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Abstract: Frequently in real life situations decision making takes place under fuzzy conditions, 

because the corresponding goals and/or the existing constraints are not clearly defined. Maji et 

al. introduced in 2002 a method of parametric decision making using soft sets as tools and 

representing their tabular form as a binary matrix. As we explain here, however, in cases where 

some or all of the parameters used for the characterization of the elements of the universal set 

are of fuzzy texture, their method does not give always the best decision making solution. In 

order to tackle this problem, we modified in earlier works the method of Maji et al. by replacing 

the binary elements in the tabular form of the corresponding soft set either by grey numbers or 

by triangular fuzzy numbers. In this work, in order to tackle more efficiently cases in which the 

decision maker has doubts even about the correctness of the fuzzy/qualitative characterizations 

assigned to some or all of the elements of the universal set, we replace the binary elements of 

the tabular form by neutrosophic triplets. Our new, neutrosophic decision making method is 

illustrated by an application concerning the choice of a new player by a soccer club. 

Keywords: decision making (DM); fuzzy set (FS); neutrosophic set (NS); soft set (SS); grey 

number (GN) 

 

 

1. Introduction 

Decision Making (DM) is a fundamental process in a great spectrum of human 

activities and many books have been written about it, helping decision makers to make 

smarter choices easier and quicker; e.g. see [1, 2], etc. Frequently in real life situations, 

however, DM takes place under fuzzy conditions, since the corresponding goals and/or 

the existing constraints are not clearly defined. Several methods have been also 

proposed for successful DM in such cases, e.g. [3-5], etc.  

Maji et al. introduced in 2002 a method of parametric DM using soft sets (SS) as 

tools and representing their tabular form as a binary matrix [6]. When some or all of 

the parameters used for the characterization of the elements of the set of the discourse 

(houses in their example) are of fuzzy texture (beautiful and cheap in their example), 

however, their method does not always give the best solution to the corresponding DM 

problem. This happens, because they replace the parameters in the tabular form of the 

corresponding SS with the binary elements 0, 1. In other words, their method, although 

it starts with a fuzzy framework (SS), it continues by using bivalent logic for obtaining 

the required decision (beautiful or not beautiful and cheap or not cheap in their 

example)! In order to tackle this problem, we modified in earlier works the method of 

Maji et al. by using either triangular fuzzy numbers (TFNs) [7] or grey numbers (GNs) 

– see [8], or [9] (section 5.3) - instead of the binary elements in the tabular form of the 

corresponding SS.  

In reality, however, cases appear in which the decision maker has doubts about the 

correctness of the fuzzy/qualitative characterizations assigned to some or all of the 

elements of the set of the discourse (e.g. very beautiful, rather beautiful, etc.). In order 

to study more efficiently the DM process in the previous cases, we introduce here 



neutrosophic sets (NSs) and we replace the binary elements of the method of Maji et al. 

by neutrosophic triplets. The rest of the paper is organized as follows: Section 2 

contains the necessary background about NSs, SSs and GNs needed for the 

understanding of the paper. The DM method of Maji et al., our modification using GNs, 

as well as the new neutrosophic DM method are developed in section 3, illustrated by 

examples concerning the choice of a new player by a soccer club. The article closes 

with a discussion on the results obtained in it, including some hints for future research, 

and the final conclusions, presented in section 4.                  

2. Mathematical Background  

2.1 Fuzzy Sets and Fuzzy Logic 

    Zadeh extended in 1965 the concept of crisp set to the concept of FS [10] on the 

purpose of dealing with the existing in real life partial truths (e.g. rather good, almost 

true, etc.) and of expressing mathematically definitions with no clear boundaries (e.g. 

high mountains, clever people, etc.)  This was succeeded by replacing the characteristic 

function by the membership function, which maps each element of the universal set U 

to the unit interval [0, 1]. In fact, if A is the corresponding FS in U and m: U → [0, 1] 

is its membership function, m(x) is called the membership degree of x in A, for all 

elements x in U. The closer m(x) to 1, the better x satisfies the characteristic property 

of A. And, although the FS A is typically defined as the set of all ordered pairs of the 

form (x. m(x)), ∀ x∈U, for reasons of simplicity many authors identify A with its 

membership function.   

   Most of notions and operations on crisp sets are extended in a natural way to FSs (e.g. 

see [11]). Based on the concept of FS, Zadeh introduced the infinite-valued fuzzy logic 

(FL), in which the truth values are modelled by numbers in the unit interval [12]. FL 

does not oppose the traditional bivalent logic of Aristole (384-322 BC), which used to 

be for many centuries the basic tool of human reasoning being “responsible” for the 

growth of science and human civilization all this time; on the contrary it completes and 

extends it [13]   

   In a later stage, when membership functions were reinterpreted as possibility 

distributions, FSs and FL were used to embrace uncertainty modelling [14, 15]. The 

frequently appearing in real life uncertainty is due to several reasons, like randomness, 

imprecise or incomplete data, vague information, etc. Probability theory has been 

proved sufficient to tackle only the cases of uncertainty which are due to randomness 

[16]. Starting from Zadeh’s FSs, however, several theories have been developed during 

the last years on the purpose of tackling more effectively all the forms of the existing 

uncertainty. The main among those theories are briefly reviewed in [17]. In the present 

paper we are going to use elements from the theories of NSs, SSs and GNs needed for 

its understanding, which are exposed below.    

2.2 Neutrosophic Sets  

     Atanassov in 1986, considered in addition to Zadeh’s membership degree the 

degree of non-membership and extended FS to the notion of intuitionistic FS (IFS) 

[18]. Smarandache in 1995, inspired by the frequently appearing in real life 

neutralities - like <friend, neutral, enemy>, <win, draw, defeat>, <high, medium, 

short>, etc. - generalized IFS to the concept of NS by adding the degree of 

indeterminacy or neutrality [19]. The word “neutrosophy” is a synthesis of the word 

“neutral´ and the Greek word “sophia” (wisdom) and means “the knowledge of 

neutral thought”. The simplest form of a NS is defined as follows:     



   Definition 1: A single valued NS (SVNS) A in the universe U is of the form  

A = {(x,T(x),I(x),F(x)): xU, T(x),I(x),F(x)[0,1], 0T(x)+I(x)+F(x)3}  (1) 

     In equation (1) T(x), I(x), F(x) are the degrees of truth (or membership), 

indeterminacy (or neutrality) and falsity (or non-membership) of x in A respectively, 

called the neutrosophic components of x. For simplicity, we write A<T, I, F>. 

     Indeterminacy is defined to be in general everything that exists between the 

opposites of truth and falsity [20].  

     Example 1: Let U be the set of the players of a soccer club and let A be the SVNS 

of the good players of the club. Then each player x is characterized by a neutrosophic 

triplet (t, i, f) with respect to A, with t, i, f in [0, 1]. For example, x(0.7, 0.1, 0.4) ∈ A 

means that the coach of the club is 70% sure that x is a good player, but at the same 

time he has a 10% doubt about it and a 40% belief that x is not a good player. In 

particular, x (0, 1, 0) ∈ A means that the coach does not know absolutely nothing 

about player x (new player). 

     If the sum T(x) + I(x) + F(x) < 1, then it leaves room for incomplete information 

about x, if it is equal to 1 for complete information and if it is >1 for inconsistent (i.e. 

contradiction tolerant) information about x. A SVNS may contain simultaneously 

elements leaving room to all the previous types of information. All notions and 

operations defined on FSs are naturally extended to SVNSs [21].  

    Summation of neutrosophic triplets is equivalent to the union of NSs. That is why 

the neutrosophic summation and implicitly its extension to neutrosophic scalar 

multiplication can be defined in many ways, equivalently to the known in the 

literature neutrosophic union operators [22]. For the needs of the present work, 

writing the elements of a SVNS A in the form of neutrosophic triplets and 

considering them simply as ordered triplets we define addition and scalar product as 

follows: 

    Definition 2: Let (t1, i1, f1), (t2, i2, f2) be in A and let k be a positive number. Then:   

 The  sum (t1, i1, f1) + (t2, i2, f2) = (t1+ t2,  i1+ i2, f1+ f2)     (2) 

 The scalar product k(t1, i1, f1) = (kt1, k i1, kf1)    (3) 

   Remark 1: The summation and scalar product of the elements of a SVNS A with 

respect to Definition 2 need not be a closed operation in A, since it may happen that 

(t1+ t2)+(i1+ i2)+(f1+ f2)>3 or kt1+k i1+kf1>3. With the help of Definition 2, however, 

one can define in A the mean value of a finite number of elements of A as follows: 

  Definition 3: Let A be a SVNS and let (t1, i1, f1), (t2, i2, f2), …., (tk, ik, fk)  be a finite 

number of elements of A. Assume that (ti, ii, fi) appears ni times in an application, i = 

1,2,…., k. Set n = n1+n2+….+nk. Then the mean value of all these elements of A is 

defined to be the element of A 

(tm, im, fm) = 1

n
[n1(t1, i1, f1)+n2(t2, i2, f2)+….+nk(tk, ik, fk)]   (4)      

2.3 Soft Sets 

    A disadvantage of FSs and of all their extensions involving membership degrees (like 

IFSs, NSs, etc.), is that there is not any exact rule for defining properly the 

corresponding membership functions. The methods used for this are usually statistical 

or intuitive/empirical.  Moreover, the definition of the membership function is not 



unique depending on the “signals” that each observer receives from the environment. 

For example, defining the FS of “young people” one could consider as young all 

persons aged less than 30 years and another one all persons aged less than 40 years. As 

a result the second observer will assign membership degree 1 to all people aged between 

30 and 40 years, whereas the first one will assign to them membership degrees less than 

1. Analogous differences are logically expected to appear to the membership degrees 

of all the other ages. In other words, the only restriction for the definition of the 

membership function is that it must be compatible to the common sense; otherwise the 

resulting FS does not give a creditable description of the corresponding real situation. 

This could happen, for instance, if in the previous example people aged more than 70 

years possessed membership degrees ≥0.5.  

     For overpassing this problem, the concept of interval-valued FS (IVFS) was 

introduced in 1975. An IVFS is defined by mapping the universe U to the set of the 

closed subintervals of [0, 1] [23]. Other related to FS theories were also developed in 

which the definition of a membership function is not necessary (grey systems and 

numbers [24]), or it is overpassed by using a pair of crisp sets giving the lower and 

upper bound of the original set (rough sets [25]). Molodstov, introduced in 1999 the 

concept of SS for tackling the uncertainty in a parametric manner, not needing, 

therefore, the definition of a membership function [26]. Namely, a SS is defined as 

follows:      

    Definition 4: Let E be a set of parameters, let A be a subset of E, and let f be a map 

from A into the power set P(U) of the universe U. Then the SS (f, A) in U is defined 

as the set of the ordered pairs 

(f, A) = {(e, f(e)): e ∈ A}   (5) 

     In other words, a SS is a parametrized family of subsets of U. The name "soft" was 

given due to the fact that the form of (f, A) depends on the parameters of A. For each 

e ∈ A, its image f(e) in P(U) is called the value set of e in (f, A), while f is called the 

approximation function of (f, A).  

     Example 2: Let U= {H1, H2, H3} be a set of houses and let E = {e1, e2, e3} be the 

set of parameters e1=cheap, e2=beautiful and e3= expensive. Let us further assume that 

H1, H2 are cheap, H3 is expensive and H2, H3 are beautiful houses. Then, a map f: E

 P(U) is defined by f(e1)={H1, H2},  f(e2)={H2, H3} and f(e3)={H3}. Therefore, the 

SS (f, E) in U is the set of the ordered pairs  

(f, E) = {(e1, {H1, H2}), (e2, {H2, H3}, (e3, {H3}}    (6) 

    Maji et al. [6] introduced a tabular representation of SSs in the form of a binary 

matrix in order to be stored easily in a computer’s memory. For instance, the tabular 

representation of the soft set (f, E) of the previous example is given by Table 1.      

Table 1. Tabular representation of the SS of Example 2 

 e1 e2 e3 

H1 1 0 0 

H2 1 1 0 

H3 0 1 1 

     A FS in U with membership function y = m(x) is a SS in U of the form (f, [0, 1]), 

where f(α)={xU: m(x)α} is the corresponding a-cut of the FS, for each α in [0, 1]. 



Consequently the concept of SS is a generalization of the concept of FS. All notions 

and operations defined on FSs are extended in a natural way to SSs [27]. 

2.4 Grey Numbers   

    The theory of grey systems [24] introduces an alternative way for managing the 

uncertainty in case of approximate data. A grey system is understood to be any system 

which lacks information, such as structure message, operation mechanism or/and 

behavior document.  

     Closed real intervals, are used for performing the necessary calculations in grey 

systems. In fact, a closed real interval [x, y] could be considered as representing a real 

number T, termed as a grey number (GN), whose exact value in [x, y] is unknown. 

We write then T ∈ [x, y]. A GN T, however, is frequently accompanied by a 

whitenization function f: [x, y] → [0, 1], such that, if f(a) approaches 1, then a in [x, y] 

approaches the unknown value of T. If no whitenization function is defined, it is 

logical to consider as a representative crisp approximation of the GN A the real 

number  

V(A) = 
x+y

2
          (7) 

     The arithmetic operations on GNs are introduced with the help of the known 

arithmetic of the real intervals [28]. In this work we are going to make use only of the 

addition of GNs and of the scalar multiplication of a GN with a positive number, 

which are defined as follows:  

    Definition 5: Let A ∈ [x1, y1], B ∈ [x2, y2] be two GNs and let k be a positive 

number. Then: 

 The sum: A+B is the GN A+B ∈ [x1+y1, x2+y2]   (8)  

 The scalar product  kA is the GN kA ∈ [kx1, ky1]   (9) 

      

3. The Parametric Assessment Method 

    The parametric assessment method of Maji et al. [6], our modification using GNs [8, 

9] and our new method using NSs are developed in this section through suitable 

examples concerning the choice of a new player by a soccer club. 
 
3.1 The Method of Maji et al. 

    Let us consider the following example:  

    Example 3: A soccer club wants to choose a new player among 6 candidates, say P1, 

P2, P3, P4, P5 and P6. The desired qualifications of the new player are to be fast, younger 

than 30 years, higher than 1.70 m and experienced. Assume that P1, P2, P6 are the fast 

players, P2, P3, P5,P6 are the players being younger than 30 years, P3, P5 are the players 

with heights greater than 1.70 m and P4 is the unique experienced player. Which is the 

best choice for the club? 

    Solution: Let U be the set of the 6 candidate players. Consider the parameters 

e1=fast, e2=younger than 30 years, e3=higher than 1.70 m, e4=experienced and set E = 

{e1, e2, e3, e4}. Define the map f: E → P(U)by f(e1) = {P1, P2, P6}, f(e2) = {P2, P3, P5, 

P6}, f(e3) = {P3, P5} and f(e4) = {P4}. Then the tabular form of the SS (f, E) is shown 

in Table 2.      

 



Table 2. Tabular representation of the SS of Example 3 

 e1 e2 e3 e4 

P1 1 0 0 0 

P2 1 1 0 0 

P3 0 1 1 0 

P4 0 0 0 1 

P5 0 1 1 0 

P6 1 1 0 0 

     The choice value of each player is calculated by adding the binary elements of the 

row of Table 2 in which he belongs. The players P1 and P4, therefore, have choice value 

1 and all the others have choice value 2. Consequently, the right decision is to choose 

one of the players P2, P3, P5, and P6. 
 
3.2 Our Method Using GNs 
  
     The previous decision, obtained by the method of Maji et al., is obviously not very 

helpful for the soccer club. Observe, however, that the parameters e1 and e4, in contrast 

to e2 and e3, have not a bivalent texture. A player, for example, could not be very fast, 

but quite fast, or rather experienced, etc. This inspired us to characterize the 

qualifications of the players with respect to the parameters e1 and e4 in the tabular matrix 

of the previous SS (f, E) by using the linguistic grades A=excellent, B=very good, 

C=good, D=mediocre and F= not satisfactory instead of the binary element 0. To show 

how one works in this case for making the right decision, let us modify Example 3 as 

follows: 

     Example 4: Reconsider Example 3 and assume that the technical manager of the 

soccer club, after a more careful inspection of the qualifications of the 6 candidate 

players, decided to use the following Table 3 instead of Table 2 for the DM process. 

Which is the best choice for the club in this case? 

Table 3. Tabular representation of the SS of Example 4 

 e1 e2 e3 e4 

P1 1 0 0 C 

P2 1 1 0 F 

P3 C 1 1 C 

P4 D 0 0 1 

P5 D 1 1 C 

P6 1 1 0 D 

 

    Solution: Assign to each of the qualitative grades A, B, C, D, F a GN, denoted for 

simplicity by the same letter, as follows: A = [0.85, 1], B = [0.75, 0.84], C= [0.6, 0.74], 

D = [0.5, 0.59], F = [0, 0.49]. From Table 3 then, one calculates, with the help of 

formulas (7), (8) and (9), the choice value of each player in the following way. P1: 



1+V(C) = 1+ 0.6 0.74

2

  = 1.67, P2: 2+V(F) = 2.245, P3: 2+V(2C) = 3.34, P4: 1+V(D)= 

1.545, P5: 2+V(D+C) = 3.215, P6: 2+V(D)=2.545. The right decision, therefore, is to 

choose the player P3. 

     Remark 2: The choices of the qualitative grades A, B, C, D, F, as well as of the 

intervals for translating them in the numerical scale 0-1, correspond to generally 

accepted standards. The decision maker, however, could use, with respect to his/her 

goals, more or less qualitative grades (e.g. by adding E between D and F, etc.) and could 

also change the corresponding intervals (e.g. by setting A= [0.9, 1], B = [0.8, 0.89], C= 

[0.7, 0.79], D = [0.6, 0.69], F = [0, 0.59], or otherwise). Such changes, however, does 

not affect the generality of our method  

 

3.3. The Neutrosophic DM Method 
 
    As it was already mentioned in our Introduction, DM situations appear frequently in 

reality, in which the decision maker has doubts about the correctness of the 

fuzzy/qualitative grades assigned to some or all of the elements of the set of the 

discourse. In such cases, the best way to perform the DM process is to use NSs. In 

Example 4, for instance, considering the set U of the 6 candidate players as the universal 

set, the decision maker could define in U the NSs of the fast and of the experienced 

players by assigning the suitable neutrosophic triplets to each player of U. In order to 

have complete information, we should have t+i+f = 1, for each triplet (t, i, f).  Then, 

he/she could continue the DM process by replacing in Table 3 the qualitative grades by 

the corresponding neutrosophic triplets and the binary elements 0, 1 by the neutrosophic 

triplets (0, 0, 1) and (1, 0, 0)  respectively. This process will be illustrated by the 

following Example 5. 

   Example 5: Reconsider Example 4 and assume that the technical manager of the 

soccer club, being not sure about the qualitative grades assigned to each of the 6 

candidate players, he decided to proceed by replacing them by neutrosophic triplets, in 

the way that we have previously described. As a result, the tabular matrix of the DM 

process took the form of the following Table 4. Which is the best decision for the club 

in this case?  
 

Table4. Tabular representation of the SS of Example 5 

 e1 e2 e3 e4 

P1 (1, 0, 0) (0, 0, 1) (0, 0, 1) (0.6, 0.3, 0.1) 

P2 (1, 0, 0) (1, 0, 0) (0, 0, 1) (0.2, 0.2, 0.6) 

P3 (0.5, 0.4, 0.1) (1, 0, 0) (1, 0, 0) (0.6, 0.2, 0.2) 

P4 (0.5, 0.2, 0.3) (0, 0, 1) (0, 0, 1) (1, 0, 0) 

P5 (0.5, 0.1, 0.4) (1, 0, 0) (1, 0, 0) (0.6, 0.3, 0.1) 

P6 (1, 0, 0) (1, 0, 0) (0, 0, 1) (0.4, 0.4, 0.2) 

    Solution: The choice value of each player in this case is defined to be the mean value 

of the neutrosophic triplets of the line of Table 4 in which he belongs. Thus, by equation 

(4), the choice value of P1 is equal to 1

4
[(1, 0, 0)+2(0, 0, 1)+(0.6, 0.3, 0.1)] = 1

4
(1.6, 

0.3, 2.1) = (0.4, 0.075, 0.525). In the same way one finds that the choice values of P2, 



P3, P4, P5 and P6 are (0.55, 0.005, 0.4), (0.775, 0.15, 0.075), (0.375, 0.05, 0.575), (0.775, 

0.1, 0.125) and (0.6, 0.1, 0.3) respectively. 

    In this case the club’s technical manager could use either an optimistic criterion by 

choosing the player with the greatest truth degree, or a conservative criterion by 

choosing the player with the lower falsity degree. Consequently, using the optimistic 

criterion he must choose one of the players P3 and P5, whereas using the conservative 

criterion he must choose the player P3. A combination of the two criteria leads to the 

final choice of player P3. Observe, however, that, since the indeterminacy degree of P3 

is 0.15 and of P5 is 0.1, there is a slightly greater doubt about the qualifications of P3 

with respect to the qualifications of P5. In other words, the choice of P3 is connected 

with a slightly greater risk. In final analysis, therefore, all the neutrosophic components 

assigned to each player give useful information about his qualifications. 

 

4. Discussion and Conclusions 
 
     In this paper a parametric DM method of hybrid character was presented illustrated 

by suitable examples about the choice of a new player from a football club. The whole 

discussion performed leads to the following conclusions: 

 The parametric DM method is based on the introduction of a set E of 

parameters characterizing the elements of the set U of all possible solutions of 

the corresponding DM problem, the definition with respect to E of a suitable 

SS in U and the use of its tabular representation T as a tool for the DM process. 

 When all the parameters of E are of bivalent texture (yes or no), then T takes 

the form of a binary matrix, wherefrom the decision maker calculates the 

choice value of each element of U by adding the binary elements of the row of 

T in which this element appears. 

 When some or all of the parameters of E are of fuzzy texture and the decision 

maker has no doubts about the qualitative characterizations assigned to the 

elements of U with respect to these parameters, then the binary elements of T 

corresponding to the fuzzy parameters are replaced by suitable GNs and the 

choice value of each element of U is calculated by adding the remaining in the 

corresponding row of T binary elements and the representative real values of 

the GNs appearing in it.  

 When some or all of the parameters of E are of fuzzy texture and the decision 

maker do has doubts about the qualitative characterizations assigned to the 

elements of U with respect to these parameters, then each parameter of E is 

expressed in the form of a NS in U and the binary elements of T are replaced 

by the corresponding neutrosophic triplets. In this case, the choice value of 

each element of U is obtained by calculating the mean value of the 

neutrosophic triplets of the row of T in which this element appears.  

     As it has been already mentioned in section 2.1 of this paper, several theories 

extending / generalizing Zadeh’s FSs have been developed during the last years on the 

purpose of tackling more effectively the existing in real life uncertainty. None of these 

theories, however, can tackle efficiently alone all the forms of the existing uncertainty, 

but the combination of all of them provides an adequate framework towards this target.  

    The results obtained in this and earlier works of the present author give strong 

indications that hybrid methods applied to several situations in fuzzy environments 

could give better results, not only for DM, as it happened here, but also for assessment 

- e.g. see [9] (section 5.2) – and probably for many other topics. This is, therefore, a 

promising area for further research.     
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