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Te term “arms race” literally refers to competitions between nations for military superiority during times of peace. For a number
of reasons, arms races have attracted a lot of attention. Tey are widely meant to have important repercussions for national
security. Te best course of action for a nation facing an aggressive foe is to engage in an armaments race. If one nation raises its
arsenal, another will follow suit, in order the frst nation responds by increasing its arsenal. Diferential equations can be used to
model this type of arms race. Both Engineering and Science rely only on diferential equations. Modeling the problems in this feld
include some parameters that are uncertain or imprecise. To resolve this, neutrosophic diferential equations are evolved. In this
article, the arms race is modeled using a diferential equation with a triangular neutrosophic number as the initial value. Te
system of neutrosophic diferential equation is then solved using the MATLAB tool and the results are visualised graphically. Te
solution is compared by fnding the value, ambiguity, and rank of neutrosophic numbers.

1. Introduction

Te direct and instantaneous comprehension of reality is quite
complicated. Te comprehension of the real world pre-
dominantly benefts from the use of simplifed reality-based
models. Tese mathematical models are challenging, and it is
difcult to fnd precise answers. Because of the data’s inherent
uncertainty, it is impossible to model problems in diverse
disciplines using conventional methodologies. Given that there
are uncertainties in natural contexts, the classical theory that
relies on the crisp does not seem to be very appropriate for
handling such uncertainty. An IFS, a generalisation of fuzzy set
was developed by Atanassov [1] in 1986. Tere are some
drawbacks to the sets stated above. Neutrosophic logic and sets,
a new theory, was developed to address these drawbacks. Te
extensions of classical, fuzzy, and IFS are neutrosophic sets [2].
Degrees of truth, falsity, and ambiguity are all part of a neu-
trosophic set’s membership function.When compared to fuzzy

sets and IFS, in this situation indeterminacy produces greater
accuracy. Neutrosophy will therefore produce superior out-
comes to fuzzy and intuitionistic fuzzy sets.

Both Engineering and Science predominantly rely on
diferential equations. Modeling the problems in this feld
include some parameters that are uncertain or imprecise.
While indeterminacy does not occur, this uncertainty allows
the formation of imprecise diferential equations such as
FDE [3] and IFDE. To resolve this, neutrosophic diferential
equation is evolved.

Te term “arms race” literally refers to competitions
between nations for military superiority during times of
peace. For a number of reasons, arms races have attracted a lot
of attention. Tey are widely meant to have important re-
percussions for national security.Te best course of action for
a nation facing an aggressive foe is to engage in an armaments
race. Frederick William Lanchester emphasised the need of
troop concentration in the contemporary combat in 1916. He
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suggested diferential equations, from which it would be
possible to get the desired outcomes. Armed confict de-
terministic equations are a straightforward advantage be-
tween two hostile forces. In particular, if one nation raises
its arsenal, another will follow suit. In order, the frst
nation responds by increasing its arsenal. Diferential
equations can be used to model this type of arms race.

Tis research article uses the triangular neutrosophic
number as the initial condition for the frst-order system of
diferential equations which represents the arms race model.
Te equations are resolved, and the military performance of
the two nations is calculated.

2. Literature Survey

Recently, the neutrosophic theory has received enormous
support from several academicians. Te quantity of articles
on neutrosophic sets has signifcantly increased since 2015.
Smarandache added neutrosophic sets to the literature in
order to manage information that is insufcient, unclear,
and inconsistent. In neutrosophic sets, an additional pa-
rameter is used to formally quantify indeterminacy. Te
concept of the neutrosophic number has been introduced by
Chakraborty et al. [4] from many perspectives. Tey defne
many kinds of generalised triangular neutrosophic numbers,
both linear and nonlinear, which are crucial for uncertainty
theory. Te de-neutrosophication notion for triangular
neutrosophic numbers has also been introduced. Tis idea
enables the transformation of neutrosophic numbers into
crisp numbers.

Using fuzzy diferential equations, this uncertainty has
been modeled by Bede and Gal [5], Chalco-Cano and
Roman-Flores [3], and Mondal et al. [6]. However, it
merely takes the membership value into account. IFDE was
further developed by Kumar et al. [7] and Wang et al. [8].
Tese two theories; however, do not contain the concept of
indeterminacy. Neutrosophic diferential equations were
created as a result to model the indeterminacy. Researchers
have developed a wide range of strategies for resolving
fuzzy and intuitionistic fuzzy diferential equations. Con-
sequently, several approaches to the neutrosophic difer-
ential equation solution are a growing subject today. Tis
article will be a valuable source for concepts, methods, and
strategies for upcoming research on neutrosophic sets
applications. Here is a list of some of the signifcant re-
search that may aid in the development of the study on the
neutrosophic diferential equation. Using an application in
bacteria culture models, Sumathi and MohanaPriya [9]
suggested a method to solve diferential equations utilizing
neutrosophic numbers.

Fuzzy initial value problems were frst described by
Seikkala [10]. Bede and Gal [5] then proposed the generalised
diferentiability concepts. Using these concepts, they were able
to solve fuzzy diferential and partial diferential equations.

A numerical method for the conventional Euler meth-
odology for FDE was created by Ma et al. [11]. Ten,
Abbasbandy and Viranloo [12] introduced a special nu-
merical approach for solving FDE based on the Taylor
technique of order p. Khastan and Nieto [13] created a novel

method to deal with fuzzy boundary-value problems in
which they investigated the problem to fnd solutions in
various (n, m)-systems, where n, m ∈ {1, 2}.

TeMilne–Simpson method of order fve is used to solve
FDE using an interval-valued fuzzy number which has re-
cently been researched by Balakrishnan and Manigandan
[14]. Numerous academics are still engaged in order to solve
FDE analytically and numerically [15, 16]. All of the
aforementioned works can now be adjusted and applied to
a neutrosophic environment. Researchers have recently been
focusing on neutrosophic diferential equations.

2.1.Motivation. Every parameter does not need to have a fxed
value when simulating a real-world scenario. Some parameters
appear with ambiguous or approximate values. Te idea of
imprecise diferential equations appears when representing
uncertainty in a problem using diferential equations. Neu-
trosophic set theory is created to address such circumstances.
Moreover, it is a known fact that only a few publications are
available on neutrosophic diferential equations. Terefore,
working in this feld has a lot of potential.

2.2. Novelties. Te uniqueness here is addressing the arms
race problem in a neutrosophic environment with an initial
condition as a triangular neutrosophic number, which is
a novel approach despite some breakthroughs in the feld of
solving diferential equations in a neutrosophic environment
being worked on.

2.3. Paper Organization. Te article is structured as follows:
Introductions to fuzzy, intuitionistic fuzzy, and neu-
trosophic diferential equations are listed in the frst section.
Literature review in the second section, and a discussion on
initial impressions in the third section. Te fourth section,
which also transforms the arms race model into a system of
diferential equations with a base value of a TNN, discusses
the implementation of the arms race model. Te conclusion
is presented in the ffth section.

3. Preliminaries

In this section, we present the necessary defnitions and
notations that will be used in this work as follows:

Defnition 1 (See [9])
Let the universe of discourse be E. Neutrosophic single

valued set MQ on E is defned as MQ � 〈TMQ(x), IMQ􏽮

(x), FMQ (x)〉: x ∈ E} where TMQ(x), IMQ(x), FMQ(x):

E⟶ [0, 1] represents the membership degree, in-
deterministic degree, and nonmembership degree, re-
spectively, of the element ∈E with 0≤TMQ(x) + IMQ
(x) + FMQ(x)≤ 3.

Defnition 2 (See [9])
Neutrosophic set α, β, c-cut is represented by G(α, β, c),

for, β, c ∈ [0, 1], α + β + c≤ 3 is given by
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G(α, β, c) � 〈TMQ(x), IMQ(x), FMQ(x)〉: x ∈ E, TMQ(x)≥ α, IMQ(x)≤ β, FMQ(x)≤ c􏽮 􏽯. (1)

Defnition 3 (See [9])
A neutrosophic set MQ over the set of real numbers R is

said to be a neutrosophic number if it has the following
properties.

(i) MQ is normal if there exists x0 ∈ R such that
TMQ(x0) � 1, IMQ(x0) � 0, FMQ(x0) � 0.

(ii) MQ is convex set for the truth function TMQ(x0)

(i.e.)

TMQ μx1 +(1 − μ)x2( 􏼁≥min   TMQ x1( 􏼁, TMQ x2( 􏼁􏼐􏼐 􏼑  for  every x1, x2 ∈ R  and μ ∈ [0, 1]. (2)

(iii) MQ is concave set for the indeterministic function
IMQ(x) and falsehood function FMQ(x) where

IMQ μx1 +(1 − μ)x2( 􏼁≥max IMQ x1( 􏼁, IMQ x2( 􏼁􏼐􏼐 􏼑  for  every x1, x2 ∈ R  and μ ∈ [0, 1],

FMQ μx1 +(1 − μ)x2( 􏼁≥max FMQ x1( 􏼁, FMQ x2( 􏼁􏼐􏼐 􏼑  for  every x1, x2 ∈ R  and μ ∈ [0, 1].
(3)

Defnition 4 (See [9])
A triangular neutrosophic number An is a subset of

a neutrosophic number in R with the following truth func-
tion, indeterministic function, and falsity function given by

TAn xi( 􏼁 �

xi − a

b − a
􏼒 􏼓gA, a≤xi ≤ b,

gA, xi � b,

c − xi

c − b
􏼒 􏼓gA, b≤xi ≤ c,

0, elsewhere,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

IAn xi( 􏼁 �

b − xi

b − a
􏼠 􏼡vA, a≤xi ≤ b,

vA, xi � b,

xi − c

c − b
􏼒 􏼓vA, b≤xi ≤ c,

1, elsewhere,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FAn xi( 􏼁 �

b − xi

b − a
􏼠 􏼡kA, a≤ xi ≤ b,

kA, xi � b,

xi − c

c − b
􏼒 􏼓kA, b≤xi ≤ c,

1, elsewhere,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where a≤ b≤ c and TNN is denoted by
ATN〈(a, b, c); gA, vA, kA〉.

Defnition 5 (See [9])
(α, β, c)-cut of the neutrosophic number AB is given by

ABα,β,c �

AB1(α), AB2(α)( 􏼁  for α ∈ [0, 1],

AB1′(β), AB2′(β)( 􏼁  for β ∈ [0, 1],

AB1″(c), AB2″(c)( 􏼁  for c ∈ [0, 1],

⎧⎪⎪⎨

⎪⎪⎩
(5)

where α + β + c≤ 3
Here,

(i) dAB1 (α)/dα> 0, dAB2(α)/dα< 0, for all α ∈ [0, 1],

AB1(1)≤AB2(1)

(ii) dAB1′(β)/dβ< 0, dAB2′(β)/dβ> 0, for all β ∈ [0, 1],

AB1′(0)≤AB2′(0)

(iii) dAB1″(c)/dc < 0, dAB2″(c)/dc> 0, for all c ∈
[0, 1], AB1″(0)≤AB2″(0)

Mathematical Problems in Engineering 3



If AB � (a, b, c; gA, vA, )  then (α, β, c)- cut is given by

ABα,β,c � (a + α(b − a))gA, (c − α(c − b))gA􏼂 􏼃, (b − β(b − a))vA, (b + β(c − b))vA􏼂 􏼃, (b − c(b − a))kA, (b + c(c − b))kA􏼂 􏼃􏼈 􏼉.

(6)

Defnition 6. If [x1(t, α), x2(t, α); x1′(t, β), x2′(t, β); x1″
(t, c), x2″(t, c)] be the solution of the diferential equation,

then the solution is written as neutrosophic number as given
in the following:

x1(t, α � 0), x1(t, α � 1), x2(t, α � 0); x1′(t, β � 1), x1′(t, β � 0), x2′(t, β � 1); x1″(t, c � 1), x1″(t, c � 0), x2″(t, c � 1)􏼂 􏼃. (7)

Defnition 7 (See [17])
Let s � 〈(l, m, n); μ, c, k〉 be an arbitrary SVTNN, then

value and ambiguity of the SVTr-number is given by

V
α

(s) �
l + 4m + n

6
􏼠 􏼡μ2,

Aα(s) �
n − l

6
􏼠 􏼡μ2,

Vβ(s) �
(l + 4m + n)(1 − c)

2

6
,

Aβ(s) �
(n − l)(1 − c)

2

6
,

Vc(s) �
l + 4m + n

6
􏼠 􏼡(1 − k)

2
,

Ac(s) �
n − l

6
􏼠 􏼡(1 − k)

2
.

(8)

Defnition 8 (See [17])
Let s � 〈(l, m, n; μ, c, k)〉 be a SVNN, then for any

δ ∈ [0, 1]

(i) Te δ-weighted value of the SVNN “s” is defned as

Vδ(s) � δVα(s) +(1 − δ)Vβ(s) +(1 − δ)Vc(s). (9)

(ii) Te δ-weighted ambiguity of the SVNN “s” is de-
fned as

Aδ(s) � δAα(s) +(1 − δ)Aβ(s) +(1 − δ)Ac(s). (10)

Defnition 9 (See [17])
Let s and  t be two SVNN’s and for δ ∈ [0, 1] weighted

values and ambiguities of the SVNN’s, s and t the ranking
order of s  and t is defned as

(1) If  Vδ(s)>Vδ(t), then  s > t

(2) If  Vδ(s)<Vδ(s)  then  s< t

(3) If  Vδ(s) � Vδ(t)∗ If  Aδ(s) � Aδ(t)  then s � t∗ If
 Aδ(s)>Aδ(t)  then s> t  and  ∗ If  Aδ(s)<Aδ(t)

  then s< t

4. Mathematical Modeling and Solution of Arm
Race Model in Neutrosophic Environment

Te study of the arms race is a fascinating application that
results in a set of diferential equations. Two nations are
considered to be in confict when there is a dispute between
them and a war breaks out as a result. In this scenario, every
nation will attempt to arm itself in order to protect itself
from a potential assault by the opposing country in a fght.
Tere begins the race for the gathering of arms. Here, we
shall discuss Richardson’s model, a theoretical framework
for understanding the arms race.

Assume that at time t, nation X′s armaments are
represented by x(t) and nation Y′ s are represented by
y(t). How quickly one side’s armaments change is de-
pendent on the other side’s arsenal, as if one side in-
creases its arsenal, the other will do the same. Te link
between the rate of change of x with respect to t is
proportional to y and vice versa. Further, proportionality
constants are established to indicate the efectiveness of
increased weaponry. Te connection between two nations
or alliances, each of which chooses to defend itself against
a potential assault by the other, can be described by the
provided set of equations dp/dt � Aq(t) with
p(0) � p0  and dq/dt � B p(t) with q(0) � q0 where A > 0
and B > 0 are constants.

Considering the arm race model in neutrosophic envi-
ronment with initial condition as TNN, themodel reduces to
linear homogeneous system of equations
dx/dt � py, dy/dt � Qx with base condition x(t0) � x0 and
y(t0) � y0 where x0 andy0 are TNN.

4 Mathematical Problems in Engineering



For the given system of equations, the solutions are x(t)

and y(t), then its (α, β, c)- cut is

x(t, α, β, c) � x1, (t, α), x2(t, α); x1′(t, β), x2′(t, β); x1″(t, c), x2″(t, c)􏼂 􏼃,

y(t, α, β, c) � y1(t, α), y2(t, α); y1′(t, β), y2′(t, β); y1″(t, c), y2″(t, c)􏼂 􏼃.
(11)

Te solution is strong if

(i) dx1(t, α)/dt> 0, dx2(t, α)/dt< 0
dy1(t, α)/dt> 0, dy2(t, α)/dt< 0

(ii) dx1′(t, α)/dt> 0, dx2′(t, α)/dt< 0
dy1′(t, α)/dt> 0, dy2′(t, α)/dt< 0

(iii) dx1″(t, α)/dt> 0, dx2″(t, α)/dt< 0
dy1″(t, α)/dt> 0, dy2″(t, α)/dt< 0

Otherwise the solution is feeble.

4.1.Determining the SystemofDiferential Equations Solution.
Take the diferential equations system into consideration.

dx(t)

dt
� py(t), (12)

dy(t)

dt
� Qx(t), (13)

with x(0) � x0 � (a1, a2, a3; μ, c, k)  and y(0) � y0 � (b1,

b2, b3; μ′, c′, k′)

Case (i) If P, Q> 0
Taking (α, β, c)- cut of (12), we obtain

d
dt

x1(t, α), x2(t, α)); x1′(t, β), x2′(t, β)( 􏼁; x1″(t, c), x2″(t, c)( 􏼁􏼂 􏼃 � P y, (t, α), y2(t, α)( 􏼁; y1′(t, β), y2′(t, β)( 􏼁; y1″(t, c), y2″(t, c)( 􏼁􏼂 􏼃.

(14)

Taking (α, β, c)- cut of (13), we have

d
dt

y1(t, α), y2(t, α)( 􏼁; y1′(t, β), y2′(t, β)( 􏼁; y1″(t, c), y2″(t, c)( 􏼁􏼂 􏼃 � Q x1(t, α), x2(t, α)( 􏼁; x1′(t, β), x2′(t, β)( 􏼁; x1″(t, c), x2″(t, c)( 􏼁􏼂 􏼃,

(15)

with initial condition

x t0, α, β, c( 􏼁 � AB1(α), AB2(α)􏼂 􏼃; AB1′(β), AB2′(β)􏼂 􏼃; AB1″(c), AB2″(c)􏼂 􏼃( 􏼁,

y t0, α, β, c( 􏼁 � BC1(α), BC2(α)􏼂 􏼃; BC1′(β), BC2′(β)(( 􏼁; BC1″(c), BC2″(c))􏼂 􏼃,
(16)

with α + β + c≤ 3 and α, β, c ∈ [0, 1]

dx1(t, α)

dt
� P y1(t, α),

dx2(t, α)

dt
� P y2(t, α),

dx1′(t, β)

dt
� P y1′(t, β),

dx2′(t, β)

dt
� Py2′(t, β),

dx1″(t, c)

dt
� Py1″(t, c),

dx2″(t, c)

dt
� Py2″(t, c).

(17)

From (15), we obtain

dy1(t, α)

dt
� Qx1(t, α),

dy2(t, α)

dt
� Qx2(t, α),

dy1′(t, β)

dt
� Qx1′(t, β),

dy2′(t, β)

dt
� Qx2′(t, β),

dy1″(t, c)

dt
� Qx1″(t, c),

dy2″(t, c)

dt
� Qx2″(t, c),

(18)

Mathematical Problems in Engineering 5



with base condition

x1 t0, α( 􏼁 � A1(α);

x2 t0, α( 􏼁 � A2(α);

x1′ t0, β( 􏼁 � A1′(β);

x2′ t0, β( 􏼁 � A2′(β);

x1″ t0, c( 􏼁 � A1″(c);

x2″ t0, c( 􏼁 � A2″(c);

y1 t0, α( 􏼁 � B1(α);

y2 t0, α( 􏼁 � B2(α);

y1′ t0, β( 􏼁 � B1′(β);

y2′ t0, β( 􏼁 � B2′(β);

y1″ t0, c( 􏼁 � B1″(c),

y2″ t0, c( 􏼁 � B2″(c).

(19)

From (17) to (18), we obtain

dx1(t, α)

dt
� Py1(t, α),

dy1(t, α)

dt
� Qx1(t, α),

d2x1(t, α)

dt
2 � P

dy1 (t, α)

dt

� PQx1(t, α).

(20)

Te solution is x1(t, α) � c1 e
��
PQ

√
t + c2e

−
��
PQ

√
t from (17),

we obtain c1 e
��
PQ

√
t − c2 e−

��
PQ

√
t �

����
P/Q

√
y1 (t, α)

Using initial condition, we obtain

c1 e

��
PQ

√ t0
+ c2e

−
��
PQ

√
t0 � A1(α),

c1e

��
PQ

√ t0
− c2e

−
��
PQ

√
t0 �

��
P

Q

􏽳

B1(α),

c1 �
1
2

A1(α) +

��
P

Q

􏽳

B1 (α)⎛⎝ ⎞⎠ e
−

��
PQ

√
t0,

c2 �
1
2

A1(α) −

��
P

Q

􏽳

B1(α)⎛⎝ ⎞⎠e

��
PQ

√
t0.

(21)

Terefore,

x1(t, α) �
1
2

A1(α) +

��
P

Q

􏽳

B1(α)
⎧⎨

⎩

⎫⎬

⎭e

��
PQ

√
t− t0( ) +

1
2

A1(α) −

��
P

Q

􏽳

B1(α)
⎧⎨

⎩

⎫⎬

⎭e
−

��
PQ

√
t− t0( ),

y1(t, α) �
1
2

��
Q

P

􏽲

A1(α) +

��
P

Q

􏽳

B1(α)
⎧⎨

⎩

⎫⎬

⎭e

��
PQ

√
t− t0( ) −

1
2

��
Q

P

􏽲

A1(α) −

��
P

Q

􏽳

B1(α)
⎧⎨

⎩

⎫⎬

⎭e
−

��
PQ

√
t− t0( ).

(22)

Similarly, we obtain
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x2(t, α) �
1
2

A2(α) +

��
P

Q

􏽳

B2(α)
⎧⎨

⎩

⎫⎬

⎭e

��
PQ

√
t− t0( ) +

1
2

A2(α) −

��
P

Q

􏽳

B2(α)
⎧⎨

⎩

⎫⎬

⎭e
−

��
PQ

√
t− t0( ),

y2(t, α) �
1
2

��
Q

P

􏽲

A2(α) +

��
P

Q

􏽳

B2(α)
⎧⎨

⎩

⎫⎬

⎭e

��
PQ

√
t− t0( ) −

1
2

��
Q

P

􏽲

A2(α) −

��
P

Q

􏽳

B2(α)
⎧⎨

⎩

⎫⎬

⎭e
−

��
PQ

√
t− t0( ),

(23)

x1′(t, β) �
1
2

A1′(β) +

��
P

Q

􏽳

B1′(β)
⎧⎨

⎩

⎫⎬

⎭e

��
PQ

√
t− t0( ) +

1
2

A1′(β) −

��
P

Q

􏽳

B1′(β)
⎧⎨

⎩

⎫⎬

⎭e
−

��
PQ

√
t− t0( ),

y1′(t, β) �
1
2

��
Q

P

􏽲

A1′(β) +

��
P

Q

􏽳

B1′(β)
⎧⎨

⎩

⎫⎬

⎭e

��
PQ

√
t− t0( ) −

1
2

��
Q

P

􏽲

A1′(β) +

��
P

Q

􏽳

B1′(β)
⎧⎨

⎩

⎫⎬

⎭e
−

��
PQ

√
t− t0( ),

x2′(t, β) �
1
2

A2′(β) +

��
P

Q

􏽳

B2′(β)
⎧⎨

⎩

⎫⎬

⎭e

��
PQ

√
t− t0( ) +

1
2

A2′(β) −

��
P

Q

􏽳

B2′(β)
⎧⎨

⎩

⎫⎬

⎭e
−

��
PQ

√
t− t0( ),

y2′(t, β) �
1
2

��
Q

P

􏽲

A2′(β) +

��
P

Q

􏽳

B2′(β)
⎧⎨

⎩

⎫⎬

⎭e

��
PQ

√
t− t0( ) −

1
2

��
Q

P

􏽲

A2′(β) −

��
P

Q

􏽳

B2′(β)
⎧⎨

⎩

⎫⎬

⎭e
−

��
PQ

√
t− t0( ).

(24)

Also,

x1″(t, c) �
1
2

A1″(c) +

��
P

Q

􏽳

B1″(c)
⎧⎨

⎩

⎫⎬

⎭e

��
PQ

√
t− t0( ) +

1
2

A1″(c) −

��
P

Q

􏽳

B1″(c)
⎧⎨

⎩

⎫⎬

⎭e
−

��
PQ

√
t− t0( ),

y1″(t, c) �
1
2

��
Q

P

􏽲

A1″(c) +

��
P

Q

􏽳

B1″(c)
⎧⎨

⎩

⎫⎬

⎭e

��
PQ

√
t− t0( ) −

1
2

��
Q

P

􏽲

A1″(c) −

��
P

Q

􏽳

B1″(c)
⎧⎨

⎩

⎫⎬

⎭e
−

��
PQ

√
t− t0( ),

x2″(t, c) �
1
2

A2″(c) +

��
P

Q

􏽳

B2″(c)
⎧⎨

⎩

⎫⎬

⎭e

��
PQ

√
t− t0( ) +

1
2

A2″(c) −

��
P

Q

􏽳

B2″(c)
⎧⎨

⎩

⎫⎬

⎭e
−

��
PQ

√
t− t0( ),

y2″(t, c) �
1
2

��
Q

P

􏽲

A2″(c) +

��
P

Q

􏽳

B2″(c)
⎧⎨

⎩

⎫⎬

⎭e

��
PQ

√
t− t0( ) −

1
2

��
Q

P

􏽲

A2″(c) −

��
P

Q

􏽳

B2″(c)
⎧⎨

⎩

⎫⎬

⎭e
−

��
PQ

√
t− t0( ).

(25)

4.2. Application. Consider the set of diferential equations

dx(t)

dt
� 3y(t);

dy(t)

dt
� 4x(t),

(26)

with base condition

x(0) � x0

� (3, 4, 6; 0.7, 0.3, 0.5),

y(0) � y0

� (2, 5, 9; 0.6, 0.2, 0.4).

(27)
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Te solution is

x1(t, α) �
1
2

(3 + α)0.7 +

�
3
4

􏽲

(2 + 3α)0.6􏼨 􏼩e
��
12

√
t

+
1
2

(3 + α)0.7 −

�
3
4

􏽲

(2 + 3α)0.6􏼨 􏼩e
−

��
12

√
t
,

y1(t, α) �
1
2

��
4
3

􏽲

(3 + α)0.7 +

�
3
4

􏽲

(2 + 3α)0.6􏼨 􏼩e
��
12

√
t

−
1
2

��
4
3

􏽲

(3 + α)0.7 −

�
3
4

􏽲

(2 + 3α)0.6􏼨 􏼩e
−

��
12

√
t
,

x2(t, α) �
1
2

(6 − 2α)0.7 +

�
3
4

􏽲

(9 − 4α)0.6􏼨 􏼩e
��
12

√
t

+
1
2

(6 − 2α)0.7 −

�
3
4

􏽲

(9 − 4α)0.6􏼨 􏼩e
−

��
12

√
t
,

y2(t, α) �
1
2

��
4
3

􏽲

(6 − 2α)0.7 +

�
3
4

􏽲

(9 − 4α)0.6􏼨 􏼩e
��
12

√
t

−
1
2

��
4
3

􏽲

(6 − 2α)0.7 −

�
3
4

􏽲

(9 − 4α)0.6􏼨 􏼩e
−

��
12

√
t
,

x1′(t, β) �
1
2

(4 − β) 0.3 +

�
3
4

􏽲

(5 − 3β)0.2􏼨 􏼩e
��
12

√
t

+
1
2

(4 − β)0.3 −

�
3
4

􏽲

(5 − 3β)0.2􏼨 􏼩e
−

��
12

√
t
,

y1′(t, β) �
1
2

��
4
3

􏽲

(4 − β)0.3 +

�
3
4

􏽲

(5 − 3β)0.2􏼨 􏼩e
��
12

√
t

−
1
2

��
4
3

􏽲

(4 − β)0.3 −

�
3
4

􏽲

(5 − 3β)0.2􏼨 􏼩e
−

��
12

√
t
,

x2′(t, β) �
1
2

(4 + 2β) 0.3 +

�
3
4

􏽲

(5 + 4β)0.2􏼨 􏼩e
��
12

√
t

+
1
2

(4 + 2β)0.3 −

�
3
4

􏽲

(5 + 4β)0.2􏼨 􏼩e
−

��
12

√
t
,

y2′(t, β) �
1
2

��
4
3

􏽲

(4 + 2β)0.3 +

�
3
4

􏽲

(5 + 4β)0.2􏼨 􏼩e
��
12

√
t

−
1
2

��
4
3

􏽲

(4 + 2β)0.3 −

�
3
4

􏽲

(5 + 4β)0.2􏼨 􏼩e
−

��
12

√
t
,

x1″(t, c) �
1
2

(4 − c)0.5 +

�
3
4

􏽲

(5 − 3c)0.4􏼨 􏼩e
��
12

√
t

+
1
2

(4 − c)0.5 −

�
3
4

􏽲

(5 − 3c)0.4􏼨 􏼩e
−

��
12

√
t
,

y1″(t, c) �
1
2

��
4
3

􏽲

(4 − c)0.5 +

�
3
4

􏽲

(5 − 3c)0.4􏼨 􏼩e
��
12

√
t

−
1
2

��
4
3

􏽲

(4 − c)0.5 −

�
3
4

􏽲

(5 − 3c)0.4􏼨 􏼩e
−

��
12

√
t
,

x2″(t, c) �
1
2

(4 + 2c)0.5 +

�
3
4

􏽲

(5 + 4c)0.4􏼨 􏼩e
��
12

√
t

+
1
2

(4 + 2c)0.5 −

�
3
4

􏽲

(5 + 4c)0.4􏼨 􏼩e
−

��
12

√
t
,

y2″(t, c) �
1
2

��
4
3

􏽲

(4 + 2c)0.5 +

�
3
4

􏽲

(5 + 4c)0.4􏼨 􏼩e
��
12

√
t

−
1
2

��
4
3

􏽲

(4 + 2c)0.5 −

�
3
4

􏽲

(5 + 4c)0.4􏼨 􏼩e
−

��
12

√
t
.

(28)

In Table 1, the solution of x is given for distinct values of
(α, β, c) when t� 3.

Te graphical representation of the above table is shown
in Figure 1.

In Table 2, the solution of y is given for distinct values of
(α, β, c) when t� 3.

Te graphical representation of Table 2 is shown in
Figure 2.

We can see from the preceding table and graphs that the
prerequisites for a powerful solution are still true. As a result,
the solution is solid.

4.3. Value, Ambiguity, andRanking of a Solution. Te system
of diferential equations solution may be written in neu-
trosophic number as given in the following:

x � 〈(5.0312, 8.6260, 14.1718; 3.3054, 1.9997, 5.3691; 4.6113, 5.9657, 9.7686; 0.7, 0.3, 0.5)〉,

y � 〈(5.7711, 9.9532, 16.3813; 2.2890, 3.8048, 6.1910; 4.0300, 6.8789, 11.2909; 0.6, 0.2, 0.4)〉.
(29)
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Te value and ambiguity of SVTNN x for truth, in-
determinacy, and falsity membership are given by Vμ(x) �

4.3861 and Aμ(x) � 0.7465; Vc(x) � 1.3617 and Ac(x) �

0.1685; and Vk(x) � 1.5934 and Ak(x) � 0.2149.
Similarly, the value and ambiguity of SVTNN y for truth,

indeterminacy, and falsity membership are given by Vμ(y) �

22.3075 and Aμ(y) � 0.6366; Vc(y) � 15.1675 and
Ac(y) � 0.4162; and Vk(y) � 15.4211 and Ak(y) � 0.4357.

Te δ-weighted value of the SVTNN’s x and y are given
by Vδ(x) � 1.4310 δ + 2.9551 and Vδ(y) � 30.5886−

8.2811δ.
In the case of weighted values and ambiguities of the

SVTNN’s x and y and δ ∈ [0, 1], the order of ranking x and
y is x < y.

Hence, the number of armaments of nation X is lesser
than the number of armaments of nation Y.

Table 1: Interpretation of x-values when t� 3.

(α, β, c) x1(t, α) x2(t, α) x1
′(t, β) x2

′(t, β) x1
″(t, c) x2

″(t, c)

0 51181.60 144721.89 33684.21 33684.21 60846.86 60846.86
0.1 54864.39 139050.65 32347.92 32347.92 58337.32 64736.38
0.2 58547.18 133379.42 31011.63 31011.63 55827.78 68625.90
0.3 62229.98 127708.18 29675.34 29675.34 53318.24 72515.42
0.4 65912.77 122036.94 28339.05 28339.05 50808.70 76404.93
0.5 69595.56 116365.71 27002.76 27002.76 48299.16 80294.45
0.6 73278.35 110694.47 25666.47 25666.47 45789.62 84183.97
0.7 76961.15 105023.23 24330.18 24330.18 43280.08 88073.48
0.8 80643.94 99352.00 22993.89 22993.89 40770.54 91963.00
0.9 84326.73 93680.76 21657.60 21657.60 38260.99 95852.52
1 88009.52 88009.52 20321.31 20321.31 35751.45 99742.03
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×104

Figure 1: Interpretation of x values when t� 3.

Table 2: Interpretation of y values when t� 3.

(α, β, c) y1(t, α) y2(t, α) y1
′(t, β) y2

′(t, β) y1
″(t, c) y2

″(t, c)

0 59099.42 167110.45 38895.17 38895.17 70259.91 70259.91
0.1 63351.94 160561.87 37352.16 41329.04 67362.14 74751.13
0.2 67604.47 154013.29 35809.14 43762.92 64464.37 79242.36
0.3 71856.99 147464.70 34266.13 46196.79 61566.60 83733.59
0.4 76109.51 140916.12 32723.11 48630.67 58668.83 88224.82
0.5 80362.03 134367.54 31180.10 51064.54 55771.06 92716.04
0.6 84614.55 127818.96 29637.08 53498.42 52873.30 97207.27
0.7 88867.08 121270.38 28094.07 55932.29 49975.53 101698.50
0.8 93119.60 114721.80 26551.05 58366.17 47077.76 106189.73
0.9 97372.12 108173.22 25008.04 60800.04 44179.99 110680.95
1 101624.64 101624.64 23465.02 63233.92 41282.22 115172.18
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5. Conclusion

In this research work, a set of neutrosophic diferential
equations were used to develop the arms race model and es-
timate the uncertain parameters, which is recognised as an
important issue of research in international military planning.

By demonstrating the arm race using neutrosophic
fgures, it was possible to satisfy the indeterminate param-
eters as well, which was advantageously helpful for the
planners of military activities in their analysis of armament
expenditures. Additionally, it is found that ranking, ambi-
guity, and appraisal are necessary for contrasting these two
alternatives. Tis strategy is also a promising one for re-
solving other comparable models in a neutrosophic setting.
Te fndings of the indeterminacy function, truth function,
and falsehood function were produced using MATLAB.
Here, it is discovered that the suggested approach
works well.

6. Future Scope

Neutrosophic fractional calculus and the system of nonlinear
diferential equations may both be the subject of future
study. Te area of solving neutrosophic diferential equa-
tions using various numerical methods is one that is cur-
rently developing. In real-world applications, higher-order
neutrosophic diferential equations and partial diferential
equations utilizing neutrosophic numbers can be un-
derstood to resolve the issues for further research.

Abbreviations

IFS: Intuitionistic fuzzy set
FDE: Fuzzy diferential equation
IFDE: Intuitionistic fuzzy diferential equation
SVNN: Single-valued neutrosophic number
TNN: Triangular neutrosophic number
SVTNN: Single-valued triangular neutrosophic number.
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