remaining ones is

$$
\mathcal{A}_{2}(x)=[x]-\left[\frac{x}{n}\right]-\left[\frac{[x]-\left[\frac{x}{n}\right]}{n^{2}}\right] .
$$

From (1), we have the inequality

$$
\begin{align*}
& {[x]-\left[\frac{x}{n}\right]-\left[\frac{[x]-\left[\frac{x}{n}\right]}{n^{2}}\right] } \tag{2}\\
\leq & {\left[x\left(1-\frac{1}{n}\right)+1\right]-\left[\frac{x\left(1-\frac{1}{n}\right)+1}{n^{2}}\right] } \\
\leq & x\left(1-\frac{1}{n}\right)+2-\frac{x\left(1-\frac{1}{n}\right)+1}{n^{2}} \\
= & x\left(1-\frac{1}{n}\right)\left(1-\frac{1}{n^{2}}\right)+\left(2-\frac{1}{n^{2}}\right) \\
\leq & x\left(1-\frac{1}{n}\right)\left(1-\frac{1}{n^{2}}\right)+2 .
\end{align*}
$$

$\cdots \cdots$, and so on: if we delete every $\left(n^{k}\right)$-th number, from the remaining ones, we also have the inequality

$$
\begin{equation*}
\mathcal{A}_{k}(x)=x\left(1-\frac{1}{n}\right)\left(1-\frac{1}{n^{2}}\right) \cdots\left(1-\frac{1}{n^{k}}\right)+k . \tag{3}
\end{equation*}
$$

Similarly, we can also deduce that

$$
\begin{equation*}
x\left(1-\frac{1}{n}\right)-1=x-1-\frac{x}{n} \leq \mathcal{A}_{1}(x)=[x]-\left[\frac{x}{n}\right] \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
x\left(1-\frac{1}{n}\right)\left(1-\frac{1}{n^{2}}\right)-2 \leq \mathcal{A}_{2}(x)=[x]-\left[\frac{x}{n}\right]-\left[\frac{[x]-\left[\frac{x}{n}\right]}{n^{2}}\right] \tag{5}
\end{equation*}
$$

$\ldots .$. , and so on:

$$
\begin{equation*}
x\left(1-\frac{1}{n}\right)\left(1-\frac{1}{n^{2}}\right) \cdots\left(1-\frac{1}{n^{k}}\right)-k \leq \mathcal{A}_{k}(x) . \tag{6}
\end{equation*}
$$

Combining (5) and (6), we have the asymptotic formula

$$
\begin{equation*}
\mathcal{A}_{k}(x)=x\left(1-\frac{1}{n}\right)\left(1-\frac{1}{n^{2}}\right) \cdots\left(1-\frac{1}{n^{k}}\right)+O(k) . \tag{7}
\end{equation*}
$$

Note that $k \ll \ln x$, so we have

$$
\begin{equation*}
\mathcal{A}_{k}(x)=x\left(1-\frac{1}{n}\right)\left(1-\frac{1}{n^{2}}\right) \cdots\left(1-\frac{1}{n^{k}}\right)+O(\ln x) \tag{8}
\end{equation*}
$$

Let $\pi(x)$ denotes the number of the primes up to x, then we have (see reference [2])

$$
\begin{equation*}
\pi(x)=\frac{x}{\ln x}+O\left(\frac{x}{\ln ^{2} x}\right) \tag{9}
\end{equation*}
$$

Note that $\left(1-\frac{1}{n}\right)\left(1-\frac{1}{n^{2}}\right) \cdots\left(1-\frac{1}{n^{k}}\right)$ is convergence if $k \rightarrow+\infty$, so

$$
\mathcal{A}_{k}(x)-\pi(x) \rightarrow+\infty, \quad \text { if } \quad x \rightarrow+\infty
$$

That is, there are an infinity of number of this sequence which are not prime.
This completes the proof of Theorem.

References

[1] F. Smarandache, Only Problems, Not Solutions, Xiquan Publishing House Chicago, 1993.
[2] Tom M. Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1976.

[^0]: *This work is supported by the Zaizhi Doctorate Foundation of Xi'an Jiaotong University

