AN IMPROVEMENT ON THE SMARANDACHE DIVISIBILITY THEOREM

Maohua Le

Department of Mathematics, Zhanjiang Normal College
Zhanjiang, Guangdong, P.R. China.

Abstract. Let \(a, n \) be positive integers. In this paper we prove that
\[
\frac{(a^n - a)(n - 1)!}{n / 2}!
\]

For any positive integer \(a \) and \(n \), Smarandache [3] proved that

\[
(1) \quad n \mid (a^n - a)(n - 1)!. \]

The above division relation is the Smarandache divisibility theorem (see [1, Notions 126]). In this paper we give an improvement on (1) as follows:

Theorem. For any positive integers \(a \) and \(n \), we have

\[
(2) \quad n \mid (a^n - a)[n / 2]!,
\]

where \([n / 2]\) is the largest integer which does not exceed \(n / 2 \).

Proof. The division relation (2) holds for \(n \leq 9 \), we may assume that \(n > 9 \). By Fermat's theorem (see [2, Theorem 71]), if \(n \) is a prime, then we have

\[
(3) \quad n \mid (a^n - a),
\]
for any \(a \). We see from (3) that (2) is true.

If \(n \) is a composite number, then we have \(n = pd \), where \(p, d \) are integers satisfying \(p \geq q \geq 2 \). Further, if \(p \neq q \), then we have \(n \mid p! \). It implies that \(n \mid (n/q)! \). Since \(q \geq 2 \), we get

\[
(4) \quad n \mid \frac{n}{2}! \\
\]

If \(p = q \), then \(n = p^2 \) and

\[
(5) \quad n \mid (2p)! \\
\]

Since \(n > 9 \), we have \(n \geq 4^2 \), \(p \geq 4 \) and \(2p \leq n/2 \). Hence, we see from (5) that (4) is also true in this case. The combination of (3) and (4), the theorem is proved.

References