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Abstract: The single valued neutrosophic probabilistic hesitant fuzzy rough Einstein aggregation
operator (SV-NPHFRE-AO) is an extension of the neutrosophic probabilistic hesitant fuzzy rough
set theory. It is a powerful decision-making tool that combines the concepts of neutrosophic logic,
probability theory, hesitant fuzzy sets, rough sets, and Einstein aggregation operators. SV-NPHFRE-
AO can be applied in many fields, including livestock decision making. Making judgments about
a wide range of issues, including feed formulation, breeding program design, disease diagnostics,
and market analysis, is part of the process of managing livestock. By combining data from many
sources, SV-NPHFRE-AO can assist decision-makers in livestock management in integrating and
evaluating diverse criteria, which can result in more informed choices. It also provides a more
accurate and comprehensive representation of decision-making problems by considering the multiple
criteria involved and the relationships between them. The single valued neutrosophic set (SV-
NS) aggregation operators (AOs) based on Einstein properties using hesitant fuzzy sets (HFSs)
and probabilistic hesitant fuzzy sets (PHFSs) with rough sets (RSs) are proposed in this study and
can handle a large volume of data, making them suitable for complex and large-scale livestock
decision-making problems. We first defined SV-neutrosophic probabilistic hesitant fuzzy rough
weighted averaging (SV-NPHFRWA), SV-neutrosophic probabilistic hesitant fuzzy rough weighted
geometric (SV-NPHFRWG), SV-neutrosophic probabilistic hesitant fuzzy rough ordered weighted
averaging (SV-NPHFROWA) and SV-neutrosophic probabilistic hesitant fuzzy rough hybrid weighted
averaging (SV-NPHFRHWA) AOs. Then, based on Einstein properties, we extended these operators
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and developed the single-valued neutrosophic probabilistic hesitant fuzzy rough Einstein weighted
averaging (SV-NPHFREWA) operator. Additionally, an illustrative scenario to show the applicability
of the suggested decision-making approach is provided, along with a sensitivity analysis and
comparison analysis, which demonstrate that its outcomes are realistic and reliable. We also provide
another relation between criteria and alternatives of decision-making using neutrosophic information
with quaternion context. By using such type of operators, livestock managers can make more informed
decisions, leading to better animal health, higher productivity, and increased profitability.

Keywords: neutrosophic information; Einstein aggregation operators; probabilistic hesitant
information; rough sets; multi-criteria decision-making
Mathematics Subject Classification: 03B52, 03E72

1. Introduction

Fuzzy set theory (FST) is a potent tool that can be used to handle difficult decision-making problems
involving numerous criteria [1]. This method is known as multi-criteria decision-making (MCDM).
There are several situations in livestock management where MCDM with FST can be used. It can
be used in feed formulation to choose the best mixture of feed ingredients that meets the nutritional
needs of the animals while lowering the cost. The technique can be used to assess various feed
formulations based on numerous factors such as nutritional value, digestibility, and cost. FST can
also be utilized to reflect the uncertainty and ambiguity in the nutritional requirements of the animals.
In breeding program design, it can also be used to select the best breeding strategy that maximizes
the genetic potential of the animals while minimizing the risk of inbreeding. FST can be used to
model the uncertainty and vagueness in the genetic parameters, and the MCDM strategy can be used to
evaluate different breeding strategies based on multiple criteria such as genetic diversity, productivity,
and genetic risk [2, 3].

In disease diagnosis, MCDM can be used to identify the best treatment strategy that maximizes
the chances of recovery while minimizing the risk of side effects. This theory can be used to model
the uncertainty and vagueness in the symptoms and diagnostic test results, and the MCDM method
can be used to evaluate different treatment strategies based on multiple criteria such as effectiveness,
safety, and cost. In market analysis, this type of methodology can be used to identify the best
marketing strategy that maximizes the profitability of the livestock business while minimizing the
risk of losses. Fuzzy set theory can be used to model the uncertainty and vagueness in the market
conditions and customer preferences, and the MCDM technique can be used to evaluate different
marketing strategies based on multiple criteria such as profitability, market share, and customer
satisfaction. By incorporating the principles of fuzzy set theory and MCDM, livestock managers can
make more informed decisions based on multiple criteria and handle the uncertainty and vagueness
that are inherent in many livestock management problems [4, 5].

A group of elements (objects) having fuzzy boundaries is represented mathematically as a fuzzy set
(FS), which allows for the possibility of a gradual change in an element’s belongingness to a group,
from fully belonging to not belonging. This concept is put forth in the fuzzy sets theory as a means
of mathematically expressing fuzzy concepts that individuals use to explain, among other things, how
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they view real systems, their preferences, and goals [6, 7]. One can select the most effective food loss
and waste drivers to promote sustainability by applying fuzzy decision theory. Systems for reducing
food loss and waste face numerous difficulties that make it difficult to select the appropriate course
of action. When dealing with unstructured scenarios in decision-making situations, classic or crisp
methods may not always be the most effective. In 1965, Zadeh [8] designed fuzzy sets (FS) as a
method to deal with this contradiction. In FSs, Zadeh assigns membership grades in the range [0, 1]
to a set of components. Since many of the set theoretic components of crisp conditions were given for
fuzzy sets, Zadeh’s work on this area is noteworthy [9].

An improved version of the fuzzy set (FS) that contains membership and non-membership degrees
was the intuitionistic fuzzy set (IFS), which was the subject of Atanassov’s [10] research. Over the
past few decades, IFSs have been demonstrated to be helpful and frequently used by academics to
assess uncertainty and instability in data. A single-valued neutrosophic set (SV-NS), which can deal
with inaccurate, ambiguous, and incompatible data issues, was proposed by Wang et al. [11]. SV-NS
has received a lot of attention from academics because it is a potent universal systematic approach. Ye
discussed the correlation and information energy of SV-NSs in [12]. The use of SV-NSs as a decision-
making tool was subsequently investigated by many researchers [13–15]. The idea of a neutrosophic
rough set (RS) has been described [16], as a the generalization of fuzzy rough sets (FRSs).

Despite the fact that these methods effectively capture uncertainty, they are unable to simulate
circumstances where an expert’s refusal to make a conclusion plays a significant role. Consider a
scenario where a panel of six experts is asked to choose the best applicant throughout the hiring
process, but two of them decline to make a choice. The number of decision makers is regarded to
be 4 as opposed to 6, i.e., the refusal-providing professionals are completely disregarded, and the
decision is established using the responses given by the 4 determination-providing experts only, when
analyzing the informative data using the existing methodologies [17]. This leads to a huge loss of
knowledge and might produce subpar outcomes. Zhu and Xu [18] developed probabilistic hesitant
fuzzy sets (PHFSs) to handle such refusal-oriented instances. The review makes it obvious that (i)
the HFS is a dynamic support structure with a capacity to reduce subjective randomness, (ii) it also
makes it easier for experts to gain insight into preferences, and (iii) it ignores the likelihood that each
element will occur. Zhou and Xu [19] proposed a generalized structure known as probabilistic hesitant
fuzzy information (PHFI) that assigns an occurrence probability to each element in response to the
claims stated in the systematic review. By doing this, it is possible to determine the confidence of each
element, which serves as potential data for MCDM [20].

When making decisions, especially in MCDM, where several criteria or considerations must be
taken into account, aggregation operators (AOs) are essential. The knowledge or preferences of
decision-makers or stake holders are combined using aggregate operators to get an overall score or
ranking for each alternative under consideration. The ordered weighted averaging (OWA), weighted
product, weighted average, and Choquet integral are some common AOs used in MCDM [21–23].
Depending on the preferences of the decision maker and the characteristics of the choice problem,
these operators have various qualities and are useful for various decision-making scenarios.

The Einstein aggregation operator (EAO) is a powerful and flexible aggregation operator used in
MCDM. It was introduced by C. Carlsson and R. Fuller [24] in 2001 as an extension of the well-known
weighted average operator. One of the unique features of the EAO is that it allows the decision maker to
specify a set of “aggregation weights” for each criterion, which represent the relative importance of that
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criterion compared to the others. These weights can be different for each alternative being considered,
and can even vary across different levels or dimensions of the criteria. In order to more accurately
represent complex and uncertain decision-making problems, neutrosophic information with quaternion
context and a hybrid model that combines various uncertainty measures and builds a relationship
between alternatives and criteria are also presented. The literature still lacks research on the new
operators for decision-making used in this study. The creation of novel AOs is specifically required
in order to manage the complexity and inherent uncertainty of decision-making situations employing
SV-NPHFRS in a more effective and efficient manner. There is a need for their application to larger
and more sophisticated decision-making situations, as the previous literature has mostly concentrated
on using these AOs to solve small-scale decision-making challenges. The potential of these AOs
in domains other than decision-making, such as forecasting and pattern recognition, also needs to be
investigated. The development of new operators for SV-NPHFRS that can better capture the complexity
and uncertainty of decision-making problems, as well as assessing their efficacy on larger and more
complicated decision-making problems, could thus be the main areas of future research. To fully
explore their potential and limitations, research on the use of these operators in contexts other than
decision-making is also necessary. Based on SV-neutrosophic rough sets (SV-NRSs), in this article,
we propose some new AOs because of the following reasons:

(1) Decision-makers have more discretion as a result of SV-NPHFRE-AO’s integration of neutrosophic
logic, probability theory, hesitant fuzzy sets, rough sets, and Einstein aggregation operator.

(2) SV-NPHFRE-AO can handle different types of information, such as qualitative and quantitative
data, linguistic terms, and probabilistic information, which gives more flexibility in decision-
making.

(3) SV-NPHFRE-AO can integrate multiple criteria in decision making, allowing decision-makers to
consider multiple factors that are relevant to the decision problem. This is important because
many real-world decisions involve multiple factors that must be considered, and SV-NPHFRE-
AO can help decision-makers to prioritize and weigh these factors appropriately.

(4) For first evaluation, SV-neutrosophic weighted averaging (SV-NWA) and SV-neutrosophic
weighted geometric (SV-NWG) AOs are unable to take into account the familiarity of experts
with the investigated items, while SV-NPHFREWA and SV-NPHFREOWA AOs may.

(5) This article sought to address more complicated and advanced data due to the clarity of the
SV-NPHFREWA and SV-NPHFREOWA AOs and the fact that they cover the decision-making
technique.

(6) We also use the neutrosophic data in quaternion context to find the relationship between the
decision making objectives.

(7) Two types of information are typically needed from evaluation specialists in real-world decision-
making challenges (called Positive and Negative): Performance of the assessment objects and
expertise in the evaluation sectors. All currently used methods only consider positive data and
lack negative information in the experts’ assessments. The proposed work covers the limitation
of all existing drawbacks.
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Consequently, the following are the research’s results:

• To begin, we recognize from the scientific literature the theory of SV-neutrosophic probabilistic
hesitant fuzzy rough sets.
• We undertake the development of new AOs like SV-NPHFREWA and SV-NPHFREOWA AOs.
• An illustrative scenario to show the applicability of the suggested decision-making approach is

provided, along with a sensitivity analysis and comparison analysis, that demonstrate that its
outcomes are realistic and reliable.

2. Preliminaries

Let us through the basics of fuzzy sets, including intuitionistic fuzzy sets, neutrosophic sets, single-
valued neutrosophic sets, and probabilistic fuzzy sets, in this part. Once they have been vetted, these
ideas will be applied here.

Definition 1. For a fixed set β, a FS [8] = in β is denoted as

= = {〈ξ[, υ= (ξ[)〉 |ξ[ ∈ β} ,

where each ξ[ ∈ β, the membership grade υ= : β→ ∆ specifies the degree to which the element ξ[ ∈ =,
where ∆ = [0, 1] is the interval.

Definition 2. For a fixed set β, an IFS [10] = in β is mathematically described as

= = {〈ξ[, υ= (ξ[) , τ= (ξ[)〉 |ξ[ ∈ β} .

For each ξ[ ∈ β, the membership grade υ= : β → ∆ and the non-membership grade τ= : β → ∆

specify the membership and non-membership of ξ[ to the intuitionistic fuzzy set =, respectively, where
∆ = [0, 1] is the unit interval. Moreover, it is required that 0 ≤ υ= (ξ[) + τ= (ξ[) ≤ 1, for each ξ[ ∈ β.

Definition 3. Let N be a fixed set, and ξ[ ∈ N. A neutrosophic set [11] ς in N is denoted as
belongingness function υ= (ξ[) , an indeterminacy function τ= (ξ[) and a non-belongingness function
Υ= (ξ[). υ= (ξ[) , τ= (ξ[) and Υ= (ξ[) are real subsets of ]0−,1+[ and

υ= (ξ[) , τ= (ξ[) ,Υ= (ξ[) : N −→
]
0−,1+[

The representation of neutrosophic set (NS) ς is mathematically defined as:

ς = {〈ξ[, υ= (ξ[) , τ= (ξ[) ,Υ= (ξ[))〉 |ξ[ ∈ N},

where
0− < ξ[, υ= (ξ[) + τ= (ξ[) + Υ= (ξ[) ≤ 3+.

Definition 4. [11, 25] Let N be a fixed set and ξ[ ∈ N. A single-valued neutrosophic set (SV-NS) B
in N is defined as truth membership grade υ= (ξ[) , an indeterminacy membership grade τ= (ξ[) and a
falsity membership grade Υ= (ξ[). υ= (ξ[) , τ= (ξ[) and Υ= (ξ[) are real subsets of [0, 1] , and

υ= (ξ[) , τ= (ξ[) ,Υ= (ξ[) : N −→ [0, 1] .
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The representation of single valued neutrosophic set (SV-NS) B is mathematically defined as:

B = {〈ξ[, υ= (ξ[) , τ= (ξ[) ,Υ= (ξ[))〉 |ξ[ ∈ N},

where
0 < υ= (ξ[) + τ= (ξ[) + Υ= (ξ[) ≤ 3.

Definition 5. For a fixed set β, a probabilistic fuzzy set (PFS) [26, 27] = in β is presented as

= = {〈ξ[, (ξ[) /Ξ[〉 |ξ[ ∈ β} ,

where (ξ[) a subset of [0, 1], and (ξ[) /Ξ[ represents the membership degree of ξ[ ∈ β in =. And Ξ[

represent the possibilities of (ξ[), with constraint that
∑
[ Ξ[ = 1.

Definition 6. A quaternion neutrosophic set (QNS) is given by ŃQ : N→ [0, 1] such that

ŃQ(ξi + τ j + Υk) = min{X(ξ),Y(τ),Z(Υ)}

for some (ξ, τ,Υ) ∈ NQ and X,Y ,Z ∈ <NQ , where <NQ is a quaternion neutrosophic set. For better
understanding X, is called the membership function, Y is called the indeterminacy function, and
Z is called the non membership function. Here the function satisfied the following condition for a
quaternion neutrosophic set (QNS) as

0 ≤ ξ + τ + Υ ≤ 3

and
(ξ, τ,Υ)→ [0, 1].

Definition 7. Let =1 =
(
υ

1
/Ξ

1
, τ

1
/$

1
,Υ

1
/φ

1

)
and =2 =

(
υ

2
/Ξ2 , τ2

/$
2
,Υ

2
/φ

2

)
be two SV-NPFNs. The

basic operational laws [28, 29] are defined as

(1) =1 ∪ =2 =



⋃
ξ1∈υ1,Ξ1∈Ξ1
ξ2∈υ2,Ξ2∈Ξ2

(max(ξ1/Ξ1, ξ2/Ξ2)),
⋃

Λ1∈τ1 ,$1∈$1
Λ2∈τ2 ,$2∈$2

(min(Λ1/$1,Λ2/$2)),

⋃
%1∈Υ1 ,φ1∈φ1
%2∈Υ2 ,φ2∈φ2

(min(%1/φ1, %2/φ2))


,

(2) =1 ∩ =2 =



⋃
ξ1∈υ1,Ξ1∈Ξ1
ξ2∈υ2,Ξ2∈Ξ2

(min(ξ1/Ξ1, ξ2/Ξ2)),
⋃

Λ1∈τ1 ,$1∈$1
Λ2∈τ2 ,$2∈$2

(max(Λ1/$1,Λ2/$2)),

⋃
%1∈Υ1 ,φ1∈φ1
%2∈Υ2 ,φ2∈φ2

(max(%1/φ1, %2/φ2))


,

(3) =c
1 =

{
Υ

ς
/φ, τ

ς
/$, υ

ς
/Ξ

}
.

Definition 8. Let =1 = (υ1/Ξ1, τ1/$1,Υ1/φ1) and =2 = (υ2/Ξ2, τ2/$2,Υ2/φ2)
be two SV-neutrosophic probabilistic hesitant fuzzy numbers (SV-NPHFNs) and η > 0 (∈ R). Then,
their operations [30] are presented as:
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(1) =1 ⊕ =2 =



⋃
ξ1∈υ1,ξ2∈υ2
Ξ1∈Ξ1 ,Ξ2∈Ξ2

(ξ1 + ξ2 − ξ1ξ2/Ξ1Ξ2) ,

⋃
Λ1∈τ1

,Λ2∈τ2
$1∈$1 ,$2∈$2

(Λ1Λ2/$1$2),

⋃
%1∈Υ1,%2∈Υ2
φ1∈φ1,φ2∈φ2

(%1%2/φ1φ2)


,

(2) =1 ⊗ =2 =



⋃
ξ1∈υ1 ,ξ2∈υ2
Ξ1∈Ξ1 ,Ξ2∈Ξ2

(ξ1ξ2/Ξ1Ξ2) ,

⋃
Λ1∈τ1 ,Λ2∈τ2
$1∈$1,$2∈$2

(Λ1 + Λ2 − Λ1Λ2/$1$2)

⋃
%1∈Υ1,%2∈Υ2
φ1∈φ1,φ2∈φ2

(%1 + %2 − %1%2/φ1φ2)


,

(3) η=1 =

 ⋃
ξ1∈υ1 ,Ξ1∈Ξ1

(1 − (1 − ξ1)η/Ξ1) ,
⋃

Λ1∈τ, $1∈$1

(
Λ
η
1/$1

)
,

⋃
%1∈Υ1 ,φ1∈φ1

(
%
η
1/φ1

) ,
(4) =

η
1 =

 ⋃
ξ1∈υ1,Ξ1∈Ξ1

(
ξ
η
1/Ξ1

)
,

⋃
Λ1∈τ1,$1∈$1

(
Λ
η
1/$1

)
,

⋃
%1∈Υ,φ1∈φ1

(1 − (1 − %1)η/φ1)

 .
Definition 9. [31, 32] For any SV-NPHFN = =

(
υ`ς/Ξ[, τ`ς/$[,Υ`ς/φ[

)
, a score function can defined

as  p(=) =

(
1

M=

∑
ξג∈υ`[,Ξג∈Ξ`[

(ξג · Ξג)
)
−

(
1

N=

∑
Λג∈τ`ς ]`$∋ג$,

(Λג (ג$·
)

−
(

1
Z=

∑
Υ`ς∋ג% ,φג∈φ`[

ג%) · φג)
)

 (2.1)

where M= represents the number of elements in υ`ς ,N= represents the number of elements in τ`ς , and
Z= represents the number of elements in Υ`ς .

Definition 10. [31] For any SV-NPHFN = =
(
υ`ς/Ξ[, τ`ς/$[,Υ`ς/φ[

)
, an accuracy function is defined

as

`(=) =


(

1
M=

∑
ξג∈υ`[,Ξג∈Ξ`[

(ξג · Ξג)
)

+
(

1
N=

∑
Λג∈τ`ς ]`$∋ג$,

(Λג (ג$·
)

+
(

1
Z=

∑
Υ`ς∋ג% ,φג∈φ`[

ג%) · φג)
)


where M= represents the number of elements in υ`ς ,N= represents the number of elements in τ`ς and
Z= represents the number of elements in Υ`ς .

Definition 11. Let =1 =
(
υ`[1/Ξ[1

, τ`[1/$[1
,Υ`[1

/φ[1

)
and =2 =

(
υ`[2/Ξ[2 , τ`[2

/$[2
,Υ`

[2
/φ[2

)
be two SV-NPHFNs. Then, by using the above definition, comparison of SV-NPHFNs can be described
as
(1) If p(=1) > p(=2), then =1 > =2.

(2) If p(=1) = p(=2), and `(=1) > `(=2), then =1 > =2.

Definition 12. Let => =
(
υ`[>/Ξ[>

, τ`[>/$[>
,Υ`[>

/φ[>

)
(> = 1, 2, ....., p) be any group of

SV-NPHFNs, and Γ = (Γ1,Γ2, ....,Γp)T are the weights of => ∈ [0, 1] with
∑p
>=1 Γ> = 1. Then, we

have the following.
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(1) The SV-neutrosophic probabilistic hesitant fuzzy weighted averaging (SV-NPHFWA) AO [33] can
be described as SV-NPHFWA

(=1,=2, ....,=p) =



⋃
ξ>∈υ=>

Ξ=>∈Ξ=>

1 − Π
p
>=1

(
1 − ξ=>

)Γ> /Π
p
>=1Ξ=> ,⋃

Λ=>∈τ=>
$=>∈$=>

Π
p
>=1

(
Λ=>

)Γ> /Π
p
>=1$=> ,⋃

%=>∈Υ=>
φ=>∈φ=>

Π
p
>=1

(
%=>

)Γ> /Π
p
>=1φ=>


. (2.2)

(2) The SV-neutrosophic probabilistic hesitant fuzzy weighted geometric (SV-NPHFWG) AO [33]
can be described as SV-NPHFWG

(=1,=2, ....,=p) =



⋃
ξ>∈υ=>

Ξ=>∈Ξ=>

Π
p
>=1

(
ξ=>

)Γ> /Π
p
>=1Ξ=> ,⋃

Λ=>∈τ=>
$=>∈$=>

1 − Π
p
>=1

(
1 − Λ=>

)Γ> /Π
p
>=1$=> ,⋃

%=>∈Υ=>
φ=>∈φ=>

1 − Π
p
>=1

(
1 − %=>

)Γ> /Π
p
>=1φ=>


. (2.3)

Definition 13. Let => =
(
υ`[>/Ξ[>

, τ`[>/$[>
,Υ`[>

/φ[>

)
(> = 1, 2, ....., p) be any group of SV-NPHFNs,

=Λ(>) be the jth largest in them and Γ = (Γ1,Γ2, ....,Γp)T be the weights of=> ∈ [0, 1] with
∑p
>=1 Γ> = 1.

Then, the SV-neutrosophic probabilistic hesitant fuzzy ordered weighted averaging (SV-NPHFOWA)
AO can be described as

S V − NPHFOWA(=1,=2, ....,=p) (2.4)
= Γ1=Λ(1) ⊕ Γ2=Λ(2) ⊕ ..... ⊕ Γp=Λ(p)

=



⋃
ξ=Λ(>)∈υ=Λ(>)
Ξ
=Λ(>)

∈Ξ
=Λ(>)

1 − Π
p
>=1

(
1 − ξ

=Λ(>)

)Γ>
/Π

p
>=1Ξ=Λ(>)

,

⋃
Λ
=Λ(>)

∈τ
=Λ(>)

$
=Λ(>)

∈$
=Λ(>)

Π
p
>=1

(
Λ
=Λ(>)

)Γ>
/Π

p
>=1$=Λ(>)

,

⋃
Υ
=Λ(>)

∈ξ
=Λ(>)

φ
=Λ(>)

∈φ
=Λ(>)

Π
p
>=1

(
Υ
=Λ(>)

)Γ>
/Π

p
>=1φ=Λ(>)


.

Definition 14. Let => =
(
υ`[>/Ξ[>

, τ`[>/$[>
,Υ`[>

/φ[>

)
(> = 1, 2, ....., p)

be any group of SV-NHFNs, =Λ(>) is the jth largest of =Λ(>) = pΓ>=> (> = 1, 2, ....., p). Then,
the following aggregation operator with aggregation-associated vector Γ = (Γ1,Γ2, ....,Γp)T where
Γג ∈ [0, 1],

∑p
>=1 Γ> = 1, can be described:
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SV-neutrosophic probabilistic hesitant fuzzy hybrid weighted averaging (SV-NPHFHWA) AO [33]

S V − NHFHWA(=1,=2, ....,=p) (2.5)
= Γ1=Λ(1) ⊕ Γ2=Λ(2) ⊕ ..... ⊕ Γp=Λ(p)

=



⋃
ξ=Λ(>)∈υ=Λ(>)
Ξ
=Λ(>)

∈Ξ
=Λ(>)

1 − Π
p
>=1

(
1 − ξ

=Λ(>)

)Γ>
/Π

p
>=1Ξ=Λ(>)

,

⋃
Λ
=Λ(>)

∈τ
=Λ(>)

$
=Λ(>)

∈$
=Λ(>)

Π
p
>=1

(
Λ
=Λ(>)

)Γ>
/Π

p
>=1$=Λ(>)

,

⋃
%
=Λ(>)

∈Υ
=Λ(>)

φ
=Λ(>)

∈φ
=Λ(>)

Π
p
>=1

(
%
=Λ(>)

)Γ>
/Π

p
>=1φ=Λ(>)


.

3. Construction of single valued neutrosophic probabilistic hesitant fuzzy rough sets

The single valued neutrosophic probabilistic hesitant fuzzy rough set (SV-NPHFRS) is a hybrid
structure of rough set that we present here. We also introduce the SV-NPHFRS’s scoring and accuracy
features, as well as its basic operational rules.

Definition 15. Assume universal set Ü and let = ∈ S V − NPHFRS (Ü × Ü) be a S V − NPHF
relation. The pair (Ü,=) represents a S V − NPHF approximation space. Assume ` be any subset
of S V − NPHS (Ü) i.e., ` ⊆ S V − NPHS (Ü). Then, on the bases of S V − NPHF approximation
space (Ü,=), the lower and upper approximations of ` are represented as =(`) and =(`), given as the
following:

=(`) = {
〈
σ, υ

=(`)(σ)/Ξ
`(σ) ,Λ=(`)(σ)/$

`(σ) ,Υ=(`)(σ)/φ
`(σ)

〉
|σ ∈ Ü},

=(`) = {〈σ, υ=(`)(σ)/Ξ
`(σ) ,Λ=(`)(σ)/$

`(σ) ,Υ=(`)(σ)/φ
`(σ)〉|σ ∈ Ü},

where

υ
=(`)(σ)/Ξ

`(σ) = ∨t∈Ü[υ=(σ, t)/Ξ
`(σ) ∨ υ=(t)/Ξ

`(σ)],
Λ
=(`)(σ)/$

`(σ) = ∧t∈Ü[Λ=(σ, t)/$
`(σ) ∧ Λ=(t)/$

`(σ)],
Υ
=(`)(σ)/φ

`(σ) = ∧t∈Ü[Υ=(σ, t)/φ
`(σ) ∧ Υ=(t)/φ

`(σ)],
υ=(`)(σ)/Ξ

`(σ) = ∧t∈Ü[υ=(σ, t)/Ξ
`(σ) ∧ υ=(t)/Ξ

`(σ)],
Λ=(`)(σ)/$

`(σ) = ∧t∈Ü[Λ=(σ, t)/$
`(σ) ∧ Λ=(t)/$

`(σ)],
Υ=(`)(σ)/φ

`(σ) = ∨t∈Ü[Υ=(σ, t)/φ
`(σ) ∨ Υ=(t)/φ

`(σ)],

such that
0 < υ

=(`)(σ)/Ξ
`(σ) + Λ

=(`)(σ)/$
`(σ) + Υ

=(`)(σ)/φ
`(σ) ≤ 3,

and
0 < υ=(`)(σ)/Ξ

`(σ) + Λ=(`)(σ)/$
`(σ) + Υ=(`)(σ)/φ

`(σ) ≤ 3.
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As =(`) and =(`) are S V − NFS s, so =(`),=(`) : S V − NFS (Ü) −→ S V − NFS (Ü) are upper and
lower approximation operators. So, the pair

=(`) = (=(`),=(`)) =

 {σ, 〈
(
(υ=(`)(σ)/Ξ

`(σ) ,Λ=(`)(σ)/$
`(σ) ,Υ=(`)(σ)/φ

`(σ))
)
,(

(υ
=(`)(σ)/Ξ

`(σ) ,Λ=(`)(σ)/$
`(σ) ,Υ=(`)(σ)/φ

`(σ))
)  |σ ∈ Ü}

is called a S V − NPHF rough set. For simplicity, it can be denoted as

=(`) = (g(`),=(`)) =

{
(Ψ`(σ)/Ξ`(σ) ,Φ`(σ)/$`(σ) ,Ω`(σ)/φ`(σ)),
(υ`(σ)/Ξ`(σ) ,Λ`(σ)/$`(σ) ,Υ`(σ)/φ`(σ))

}
.

Definition 16. Assume<1 =

(
υ`<1

/Ξ
`(σ1) ,Λ`<1

/$
`(σ1) ,

Υ`<1
/φ

`(σ1)

)
and<2 =

(
υ`<2

/Ξ
`(σ2) ,Λ`<2

/$
`(σ2) ,

Υ`<2
/φ

`(σ2)

)
be two

SV-NPHFNs. The following are the basic set theoretic operations:

(1) <1 ∪<2 =


⋃

f1∈υ`<1
/Ξ`(σ1)

f2∈υ`<2
/Ξ`(σ2)

max (f1,f2) ,
⋃

ν1∈Λ`<1
/$`(σ1)

ν2∈Λ`<2
/$`(σ2)

min (ν1, ν2) ,
⋃

λ1∈Υ`<1
/φ`(σ1)

λ2∈Υ`<2
/φ`(σ2)

min (λ1, λ2)

 ,

(2) <1 ∩<2 =


⋃

f1∈υ`<1
/Ξ`(σ1)

f2∈υ`<2
/Ξ`(σ2)

min (f1,f2) ,
⋃

ν1∈Λ`<1
/$`(σ1)

ν2∈Λ`<2
/$`(σ2)

max (ν1, ν2) ,
⋃

λ1∈Υ`<1
/φ`(σ1)

λ2∈Υ`<2
/φ`(σ2)

max (λ1, λ2)


,

(3) <Ĉ
1 =

{
Υ`<1

/φ
`(σ1) ,Λ`<1

/$
`(σ1) , υ`<1

/Ξ
`(σ1)

}
.

Definition 17. Assume< is the universal set and } ⊆ < ×< is a (crisp) relation. Then, we have the
following basic crisp sets properties.
(1) } is reflexive if (Θ,Θ) ∈ }, for each Θ ∈ <;
(2) } is symmetric if ∀Θ, a ∈ <, (Θ, a) ∈ }, then (a,Θ) ∈ };
(3) } is transitive if ∀ Θ, a, b ∈ <, (Θ, a) ∈ < and (a, b) ∈ } −→ (Θ, b) ∈ }.
Here, the reflexive, transitive and symmetric properties are same as the crisp sets.

Definition 18. Assume F is the universal set. Then, any subset } ∈ S V − NPHFRS (F × F) is said
to be an SV- neutrosophic probabilistic hesitant fuzzy relation. The pair (F, }) is called a SV-NPHFRS
approximation space. If for any Λ ⊆ S V − NPHFRS (F), then the upper and lower approximations of
Λ with respect to SV-NPHFRS approximation space (F, }) are two SV-NPHFRSs, which are denoted
by =(Λ) and =(Λ) and defined as,

=(Λ) =
{〈

Θ, υ`
=(Λ)

(Θ)/Ξ`
=(Λ)
,Λ`

=(Λ)
(Θ)/$`

=(Λ)
,Υ`

=(Λ)
(Θ)/φ`

=(Λ)

〉
|Θ ∈ F

}
,

=(Λ) =
{〈

Θ, υ`=(Λ)(Θ)/Ξ`=(Λ) ,Λ`=(Λ)(Θ)/$`=(Λ) ,Υ`=(Λ)(Θ)/$`=(Λ)

〉
|Θ ∈ F

}
,

where

υ`
=(Λ)

(Θ)/Ξ`Θ
=

∨
χ∈F

[
υ`}(Θ, χ)

∨
υ`Λ

(χ)
]
/
∨
χ∈F

[
Ξ`}(Θ, c)

∨
Ξ`Λ

(χ)
]
,
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Λ`
=(Λ)

(Θ)/$`Θ
=

∧
χ∈F

[
Λ`}(Θ, χ)

∧
Λ`Λ

(χ)
]
/
∧
χ∈F

[
$`}(Θ, c)

∧
$`Λ

(χ)
]
,

υ`=(Λ)(Θ)/Ξ`Θ
=

∧
χ∈F

[
υ`}(Θ, χ)

∧
υ`Λ

(χ)
]
/
∧
χ∈F

[
Ξ`}(Θ, χ)

∧
Ξ`Λ

(χ)
]
,

Λ`=(Λ)(Θ)/$`Θ
=

∨
χ∈F

[
Λ`}(Θ, χ)

∨
Λ`Λ

(χ)
]
/
∨
χ∈F

[
$`}(Θ, c)

∨
$`Λ

(χ)
]
,

Υ`
=(Λ)

(Θ)/Ξ`Θ
=

∨
χ∈F

[
Υ`}(Θ, χ)

∨
Υ`Λ

(χ)
]
/
∨
χ∈F

[
φ`}(Θ, c)

∨
φ`Λ

(χ)
]
,

Υ`=(Λ)(Θ)/Ξ`Θ
=

∧
χ∈F

[
Υ`}(Θ, χ)

∧
Υ`Λ

(χ)
]
/
∧
χ∈F

[
φ`}(Θ, χ)

∧
φ`Λ

(χ)
]
,

such that

0 <
(
max(υ`

=(Λ)
(Θ))

)
+

(
min(Λ`

=(Λ)
(Θ))

)
+

(
min(Υ`

=(Λ)
(Θ))

)
≤ 3,

and

0 <
(
min(υ`=(Λ)(Θ)

)
+

(
max(Λ`=(Λ)(Θ))

)
+

(
max(Λ`=(Λ)(Θ))

)
≤ 3.

As
(
=(Λ),=(Λ)

)
are S V − NPHFRS , =(Λ),=(Λ) : S V − NPHFRS (F) → S V − NPHFRS (F) are

upper and lower approximation operators. The pair

}(Λ) =
(
=(Λ),=(Λ)

)
=


〈

Θ,
(
υ`=(Λ)(Θ)/Ξ`=(Λ) ,Λ`=(Λ)(Θ)/$`=(Λ) ,Υ`=(Λ)(Θ)/φ`=(Λ)

)
,

Θ,
(
υ`
=(Λ)

(Θ)/Ξ`
=(Λ)
,Λ`

=(Λ)
(Θ)/$`}(Λ) ,Υ`

=(Λ)
(Θ)/φ`

=(Λ)

) 〉
|Θ ∈ Λ


will be called S V-neutrosophic hesitant fuzzy rough set. For simplicity,

}(Λ) =

 〈Θ,
(
υ`=(Λ)(Θ)//Ξ`=(Λ) ,Λ`=(Λ)(Θ)/$`=(Λ) ,Υ`=(Λ)(Θ)/φ`=(Λ)

)
,(

υ`
=(Λ)

(Θ)//Ξ`
=(Λ)
,Λ`

=(Λ)
(Θ)/$`

=(Λ)
,Υ`

=(Λ)
(Θ)/φ`

=(Λ)

)
〉|Θ ∈ Λ


is represented as

}(Λ) =
(
(Ψ/ð,Φ/∂,Ω/Ξ), (υ/Ξ,Λ/$,Υ/φ)

)
and is known as SV-NPHFRSs.

Definition 19. Here, we define the SV-neutrosophic probabilistic hesitant fuzzy rough weighted
averaging (SV-NPHFRWA) AO by using Eq (2.2) as

 (=1,=2, ....,=p)
(=1,=2, ....,=p)

 (3.1)
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=






⋃

ξ
=
>∈υ=>

Ξ
=>
∈Ξ
=>

1 − Π
p
>=1

(
1 − ξ

=>

)Γ>
/Π

p
>=1Ξ

=>

 ⋃
α
>
∈υ=>

Ξ=>∈Ξ=>

1 − Π
p
>=1

(
1 − ξ=

>

)Γ>
/Π

p
>=1Ξ=

>




,



 ⋃
Λ
=>
∈τ
=>

$
=>
∈$
=>

Π
p
>=1

(
Λ
=>

)Γ>
/Π

p
>=1$=>

 ⋃
Λ=>∈τ=>
$=>∈$=>

Π
p
>=1

(
Λ=

>

)Γ>
/Π

p
>=1$=>




,




⋃

%
=>
∈Υ
=>

φ
=>
∈φ
=>

Π
p
>=1

(
%
=>

)Γ>
/Π

p
>=1φ=>

 ⋃
%=>∈Υ=>
φ=>∈φ=>

Π
p
>=1

(
%=>

)Γ> /Π
p
>=1φ=>







. (3.2)

Definition 20. The SV-NPHFRWG operator using Eq (2.3) can be described as (=1,=2, ....,=p)
(=1,=2, ....,=p)

 (3.3)

=






⋃

ξ
=
>∈υ=>

Ξ
=>
∈Ξ
=>

Π
p
>=1

(
ξ
=>

)Γ>
/Π

p
>=1Ξ

=>

 ⋃
ξ=>∈υ=>
Ξ=>∈Ξ=>

Π
p
>=1

(
ξ=
>

)Γ>
/Π

p
>=1Ξ=

>




,



 ⋃
Λ
=>
∈τ
=>

$
=>
∈$
=>

1 − Π
p
>=1

(
1 − Λ

=>

)Γ>
/Π

p
>=1$=>

 ⋃
Λ=>∈τ=>
$=>∈$=>

1 − Π
p
>=1

(
1 − Λ=

>

)Γ>
/Π

p
>=1$=>




,




⋃

%
=>
∈Υ
=>

φ
=>
∈φ
=>

1 − Π
p
>=1

(
1 − %

=>

)Γ>
/Π

p
>=1φ=>


⋃

%=>∈Υ=>
φ=>∈φ=>

1 − Π
p
>=1

(
1 − %=

>

)Γ>
/Π

p
>=1φ=>







. (3.4)

Definition 21. The SV-NPHFROWA operator can be described as, using Eq (2.4),
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 (=1,=2, ....,=p)
(=1,=2, ....,=p)

 (3.5)

=






⋃

ξ
=Λ(>)

∈υ
=Λ(>)

Ξ
=Λ(>)

∈Ξ
=Λ(>)

1 − Π
p
>=1

(
1 − ξ

=Λ(>)

)Γ>

/Π
p
>=1Ξ=Λ(>)


⋃

ξ=Λ(>)
∈υ
=Λ(>)

Ξ
=Λ(>)

∈Ξ
=Λ(>)

1 − Π
p
>=1

(
1 − ξ

=Λ(>)

)Γ>
/Π

p
>=1Ξ=Λ(>)





,




⋃

Λ
=Λ(>)

∈τ
=Λ(>)

$
=Λ(>)

∈$
=Λ(>)

Π
p
>=1

(
Λ
=Λ(>)

)Γ>

/Π
p
>=1$=Λ(>)


⋃

Λ
=Λ(>)

∈τ
=Λ(>)

$
=Λ(>)

∈$
=Λ(>)

Π
p
>=1

(
Λ
=Λ(>)

)Γ>
/Π

p
>=1$=Λ(>)




,




⋃

Υ
=Λ(>)

∈ξ
=Λ(>)

φ
=Λ(>)

∈φ
=Λ(>)

Π
p
>=1

(
Υ
=Λ(>)

)Γ>

/Π
p
>=1φ=Λ(>)


⋃

Υ
=Λ(>)

∈ξ
=Λ(>)

φ
=Λ(>)

∈φ
=Λ(>)

Π
p
>=1

(
Υ
=Λ(>)

)Γ>
/Π

p
>=1φ=Λ(>)







. (3.6)

Definition 22. The S V − NPHFRHWA operator, using Eq (2.5) is as

 (=1,=2, ....,=p)
(=1,=2, ....,=p)

 (3.7)
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=






⋃

ξ
=Λ(>)

∈υ
=Λ(>)

Ξ
=Λ(>)

∈Ξ
=Λ(>)

1 − Π
p
>=1

(
1 − ξ

=Λ(>)

)Γ>

/Π
p
>=1Ξ=Λ(>)


⋃

ξ=Λ(>)
∈υ
=Λ(>)

Ξ
=Λ(>)

∈Ξ
=Λ(>)

1 − Π
p
>=1

(
1 − ξ

=Λ(>)

)Γ>
/Π

p
>=1Ξ=Λ(>)





,




⋃

Λ
=Λ(>)

∈τ
=Λ(>)

$
=Λ(>)

∈$
=Λ(>)

Π
p
>=1

(
Λ
=Λ(>)

)Γ>

/Π
p
>=1$=Λ(>)


⋃

Λ
=Λ(>)

∈τ
=Λ(>)

$
=Λ(>)

∈$
=Λ(>)

Π
p
>=1

(
Λ
=Λ(>)

)Γ>
/Π

p
>=1$=Λ(>)




,




⋃

%
=Λ(>)

∈Υ
=Λ(>)

φ
=Λ(>)

∈φ
=Λ(>)

Π
p
>=1

(
%
=Λ(>)

)Γ>

/Π
p
>=1φ=Λ(>)


⋃

%
=Λ(>)

∈Υ
=Λ(>)

φ
=Λ(>)

∈φ
=Λ(>)

Π
p
>=1

(
%
=Λ(>)

)Γ>
/Π

p
>=1φ=Λ(>)







. (3.8)

(3.9)

Einstein operational laws based on SV-NPHFSs

The application of t-norms in FS theory at the intersection of two FSs is widely recognized. T-
conorms are used to model disjunction or union. These are a straightforward explanation of the
conjunction and disjunction in mathematical fuzzy logic syntax, and they are utilized in MCDM to
combine criteria. The Einstein sum (⊕ε) and Einstein product (⊗ε) are case studies of t-conorms and
t-norms, respectively, and are stated in the single valued neutrosophic probabilistic hesitant fuzzy (SV-
NPHF) environment as follows.

Ñ ⊕ε Š =
Ñ + Š

1 + ÑŠ
, Ñ ⊗ε Š =

ÑŠ

1 +
(
1 − Ñ

) (
1 − Š

) .
Based on the above Einstein operations, we give the following new operations on SV-NPHF
environment.
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Definition 23. Let =1 =
(
υ`[1/Ξ[1

, τ`[1/$[1
,Υ`[1

/φ[1

)
and =2 =

(
υ`[2/Ξ[2 , τ`[2

/$[2
,Υ`

[2
/φ[2

)
be two

SV-NPHFEs and η > 0(∈ R). Then,

(1) =1 ⊕ =2 =



⋃
ξ1∈υ`

[1
(l[),ξ2∈υ`[2

(l[)

Ξ1∈Ξ[1
,Ξ2∈Ξ[2

(
ξ1+ξ2

1+ξ1ξ2
/Ξ1Ξ2

)
,

⋃
Λ1∈τ`

[1
(l[),Λ2∈τ`[2

(l[)

$1∈$[1
,$2∈$[2

(
Λ1Λ2

1+(1−Λ1)(1−Λ2)/$1$2

)
,

⋃
%1∈Υ`

[1
(l[),%2∈Υ`[2

(l[)

φ1∈φ[1
,φ2∈φ[2

(
%1%2

1+(1−%1)(1−%2)/φ1φ2

)


.

(2) =1 ⊗ =2 =



⋃
ξ1∈υ`

[1
(l[),ξ2∈υ`[2

(l[)

Ξ1∈Ξ[1
,Ξ2∈Ξ[2

(
ξ1ξ2

1+(1−ξ1)(1−ξ2)/Ξ1Ξ2

)
,

⋃
Λ1∈τ`

[1
(l[),Λ2∈τ`[2

(l[)

$1∈$[1
,$2∈$[2

(
Λ1+Λ2

1+Λ1Λ2
/$1$2

)
,

⋃
Υ1∈ξ`

[1
(l[),Υ2∈ξ`[2

(l[)

φ1∈φ[1
,φ2∈φ[2

(
Υ1+Υ2
1+Υ1Υ2

/φ1φ2

)


.

(3) η=1 =



⋃
ξ1∈υ`

[1
(l[),Ξ1∈Ξ[1

(
(1+ξ1)η−(1−ξ1)η

(1+ξ1)η+(1−ξ1)η /Ξ1

)
,

⋃
Λ1∈τ`[1

(l[),$1∈$[1

(
2Λ

η
1

(2−Λ1)η+(Λ1)η /$1

)
,

⋃
%1∈Υ`[1

(l[),φ1∈φ[1

(
2%η1

(2−%1)η+(%1)η /φ1

)


.

(4) =η1 =



⋃
ξ1∈υ`

[1
(l[),Ξ1∈Ξ[1

(
2ξη1

(2−ξ1)η+(ξ1)η /Ξ1

)
,⋃

Λ1∈τ`[1
(l[),$1∈$[1

(
(1+Λ1)η−(1−Λ1)η

(1+Λ1)η+(1−Λ1)η − (1 − Λ1)η/$1

)
,⋃

%1∈Υ`[1
(l[),φ1∈φ[1

(
(1+%1)η−(1−%1)η

(1+%1)η+(1−%1)η − (1 − %1)η/φ1

)


.

4. SV-Neutrosophic probabilistic hesitant fuzzy rough Einstein aggregation operators

In this section, we develop several new Einstein operators for SV-NPHFRNs, namely the single
valued neutrosophic probabilistic hesitant fuzzy rough Einstein weighted averaging (SV-NPHFREWA)
operator, the single valued neutrosophic probabilistic hesitant fuzzy rough Einstein ordered weighted
averaging (SV-NPHFREOWA) operator.
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Single-valued neutrosophic probabilistic hesitant fuzzy rough Einstein weighted averaging operator

Definition 24. Let => =


(
υ
[>
/Ξ[>

, τ
[>
/$[>

,Υ
[>
/φ[>

)(
υ
[>
/Ξ[

>
, τ

[>
/$[

>
,Υ

[>
/φ[

>

)  (> = 1, 2, ....., p) be a collection of SV-

NPHFRNs.

Γ = (Γ1,Γ2, ....,Γp)T are the weights of => ∈ [0, 1] with
∑p
>=1 Γ> = 1. Then, SV-NPHFREWA:

SV-NPHFRNp −→SV-NPHFRN such that

S V − NPHFREWA

 (=1,=2, ....,=p)
(=1,=2, ....,=p)

 =


(
Γ1.ε=1

) (
Γ1.ε=1

)
⊕ε(

Γ2.ε=2

) (
Γ2.ε=2

)
⊕ε ...⊕ε(

Γp.ε=p

) (
Γp.ε=p

)


is called the single valued neutrosophic probabilistic hesitant fuzzy rough Einstein weighted averaging
operator.

Theorem 1. Let => =


(
υ
[>
/Ξ[>

, τ
[>
/$[>

,Υ
[>
/φ[>

)(
υ
[>
/Ξ[

>
, τ

[>
/$[

>
,Υ

[>
/φ[

>

)  (> = 1, 2, ....., p) be a collection of SV-

NPHFRNs.

Then, we can achieve the following:

S V − NPHFREWA

 (=1,=2, ....,=p)
(=1,=2, ....,=p)

 (4.1a)

=






⋃

ξ
=>
∈υ
=>

Ξ
=>
∈Ξ
=>

Π
p
>=1

(
1+ξ

=>

)Γ>
−Π

p
>=1

(
1−ξ

=>

)Γ>

Π
p
>=1

(
1+ξ

=>

)Γ>
+Π

p
>=1

(
1−ξ

=>

)Γ>
/Π

p
>=1Ξ

=>


⋃

ξ=>∈υ=>
Ξ=>∈Ξ=>

Π
p
>=1

(
1+ξ=>

)Γ>
−Π

p
>=1

(
1−ξ=>

)Γ>

Π
p
>=1

(
1+ξ=>

)Γ>
+Π

p
>=1

(
1−ξ=>

)Γ>
/Π

p
>=1Ξ=

>





,




⋃

Λ
=>
∈τ
=>

$
=>
∈$
=>

2Π
p
>=1

(
Λ
=>

)Γ>

Π
p
>=1

(
2−Λ

=>

)Γ>
+Π

p
>=1

(
Λ
=>

)Γ>
/Π

p
>=1$=>


⋃

Λ=>∈τ=>
$=>∈$=>

2Π
p
>=1

(
Λ=>

)Γ>

Π
p
>=1

(
2−Λ=>

)Γ>
+Π

p
>=1

(
Λ=>

)Γ>
/Π

p
>=1$=>


,




⋃

Υ
=>
∈ξ
=>

φ
=>
∈φ
=>

2Π
p
>=1

(
Υ
=>

)Γ>

Π
p
>=1

(
2−Υ

=>

)Γ>
+Π

p
>=1

(
Υ
=>

)Γ>
/Π

p
>=1φ=>


⋃

Υ=>∈ξ=>
φ=>∈φ=>

2Π
p
>=1

(
Υ=>

)Γ>

Π
p
>=1

(
2−Υ=>

)Γ>
+Π

p
>=1

(
Υ=>

)Γ>
/Π

p
>=1φ=>







(4.1b)
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where Γ = (Γ1,Γ2, ....,Γp)T are the weights of => with Γ> ∈ [0, 1] with
∑p
>=1 Γ> = 1.

We will demonstrate the theorem by mathematical induction. For p = 2.

Proof.

S V − NPHFREWA
{

(=1,=2)
(=1,=2)

}
=


(
Γ1.ε=1

) (
Γ1.ε=1

)
⊕ε(

Γ2.ε=2

) (
Γ2.ε=2

)  .
Since both

(
Γ1.ε=1

) (
Γ1.ε=1

)
and

(
Γ2.ε=2

) (
Γ2.ε=2

)
is also a SV-NPHFRN,


(
Γ1.ε=1

) (
Γ1.ε=1

)
⊕ε(

Γ2.ε=2

) (
Γ2.ε=2

)  is

a SV-NPHFRN.

(
Γ1.ε=1

) (
Γ1.ε=1

)

=






⋃

ξ
=1
∈υ
=1

Ξ
=1
∈Ξ
=1

(
1+ξ

=1

)Γ1
−

(
1−ξ

=1

)Γ1

(
1+ξ

=1

)Γ1
+

(
1−ξ

=1

)Γ1
/Ξ
=1

 ⋃
ξ=1
∈υ=1

Ξ=1
∈Ξ=1

(
1+ξ=1

)Γ1
−
(
1−ξ=1

)Γ1(
1+ξ=1

)Γ1
+
(
1−ξ=1

)Γ1
/Ξ=1




,




⋃

Λ
=1
∈τ
=1

$
=1
∈$
=1

2
(
Λ
=1

)Γ1

(
2−Λ

=1

)Γ1
+

(
Λ
=1

)Γ1
/$
=1

 ⋃
Λ=1
∈τ=1

$=1
∈$=1

2
(
Λ=1

)Γ1(
2−Λ=1

)Γ1
+
(
Λ=1

)Γ1
/$=1




,




⋃

Υ
=1
∈ξ
=1

φ
=1
∈φ
=1

2
(
Υ
=1

)Γ1

(
2−Υ

=1

)Γ1
+

(
Υ
=1

)Γ1
/φ
=1

 ⋃
Υ=1
∈ξ=1

φ=1
∈φ=1

2
(
Υ=1

)Γ1(
2−Υ=1

)Γ1
+
(
Υ=1

)Γ1
/φ=1







.
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(
Γ2.ε=2

) (
Γ2.ε=2

)

=






⋃

ξ2∈υ=2
Ξ
=2
∈Ξ
=2

(
1+ξ

=2

)Γ2
−

(
1−ξ

=2

)Γ2

(
1+ξ

=2

)Γ2
+

(
1−ξ

=2

)Γ2
/Ξ
=2

 ⋃
ξ2∈υ=2

Ξ=2
∈Ξ=2

(
1+ξ=2

)Γ2
−
(
1−ξ=2

)Γ2(
1+ξ=2

)Γ2
+
(
1−ξ=2

)Γ2
/Ξ=2




,




⋃

Λ
=2
∈τ
=2

$
=2
∈$
=2

2
(
Λ
=2

)Γ2

(
2−Λ

=2

)Γ2
+

(
Λ
=2

)Γ2
/$
=2

 ⋃
Λ=2
∈τ=2

$=2
∈$=2

2
(
Λ=2

)Γ2(
2−Λ=2

)Γ2
+
(
Λ=2

)Γ2
/$=2




,




⋃

Υ
=2
∈ξ
=2

φ
=2
∈φ
=2

2
(
Υ
=2

)Γ2

(
2−Υ

=2

)Γ2
+

(
Υ
=2

)Γ2
/φ
=2

 ⋃
Υ=2
∈ξ=2

φ=2
∈φ=2

2
(
Υ=2

)Γ2(
2−Υ=2

)Γ2
+
(
Υ=2

)Γ2
/φ=2







.

Then

S V − NPHFREWA
{

(=1,=2)
(=1,=2)

}
=


(
Γ1.ε=1

) (
Γ1.ε=1

)
⊕ε(

Γ2.ε=2

) (
Γ2.ε=2

) 

=






⋃
ξ1∈υ=1

Ξ
=1
∈Ξ
=1

(
1+ξ

=1

)Γ1
−

(
1−ξ

=1

)Γ1

(
1+ξ

=1

)Γ1
+

(
1−ξ

=1

)Γ1
/Ξ
=1


 ⋃
ξ1∈υ=1

Ξ=1
∈Ξ=1

(
1+ξ=1

)Γ1
−
(
1−ξ=1

)Γ1

(1+ξ=1)
Γ1 +(1−ξ=1)

Γ1
/Ξ=1


 ,


⋃

Λ
=1
∈τ
=1

$
=1
∈$
=1

2
(
Λ
=1

)Γ1

(
2−Λ

=1

)Γ1
+

(
Λ
=1

)Γ1
/$
=1


 ⋃

Λ=1
∈τ=1

$=1
∈$=1

2
(
Λ=1

)Γ1(
2−Λ=1

)Γ1
+
(
Λ=1

)Γ1
/$=1


 ,


⋃

Υ
=1
∈ξ
=1

φ
=1
∈φ
=1

2
(
Υ
=1

)Γ1

(
2−Υ

=1

)Γ1
+

(
Υ
=1

)Γ1
/φ
=1




⋃
Υ=1
∈ξ=1

φ=1
∈φ=1

2
(
Υ=1

)Γ1(
2−Υ=1

)Γ1
+
(
Υ=1

)Γ1
/φ=1






⊕ε
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⋃
ξ2∈υ=2

Ξ
=2
∈Ξ
=2

(
1+ξ

=2

)Γ2
−

(
1−ξ

=2

)Γ2

(
1+ξ

=2

)Γ2
+

(
1−ξ

=2

)Γ2
/Ξ
=2


 ⋃
ξ2∈υ=2

Ξ=2
∈Ξ=2

(
1+ξ=2

)Γ2
−
(
1−ξ=2

)Γ2(
1+ξ=2

)Γ2
+
(
1−ξ=2

)Γ2
/Ξ=2


 ,


⋃

Λ
=2
∈τ
=2

$
=2
∈$
=2

2(Λ=2)
Γ2

(2−Λ=2)
Γ2 +(Λ=2)

Γ2
/$=2


 ⋃

Λ=2
∈τ=2

$=2
∈$=2

2
(
Λ=2

)Γ2(
2−Λ=2

)Γ2
+
(
Λ=2

)Γ2
/$=2


 ,


⋃

Υ
=2
∈ξ
=2

φ
=2
∈φ
=2

2
(
Υ
=2

)Γ2

(
2−Υ

=2

)Γ2
+

(
Υ
=2

)Γ2
/φ
=2




⋃
Υ=2
∈ξ=2

φ=2
∈φ=2

2
(
Υ=2

)Γ2(
2−Υ=2

)Γ2
+
(
Υ=2

)Γ2
/φ=2






=






⋃

ξ1∈υ=1
,Ξ
=1
∈Ξ
=1

ξ2∈υ=2
,Ξ
=2
∈Ξ
=2

(
1+ξ
=1

)Γ1
−

(
1−ξ
=1

)Γ1

(
1+ξ
=1

)Γ1
+

(
1−ξ
=1

)Γ1
+

(
1+ξ
=2

)Γ2
−

(
1−ξ
=2

)Γ2

(
1+ξ
=2

)Γ2
+

(
1−ξ
=2

)Γ2

1+


(
1+ξ
=1

)Γ1
−

(
1−ξ
=1

)Γ1

(
1+ξ
=1

)Γ1
+

(
1−ξ
=1

)Γ1

.ε

(
1+ξ
=2

)Γ2
−

(
1−ξ
=2

)Γ2

(
1+ξ
=2

)Γ2
+

(
1−ξ
=2

)Γ2


/Ξ
=1

Ξ
=2


⋃

ξ1∈υ=1
,Ξ=1
∈Ξ=1

ξ2∈υ=2
,Ξ=2

∈Ξ=2

(
1+ξ=1

)Γ1
−

(
1−ξ=1

)Γ1(
1+ξ=1

)Γ1
+

(
1−ξ=1

)Γ1
+

(
1+ξ=2

)Γ2
−

(
1−ξ=2

)Γ2(
1+ξ=2

)Γ2
+

(
1−ξ=2

)Γ2

1+


(
1+ξ=1

)Γ1
−

(
1−ξ=1

)Γ1(
1+ξ=1

)Γ1
+

(
1−ξ=1

)Γ1

.ε

(
1+ξ=2

)Γ2
−

(
1−ξ=2

)Γ2(
1+ξ=2

)Γ2
+

(
1−ξ=2

)Γ2


/Ξ=1

Ξ=2




,




⋃

Λ
=1
∈τ
=1
,$
=1
∈$
=1

Λ
=2
∈τ
=2

,$
=2
∈$
=2


2
(
Λ
=1

)Γ1

(
2−Λ
=1

)Γ1
+

(
Λ
=1

)Γ1

.ε


2
(
Λ
=2

)Γ2

(
2−Λ
=2

)Γ2
+

(
Λ
=2

)Γ2


1+

1−
2
(
Λ
=1

)Γ1

(
2−Λ
=1

)Γ1
+

(
Λ
=1

)Γ1

.ε
1−

2
(
Λ
=2

)Γ2

(
2−Λ
=2

)Γ2
+

(
Λ
=2

)Γ2


/$
=1
$
=2


⋃

Λ=1
∈τ=1

,$=1
∈$=1

Λ=2
∈τ=2

,$=2
∈$=2

 2
(
Λ=1

)Γ1

(
2−Λ=1

)Γ1
+

(
Λ=1

)Γ1

.ε
 2

(
Λ=2

)Γ2

(
2−Λ=2

)Γ2
+

(
Λ=2

)Γ2


1+

1− 2
(
Λ=1

)Γ1

(
2−Λ=1

)Γ1
+

(
Λ=1

)Γ1

.ε
1− 2

(
Λ=2

)Γ2

(
2−Λ=2

)Γ2
+

(
Λ=2

)Γ2


/$=1

$=2





,




⋃

Υ
=1
∈ξ
=1
,φ
=1
∈φ
=1

Υ
=2
∈ξ
=2

,φ
=2
∈φ
=2


2
(
Υ
=1

)Γ1

(
2−Υ
=1

)Γ1
+

(
Υ
=1

)Γ1

.ε


2
(
Υ
=2

)Γ2

(
2−Υ
=2

)Γ2
+

(
Υ
=2

)Γ2


1+

1−
2
(
Υ
=1

)Γ1

(
2−Υ
=1

)Γ1
+

(
Υ
=1

)Γ1

.ε
1−

2

(Υ=2

)2Γ2

(
2−Υ
=2

)Γ2
+

(
Υ
=2

)Γ2


/φ
=1
φ
=2


⋃

Υ=1
∈ξ=1

,φ=1
∈φ=1

Υ=2
∈ξ=2

,φ=2
∈φ=2

 2
(
Υ=1

)Γ1

(
2−Υ=1

)Γ1
+

(
Υ=1

)Γ1

.ε
 2

(
Υ=2

)Γ2

(
2−Υ=2

)Γ2
+

(
Υ=2

)Γ2


1+

1− 2
(
Υ=1

)Γ1

(
2−Υ=1

)Γ1
+

(
Υ=1

)Γ1

.ε
1−

2
((

Υ=2

)2)Γ2

(
2−Υ=2

)Γ2
+

(
Υ=2

)Γ2


/φ=1

φ=2
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=






⋃

ξ1∈υ=1
,Ξ
=1
∈Ξ
=1

ξ2∈υ=2
,Ξ
=2
∈Ξ
=2

(
1+ξ

=1

)Γ1
−.ε

(
1+ξ

=2

)Γ2
−

(
1−ξ

=1

)Γ1
.ε

(
1−ξ

=2

)Γ2

(
1+ξ

=1

)Γ1
−.ε

(
1+ξ

=2

)Γ2
+

(
1−ξ

=1

)Γ1
.ε

(
1−ξ

=2

)Γ2
/Ξ
=1

Ξ
=2

 ⋃
ξ1∈υ=1

,Ξ=1
∈Ξ=1

ξ2∈υ=2
,Ξ=2

∈Ξ=2

(
1+ξ=1

)Γ1
−.ε

(
1+ξ=2

)Γ2
−
(
1−ξ=1

)Γ1 .ε
(
1−ξ=2

)Γ2(
1+ξ=1

)Γ1
−.ε

(
1+ξ=2

)Γ2
+
(
1−ξ=1

)Γ1 .ε
(
1−ξ=2

)Γ2
/Ξ=1

Ξ=2




,




⋃

Λ
=1
∈τ
=1
,$
=1
∈$
=1

Λ
=2
∈τ
=2

,$
=2
∈$
=2

2
(
Λ
=1

)Γ1
(
Λ
=2

)Γ2

(
2−Λ

=1

)Γ1
.ε

(
2−Λ

=2

)Γ2
+

(
Λ
=1

)Γ1
.ε

(
Λ
=2

)Γ2
/$
=1
$
=2

 ⋃
Λ=1
∈τ=1

,$=1
∈$=1

Λ=2
∈τ=2

,$=2
∈$=2

2
(
Λ=1

)Γ1
(
Λ=2

)Γ2(
2−Λ=1

)Γ1 .ε
(
2−Λ=2

)Γ2
+
(
Λ=1

)Γ1
.ε
(
Λ=2

)Γ2
/$=1

$=2




,




⋃

Υ
=1
∈ξ
=1
,φ
=1
∈φ
=1

Υ
=2
∈ξ
=2

,φ
=2
∈φ
=2

2
(
Υ
=1

)Γ1
(
Υ
=2

)Γ2

(
2−Υ

=1

)Γ1
.ε

(
2−Υ

=2

)Γ2
+

(
Υ
=1

)Γ1
.ε

(
Υ
=2

)Γ2
/φ
=1
φ
=2

 ⋃
Υ=1
∈ξ=1

,φ=1
∈φ=1

Υ=2
∈ξ=2

,φ=2
∈φ=2

2
(
Υ=1

)Γ1
(
Υ=2

)Γ2(
2−Υ=1

)Γ1 .ε
(
2−Υ=2

)Γ2
+
(
Υ=1

)Γ1
.ε
(
Υ=2

)Γ2
/φ=1

φ=2







.

Thus, the result holds for p = 2.
Assume that the results holds for p = χ
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S V − NPHFREWA

 (=1,=2, ....,=χ)
(=1,=2, ....,=χ)



=







⋃
ξ>∈υ=>

Ξ=>∈Ξ=>

Π
χ
>=1

(
1+ξ

=>

)Γ>
−Π

χ
>=1

(
1−ξ

=>

)Γ>

Π
χ
>=1

(
1+ξ

=>

)Γ>
+Π

χ
>=1

(
1−ξ

=>

)Γ>
/Π

χ
>=1Ξ=>


⋃

ξ>∈υ=>
Ξ=>
∈Ξ=>

Π
χ
>=1

(
1+ξ=>

)Γ>
−Π

χ
>=1

(
1−ξ=>

)Γ>
Π
χ
>=1(1+ξ=>)Γ>

+Π
χ
>=1(1−ξ=>)Γ>

/Π
χ
>=1Ξ=>





,





⋃
Λ
=>
∈τ
=>

$
=>
∈$
=>

2Π
χ
>=1

(
Λ
=>

)Γ>

Π
χ
>=1

(
2−Λ

=>

)Γ>
+Π

χ
>=1

(
Λ
=>

)Γ>
/Π

χ
>=1$=>


⋃

Λ=>
∈τ=>

$=>∈$=>

2Π
χ
>=1

(
Λ=>

)Γ>
Π
χ
>=1

(
2−Λ=>

)Γ>
+Π

χ
>=1

(
Λ=>

)Γ> /Πχ
>=1$=>





,





⋃
Υ
=>
∈ξ
=>

φ
=>
∈φ
=>

2Π
χ
>=1

(
Υ
=>

)Γ>

Π
χ
>=1

(
2−Υ

=>

)Γ>
+Π

χ
>=1

(
Υ
=>

)Γ>
/Π

χ
>=1φ=>


⋃

Υ=>
∈ξ=>

φ=>∈φ=>

2Π
χ
>=1

(
Υ=>

)Γ>
Π
χ
>=1

(
2−Υ=>

)Γ>
+Π

χ
>=1

(
Υ=>

)Γ> /Πχ
>=1φ=>







.

Now we will prove for p = χ + 1

S V − NPHFREWA
{
(=1,=2, ....,=χ+1)(=1,=2, ....,=χ+1)

}
= S V − NPHFREWA

 (=1,=2, ....,=χ)
(=1,=2, ....,=χ)

 ⊕ε {(
Γχ+1.ε=χ+1

) (
Γχ+1.ε=χ+1

)}
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=






⋃

ξ>∈υ=>
Ξ
=>
∈Ξ
=>

Π
χ
>=1

(
1+ξ

=>

)Γ>
−Π

χ
>=1

(
1−ξ

=>

)Γ>

Π
χ
>=1

(
1+ξ

=>

)Γ>
+Π

χ
>=1

(
1−ξ

=>

)Γ>
/Π

χ
>=1Ξ

=>

 ⋃
ξ>∈υ=>

Ξ=>∈Ξ=>

Π
χ
>=1

(
1+ξ=>

)Γ>
−Π

χ
>=1

(
1−ξ=>

)Γ>

Π
χ
>=1

(
1+ξ=>

)Γ>
+Π

χ
>=1

(
1−ξ=>

)Γ>
/Π

χ
>=1Ξ=

>




,



 ⋃
Λ
=>
∈τ
=>

$
=>
∈$
=>

2Π
χ
>=1

(
Λ
=>

)Γ>

Π
χ
>=1

(
2−Λ

=>

)Γ>
+Π

χ
>=1

(
Λ
=>

)Γ>
/Π

χ
>=1$=>

 ⋃
Λ=>∈τ=>
$=>∈$=>

2Π
χ
>=1

(
Λ=>

)Γ>

Π
χ
>=1

(
2−Λ=>

)Γ>
+Π

χ
>=1

(
Λ=>

)Γ>
/Π

χ
>=1$=>




,




⋃

Υ
=>
∈ξ
=>

φ
=>
∈ξ
=>

2Π
χ
>=1

(
Υ
=>

)Γ>

Π
χ
>=1

(
2−Υ

=>

)Γ>
+Π

χ
>=1

(
Υ
=>

)Γ>
/Π

χ
>=1φ=>

 ⋃
Υ=>∈ξ=>
φ=>∈ξ=>

2Π
χ
>=1

(
Υ=>

)Γ>

Π
χ
>=1

(
2−Υ=>

)Γ>
+Π

χ
>=1

(
Υ=>

)Γ>
/Π

χ
>=1φ=>







⊕

ε






⋃

ξχ+1∈υ=χ+1
Ξ=χ+1∈Ξ=χ+1

(
1+ξ=χ+1

)Γχ+1
−

(
1−ξ=χ+1

)Γχ+1

(
1+ξ=χ+1

)Γχ+1
+

(
1−ξ=χ+1

)Γχ+1
/Ξ=χ+1


⋃

ξχ+1∈υ=χ+1
Ξ=χ+1

∈Ξ=χ+1

(
1+ξ=χ+1

)Γχ+1
−

(
1−ξ=χ+1

)Γχ+1

(
1+ξ=χ+1

)Γχ+1
+

(
1−ξ=χ+1

)Γχ+1
/Ξ=χ+1




,




⋃

Λ=χ+1∈τ=χ+1
$=χ+1∈$=χ+1

2
(
Λ=χ+1

)Γχ+1

(
2−Λ=χ+1

)Γχ+1
+

(
Λ=χ+1

)Γχ+1
/$=χ+1


⋃

Λ=χ+1
∈τ=χ+1

$=χ+1
∈$=χ+1

2
(
Λ=χ+1

)Γχ+1

(
2−Λ=χ+1

)Γχ+1
+

(
Λ=χ+1

)Γχ+1
/$=χ+1




,




⋃

Υ=χ+1∈ξ=χ+1

φ=χ+1∈φ=χ+1

2
(
Υ=χ+1

)Γχ+1

(
2−Υ=χ+1

)Γχ+1
+

(
Υ=χ+1

)Γχ+1
/φ=χ+1


⋃

Υ=χ+1
∈ξ=χ+1

φ=χ+1
∈φ=χ+1

2
(
Υ=χ+1

)Γχ+1

(
2−Υ=χ+1

)Γχ+1
+

(
Υ=χ+1

)Γχ+1
/φ=χ+1
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=





 ⋃
ξ>∈υ=>

Ξ=>∈Ξ=>

Π
χ+1
>=1

(
1+ξ

=>

)Γ>
−Π

χ+1
>=1

(
1−ξ

=>

)Γ>

Π
χ+1
>=1

(
1+ξ

=>

)Γ>
+Π

χ+1
>=1

(
1−ξ

=>

)Γ>
/Π

χ+1
>=1Ξ

=>

 ⋃
ξ>∈υ=>

Ξ=>∈Ξ=>

Π
χ+1
>=1

(
1+ξ=>

)Γ>
−Π

χ+1
>=1

(
1−ξ=>

)Γ>

Π
χ+1
>=1

(
1+ξ=>

)Γ>
+Π

χ+1
>=1

(
1−ξ=>

)Γ>
/Π

χ+1
>=1Ξ=

>




,



 ⋃
Λ
=>
∈τ
=>

$
=>
∈$
=>

2Π
χ+1
>=1

(
Λ
=>

)Γ>

Π
χ+1
>=1

(
2−Λ

=>

)Γ>
+Π

χ+1
>=1

(
Λ
=>

)Γ>
/Π

χ+1
>=1$=>

 ⋃
Λ=>∈τ=>
$=>∈$=>

2Π
χ+1
>=1

(
Λ=>

)Γ>

Π
χ+1
>=1

(
2−Λ=>

)Γ>
+Π

χ+1
>=1

(
Λ=>

)Γ>
/Π

χ+1
>=1$=>




,




⋃

Υ
=χ+1
∈ξ
=χ+1

φ
=χ+1
∈φ
=χ+1

2Π
χ+1
>=1

(
Υ
=>

)Γ>

Π
χ+1
>=1

(
2−Υ

=>

)Γ>
+Π

χ+1
>=1

(
Υ
=>

)Γ>
/Π

χ+1
>=1φ=>


⋃

Υ=χ+1∈ξ=χ+1
φ=χ+1∈φ=χ+1

2Π
χ+1
>=1

(
Υ=>

)Γ>

Π
χ+1
>=1

(
2−Υ=>

)Γ>
+Π

χ+1
>=1

(
Υ=>

)Γ>
/Π

χ+1
>=1φ=>







.

Thus

S V − NPHFREWA
{
(=1,=2, ....,=p)(=1,=2, ....,=p)

}

=






⋃

ξ>∈υ=>
Ξ
=>
∈Ξ
=>

Π
p
>=1

(
1+ξ

=>

)Γ>
−Π

p
>=1

(
1−ξ

=>

)Γ>

Π
p
>=1

(
1+ξ

=>

)Γ>
+Π

p
>=1

(
1−ξ

=>

)Γ>
/Π

p
>=1Ξ

=>

 ⋃
ξ>∈υ=>

Ξ=>∈Ξ=>

Π
p
>=1

(
1+ξ=>

)Γ>
−Π

p
>=1

(
1−ξ=>

)Γ>

Π
p
>=1

(
1+ξ=>

)Γ>
+Π

p
>=1

(
1−ξ=>

)Γ>
/Π

p
>=1Ξ=

>




,



 ⋃
Λ
=>
∈τ
=>

$
=>
∈$
=>

2Π
p
>=1

(
Λ
=>

)Γ>

Π
p
>=1

(
2−Λ

=>

)Γ>
+Π

p
>=1

(
Λ
=>

)Γ>
/Π

p
>=1$=>

 ⋃
Λ=>∈τ=>
$=>∈$=>

2Π
p
>=1

(
Λ=>

)Γ>

Π
p
>=1

(
2−Λ=>

)Γ>
+Π

p
>=1

(
Λ=>

)Γ>
/Π

p
>=1$=>




,




⋃

Υ
=>
∈ξ
=>

φ
=>
∈φ
=>

2Π
p
>=1

(
Υ
=>

)Γ>

Π
p
>=1

(
2−Υ

=>

)Γ>
+Π

p
>=1

(
Υ
=>

)Γ>
/Π

p
>=1φ=>


⋃

Υ=>∈ξ=>
φ=>∈φ=>

2Π
p
>=1

(
Υ=>

)Γ>

Π
p
>=1

(
2−Υ=>

)Γ>
+Π

p
>=1

(
Υ=>

)Γ>
/Π

p
>=1φ=>







.

�
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There are some properties which are fulfilled by the SV-NPHFREWA as follows:

Theorem 2. Let => =


(
υ
[>
/Ξ[>

, τ
[>
/$[>

,Υ
[>
/φ[>

)(
υ
[>
/Ξ[

>
, τ

[>
/$[

>
,Υ

[>
/φ[

>

)  (> = 1, 2, ....., p)

be a collection of SV-NPHFRNs, Γ = (Γ1,Γ2, ....,Γp)T are the weights of => with Γ> ∈ [0, 1] with∑p
>=1 Γ> = 1; then we have the following:

(1) Boundary: {(
=−

) (
=
)}
≤ S V − NPHFREWA

 (=1,=2, ....,=p)
(=1,=2, ....,=p)

 ≤ {(
=+

) (
=
)}

where

{(
=−

) (
=
)}

=






(
min1≤>≤p minξ=>∈υ`[>

ξ=>/Ξ[1
Ξ[2 .....Ξ[p

)
(
max1≤>≤p maxα

=>
∈υ`[>

α
=>
/Ξ[1

Ξ[2
.....Ξ[p

)
 ,

(
max1≤>≤p maxΛ=>∈τ`[>

Λ=>/$[1
$[2

.....$[p

)
(
min1≤>≤p minΛ

=>
∈τ`[>

Λ
=>
/$

[1
$
[2
.....$

[p

)
 ,

(
max1≤>≤p maxΥ=>∈ξ`[>

Υ=>/φ[1
φ[2
.....φ[p

)
(
min1≤>≤p minΥ

=>
∈α`[>

Υ
=>
/[

[1
[
[2
.....[

[p

)






{(
=+

) (
=
)}

=






(
max1≤>≤p maxξ

=>
∈υ`[>

ξ=>/Ξ[1
Ξ[2 .....Ξ[p

)
(
min1≤>≤p minα

=>
∈υ`[>

α
=>
/Ξ[1

Ξ[2
.....Ξ[p

)
 ,

(
min1≤>≤p minΛ

=>
∈τ`[>

Λ=>/$[1
$[2

.....$[p

)
(
max1≤>≤p maxΛ

=>
∈τ`[>

Λ
=>
/$

[1
$
[2
.....$

[p

)
 ,

(
min1≤>≤p minΥ=>∈ξ`[>

Υ=>/φ[1
φ[2
.....φ[p

)
(
max1≤>≤p maxΥ

=>
∈α`[>

Υ
=>
/[

[1
[
[2
.....[

[p

)





(2) Monotonicity: Let

(
=
∗

>,=
∗

>

)
=


(
υ
[>
/Ξ[>

, τ
[>
/$[>

,Υ
[>
/φ[>

)(
υ
[>
/Ξ[

>
, τ

[>
/$[

>
,Υ

[>
/φ[

>

)  (> = 1, 2, ....., p)

be a collection of SV-NPHFRNs. If
(
=>,=>

)
≤

(
=
∗

>,=
∗

>

)
, while the probabilities are same, then

S V − NPHFEWA(=1,=2, ....,=p) ≤ S V − NPHFEWA(=∗1,=
∗
2, ....,=

∗
p).

Proof. Let f (ς) =
1−ς
1+ς
, ς ∈ [0, 1]. Then, f ′(ς) = −2

(1+ς) < 0, so f (ς) is a decreasing function.

Let

 max
(
ξ=>

)
max

(
α
=>

)  =


(
max1≤>≤p maxξ=>∈υ`[>

(
ξ=>

))(
min1≤>≤p minα

=>∈υ`[>

(
α
=>

))
 and
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 min
(
ξ=>

)
min

(
α
=>

)  =


(
min1≤>≤p minξ=>∈υ`[>

(
ξ=>

))
(
max1≤>≤p maxα

=>
∈υ`[>

(
α
=>

))


(
min

(
ξ=>

)
≤

(
ξ=>

)
≤ max

(
ξ=>

)
f orall > = 1, 2, ....., p

)(
max

(
α
=>

)
≤

(
α
=>

)
≤ min

(
α
=>

)
f orall > = 1, 2, ....., p

)  f (max
(
ξ=>

)
≤

(
ξ=>

)
≤ f (min

(
ξ=>

)
) f orall > = 1, 2, ....., p

f (min
(
α
=>

)
≤

(
α
=>

)
≤ f (max

(
α
=>

)
) f orall > = 1, 2, ....., p


(

1−max(ξ=>)
1+max(ξ=>) ≤

1−(ξ=>)
1+(ξ=>) ≤

1−min(ξ=>)
1+min(ξ=>)

)
(

1−min
(
α
=>

)
1+min

(
α
=>

) ≤ 1−
(
α
=>

)
1+

(
α
=>

) ≤ 1−max
(
α
=>

)
1+max

(
α
=>

))
 .

Since Γ = (Γ1,Γ2, ....,Γp)T are the weights of
(
=>,=>

)
with Γ> ∈ [0, 1] with

∑p
>=1 Γ> = 1, we have


{(

1−max(ξ=>)
1+max(ξ=>)

)Γ>

≤

(
1−ξ=>
1+ξ=>

)Γ>

≤

(
1−min(ξ=>)
1+min(ξ=>)

)Γ>
}

(
1−min

(
α
=>

)
1+min

(
α
=>

))Γ>

≤

(
1−α

=>

1+α
=>

)Γ>

≤

(
1−max

(
α
=>

)
1+max

(
α
=>

))Γ>

 ,
{

p∏
>=1

(
1−max(ξ=>)
1+max(ξ=>)

)Γ>

≤
p∏
>=1

(
1−ξ=>
1+ξ=>

)Γ>

≤
p∏
>=1

(
1−min(ξ=>)
1+min(ξ=>)

)Γ>
}

{
p∏
>=1

(
1−min

(
α
=>

)
1+min

(
α
=>

))Γ>

≤
p∏
>=1

(
1−α

=>

1+α
=>

)Γ>

≤
p∏
>=1

(
1−max

(
α
=>

)
1+max

(
α
=>

))Γ>
}

 ,
{(

1−max(ξ=>)
1+max(ξ=>)

)∑p
>=1 Γ>

≤
p∏
>=1

(
1−ξ=>
1+ξ=>

)Γ>

≤

(
1−min(ξ=>)
1+min(ξ=>)

)∑p
>=1 Γ>

}
( 1−min

(
α
=>

)
1+min

(
α
=>

))∑p
>=1 Γ>

≤
p∏
>=1

(
1−α

=>

1+α
=>

)Γ>

≤

(
1−max

(
α
=>

)
1+max

(
α
=>

))∑p
>=1 Γ>




⇐⇒


((

1−max(ξ=>)
1+max(ξ=>)

)
≤

p∏
>=1

(
1−ξ=>
1+ξ=>

)Γ>

≤

(
1−min(ξ=>)
1+min(ξ=>)

))
((

1−max
(
α
=>

)
1+max

(
α
=>

)) ≤ p∏
>=1

(
1−α

=>

1+α
=>

)Γ>

≤

(
1−max

(
α
=>

)
1+max

(
α
=>

)))


⇐⇒


((

2
1+min(ξ=>)

)
≤ 1 +

p∏
>=1

(
1−ξ=>
1+ξ=>

)Γ>

≤

(
2

1+min(ξ=>)

))
((

2
1+min

(
α
=>

)) ≤ 1 +
p∏
>=1

(
1−α

=>

1+α
=>

)Γ>

≤

(
2

1+min
(
α
=>

)))


⇐⇒



( 1+min(ξ=>)
2

)
≤ 1

1+
p∏
>=1

(
1−ξ=>
1+ξ=>

)Γ>
≤

(
1+max(ξ=>)

2

)( 1+max
(
α
=>

)
2

)
≤ 1

1+
p∏
>=1

( 1−α=>
1+α=>

)Γ>
≤

(
1+min

(
α
=>

)
2

)
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⇐⇒



(1 + min(ξ=>)
)
≤ 2

1+
p∏
>=1

(
1−ξ=>
1+ξ=>

)Γ>
≤

(
1 + max

(
ξ=>

))(1 + max(α
=>

)
)
≤ 2

1+
p∏
>=1

( 1−α=>
1+α=>

)Γ>
≤

(
1 + min

(
α
=>

))



⇐⇒



min
(
ξ=>

)
≤ 2

1+
p∏
>=1

(
1−ξ=>
1+ξ=>

)Γ>
− 1 ≤ max

(
ξ=>

)max
(
α
=>

)
≤ 2

1+
p∏
>=1

( 1−α=>
1+α=>

)Γ>
− 1 ≤ min

(
α
=>

)



⇐⇒



min
(
ξ=>

)
≤

p∏
>=1

(1+ξ=>)Γ>
−

p∏
>=1

(1−ξ=>)Γ>

p∏
>=1

(1+ξ=>)Γ>
+

p∏
>=1

(1−ξ=>)Γ>
≤ max

(
ξ=>

)max
(
α
=>

)
≤

p∏
>=1

(
1+α

=>

)Γ>
−

p∏
>=1

(
1−α

=>

)Γ>
p∏
>=1

(
1+α

=>

)Γ>
+

p∏
>=1

(
1−α

=>

)Γ> ≤ min
(
α
=>

)


.

Thus, 

min=> ξ ≤

p∏
>=1

(1+ξ=>)Γ>
−

p∏
>=1

(1−ξ=>)Γ>

p∏
>=1

(1+ξ=>)Γ>
+

p∏
>=1

(1−ξ=>)Γ>
≤ max ξ=>

maxα
=>
≤

p∏
>=1

(
1+α

=>

)Γ>
−

p∏
>=1

(
1−α

=>

)Γ>
p∏
>=1

(
1+α

=>

)Γ>
+

p∏
>=1

(
1−α

=>

)Γ> ≤ minα
=>




.

Consider g(y) =
2−y

y , y ∈ (0, 1]. Then, g′(y) = −2
y , i.e., g(y) is a decreasing function on (0, 1].

Let

max(Λ=> ,Λ=>) =


(
max1≤>≤p maxΛ=>∈τ`[>

Λ=>

)
(
min1≤>≤p minΛ

=>
∈τ`[>

Λ
=>

)
 ,

min
(
Λ=> ,Λ=>

)
=


(
min1≤>≤p minΛ=>∈τ`[>

Λ=>

)
(
max1≤>≤p maxΛ

=>
∈τ`[>

Λ
=>

)
 ,


(
min

(
Λ=>

)
≤

(
Λ=>

)
≤ max

(
Λ=>

)
for all > = 1, 2, ....., p

)(
max

(
Λ
=>

)
≤

(
Λ
=>

)
≤ min

(
Λ
=>

)
for all > = 1, 2, ....., p

) 
(
g
(
max

(
Λ=>

))
≤ g

(
Λ=>

)
≤ g

(
min

(
Λ=>

))
for all > = 1, 2, ....., p

)(
g
(
min

(
Λ
=>

))
≤ g

(
Λ
=>

)
≤ g

(
max

(
Λ
=>

))
for all > = 1, 2, ....., p

) 
(

2−max(Λ=>)
max(Λ=>) ≤

2−(Λ=>)
(Λ=>) ≤

2−min(Λ=>)
min(Λ=>)

)
(

2−min
(
Λ
=>

)
min

(
Λ
=>

) ≤ 2−
(
Λ
=>

)(
Λ
=>

) ≤ 2−max
(
Λ
=>

)
max

(
Λ
=>

) )
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((

2−max(Λ=>)
max(Λ=>)

)Γ>

≤

(
2−Λ=>

Λ=>

)Γ>

≤

(
2−min(Λ=>)

min(Λ=>)

)Γ>
)

((
2−min

(
Λ
=>

)
min

(
Λ
=>

) )Γ>

≤

(
2−Λ

=>

Λ
=>

)Γ>

≤

(
2−max

(
Λ
=>

)
max

(
Λ
=>

) )Γ>
)




(
p∏
>=1

(
2−max(Λ=>)

max(Λ=>)

)Γ>

≤
p∏
>=1

(
2−Λ=>

Λ=>

)Γ>

≤
p∏
>=1

(
2−min(Λ=>)

min(Λ=>)

)Γ>
)

(
p∏
>=1

(
2−min

(
Λ
=>

)
min

(
Λ
=>

) )Γ>

≤
p∏
>=1

(
2−Λ

=>

Λ
=>

)Γ>

≤
p∏
>=1

(
2−max

(
Λ
=>

)
max

(
Λ
=>

) )Γ>
)




((
2−max(Λ=>)

max(Λ=>)

)∑p
>=1 Γ>

≤
p∏
>=1

(
2−Λ=>

Λ=>

)Γ>

≤

(
2−min(Λ=>)

min(Λ=>)

)∑p
>=1 Γ>

)
( 2−min

(
Λ
=>

)
min

(
Λ
=>

) )∑p
>=1 Γ>

≤
p∏
>=1

(
2−Λ

=>

Λ
=>

)Γ>

≤

(
2−max

(
Λ
=>

)
max

(
Λ
=>

) )∑p
>=1 Γ>





((

2−max(Λ=>)
max(Λ=>)

)
≤

p∏
>=1

(
2−Λ=>

Λ=>

)Γ>

≤

(
2−min(Λ=>)

min(Λ=>)

))
((

2−min
(
Λ
=>

)
min

(
Λ
=>

) )
≤

p∏
>=1

(
2−Λ

=>

Λ
=>

)Γ>

≤

(
2−max

(
Λ
=>

)
max

(
Λ
=>

) ))



(

2
max(Λ=>) ≤ 1 +

p∏
>=1

(
2−Λ=>

Λ=>

)Γ>

≤ 2
min(Λ=>)

)
(

2
min

(
Λ
=>

) ≤ 1 +
p∏
>=1

(
2−Λ

=>

Λ
=>

)Γ>

≤ 2
max

(
Λ
=>

)
)




max(Λ=>)
2 ≤ 1

1+
p∏
>=1

(
2−Λ=>

Λ=>

)Γ>
≤

min(Λ=>)
2

min
(
Λ
=>

)
2 ≤ 1

1+
p∏
>=1

( 2−Λ=>
Λ=>

)Γ>
≤

max
(
Λ
=>

)
2






max
(
Λ=>

)
≤ 2

1+
p∏
>=1

 2−(Λ=>)
(Λ=>)

Γ>
≤ min

(
Λ=>

)min
(
Λ
=>

)
≤ 2

1+
p∏
>=1

( 2−Λ=>
Λ=>

)Γ>
≤ max

(
Λ
=>

)




max
(
Λ=>

)
≤

2
p∏
>=1

((Λ=>))Γ>

p∏
>=1

(2−Λ=>)Γ>
+

p∏
>=1

(Λ=>)Γ>
≤ min

(
Λ=>

)min
(
Λ
=>

)
≤

2
p∏
>=1

((
Λ
=>

))Γ>
p∏
>=1

(
2−Λ

=>

)Γ>
+

p∏
>=1

(
Λ
=>

)Γ> ≤ max
(
Λ
=>

)
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max=> Λ ≤
2

p∏
>=1

(Λ=>)Γ>

p∏
>=1

(2−Λ=>)Γ>
+

p∏
>=1

(Λ=>)Γ>
≤ min Λ=>

min Λ
=>
≤

2
p∏
>=1

(
Λ
=>

)Γ>
p∏
>=1

(
2−Λ

=>

)Γ>
+

p∏
>=1

(
Λ
=>

)Γ> ≤ max Λ
=>




.

Consider g(y) =
2−y

y , y ∈ (0, 1]. Then, g′(y) = −2
y , i.e., g(y) is a decreasing function on (0, 1].

Let maxΥ=> = max1≤>≤p maxΥ=>∈ξ`[>
Υ=> and minΥ=>=min1≤>≤pminΥ=>∈ξ`[>

.

max(Υ=> ,Υ=>) =


(
max1≤>≤p maxΥ=>∈ξ`[>

Υ=>

)
(
min1≤>≤p minΥ

=>
∈ξ`[>

Υ
=>

)
 ,

min
(
Υ=> ,Υ=>

)
=


(
min1≤>≤p minΥ=>∈ξ`[>

Υ=>

)
(
max1≤>≤p maxΥ

=>
∈ξ`[>

Υ
=>

)
 ,


(
min

(
Υ=>

)
≤

(
Υ=>

)
≤ max

(
Υ=>

)
for all > = 1, 2, ....., p

)(
max

(
Υ
=>

)
≤

(
Υ
=>

)
≤ min

(
Υ
=>

)
for all > = 1, 2, ....., p

) 
(
g
(
max

(
Υ=>

))
≤ g

(
Υ=>

)
≤ g

(
min

(
Υ=>

))
for all > = 1, 2, ....., p
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.

�

5. Multi-attribute decision-making methodology

We present an approach for dealing with unpredictability in multi-attribute group decision-
making (MAGDM) with single valued neutrosophic probabilistic hesitant fuzzy rough (SV-NPHFR)
information. Consider a decision-making (DM) issue with a collection of variables {Θ1,Θ2, ......,Θn}

of n substitutes and a set of n attributes
{
Ĉ1, Ĉ2, ...., Ĉn

}
with (w1,w2, .....,wn)T the weights, that is, wג ∈

[0, 1], ⊕n
ג1w=ג = 1.Also, consider a probabilistic terms Ξ`ג ג`$, and φ`ג such that ⊕n

ג`1Ξ=ג = 1,⊕n
ג`1$=ג = 1

and ⊕n
ג`1φ=ג = 1 with the property that 0 ≤ Ξ`ג , φ`ג , ג`$ ≤ 1. To test the validity of kth substitute Θג under

the the attribute Ĉג, let {D 1,D 2, ....,D >} be a set of decision makers (DMs), and (σ1, σ2, ...., σn)T be
DMs weights such that σג ∈ [0, 1], ⊕n

ג1σ=ג = 1. The decision professional information of a certain
decision support problem is given as follows:

M =
[
=(Λ>ג j)

]
m×n
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=



(
=(Λ11),=(Λ11)

) (
=(Λ12),=(Λ12)

)
· · ·

(
=(Λ1 j),=(Λ1 j)

)(
=(Λ21),=(Λ21)

) (
=(Λ22),=(Λ22)

)
· · ·

(
=(Λ2 j),=(Λ2 j)

)(
=(Λ31),=(Λ31)

) (
=(Λ32),=(Λ32)

)
· · ·

(
=(Λ3 j),=(Λ3 j)

)
...

...
. . .

...(
=(Λ1ג),=(Λ1ג)

) (
=(Λ2ג),=(Λ2ג)

)
· · ·

(
=(Λג j),=(Λג j)

)


,

where
=(Λג j) =

{〈
Θ, υ`

=(Λ)
(Θ)/Ξ`

=(Λ)
,Λ`

=(Λ)
(Θ)/$`

=(Λ)
,Υ`

=(Λ)
(Θ)/Ξ`

=(Λ)

〉
|Θ ∈ Q

}
and

δ(Λג j) =
{〈

Θ, υ`δ(Λ)(Θ)/Ξ`δ(Λ) ,Λ`δ(Λ)(Θ)/$`δ(Λ) ,Υ`δ(Λ)(Θ)/Ξ`δ(Λ)

〉
|Θ ∈ Q

}
such that 0 <

(
max(υ`

=(Λ)
(Θ))

)
+

(
min(Λ`

=(Λ)
(Θ))

)
+

(
min(Υ`

=(Λ)
(Θ))

)
≤ 3 and 0 <

(
min(υ`δ(Λ)(Θ)

)
+(

max(Λ`δ(Λ)(Θ))
)

+
(
max(Υ`δ(Λ)(Θ))

)
≤ 3 are the SV-NPHF rough values. The algorithm steps are

described as follows for decision making:

Step-1. Construct the assessment matrices for the experts as follows:

(E)> =



(
=(Λ>

11), δ(Λ>

11)
) (
=(Λ>

12), δ(Λ>

12)
)
· · ·

(
=(Λ>

1 j), δ(Λ
>

1 j)
)(

=(Λ>

21), δ(Λ>

21)
) (
=(Λ>

22), δ(Λ>

22)
)
· · ·

(
=(Λ>

2 j), δ(Λ
>

2 j)
)(

=(Λ>

31), δ(Λ>

31)
) (
=(Λ>

32), δ(Λ>

32)
)
· · ·

(
=(Λ>

3 j), δ(Λ
>

3 j)
)

...
...

. . .
...(

=(Λ>

,(1ג δ(Λ>

(1ג
) (

=(Λ>

,(2ג δ(Λ>

(2ג
)
· · ·

(
=(Λ>

ג j), δ(Λ
>

ג j)
)


where > shows the expert numbers.

Step-2. Conduct an analysis on the normalized version of the experts’ matrices (N)> , as follows:

(N)> =

 =(Λג j) =
(
δ
(
Λג j

)
,=

(
Λג j

))
if For benefit(

=(Λג j)
)c

=
((
δ
(
Λג j

))c
,
(
=

(
Λג j

))c)
if For cost

Step-3. Use novel list of algebraic AOs to determined the collected decision making expert
information.

Step-4. For each option under consideration, compute the aggregated SV-NPHFRNs by evaluating
them to the given set of criteria and characteristics.

Step-5. Calculate the relative importances of various options using a scoring formula.

Step-6. In decreasing order, place all of the alternate ratings. When it comes to alternatives, a bigger
value indicates superiority.

The algorithm steps for multi-attribute decision making are given in Figure 1:
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Figure 1. Algorithm flow chart.

6. Case study

Sensor and data technologies: The social, economic, and political spheres are becoming rapidly
digitalized. Agriculture, particularly livestock production, is one of the sectors of development
that calls for the use of emerging technologies as the world enters various streams of technological
progress. However, knowledge and skills are generally lacking, especially in underdeveloped nations.
Therefore, it is essential to close this knowledge gap by gathering data and disseminating it to a broad
audience in order to spur additional research in the area. It is vital to think about the potential use
of these technologies in the period following the introduction of sensors for broader applications,
such as the assessment of rangeland condition and animal production. The application of precision
agricultural procedures for livestock, including individual animal behavior, grazing conditions, health
conditions, and feed intakes, benefits more from technological advancements. It is crucial to evaluate
the state of both rangeland resource conditions and livestock grazing behavior for grazing cattle. All
around the world, rangeland resources are crucial to the production of cattle. Due to changes in the
environment and management practices, forages and pastures are dynamic in terms of quantity, species
composition, and chemical composition. For improved management and exploitation, the rangeland
resources need to be evaluated and tracked. Traditional evaluations that involve mechanical or manual
counting, identification, and chemical composition are time-consuming and labor-intensive. Under
field conditions, sensors can be used to monitor the quality of grazing grounds, but they can also be
used to better manage grazing stock by gaining an understanding of how animals graze. It is essential
to comprehend current technology, such as sensors or bio sensors, in order to supplement or replace old
procedures. The goal of this research article is to raise awareness of the technologies that are currently
available and their applicability to rangeland resources, particularly in tropical rangelands. In most
situations, GPS devices are used in the tropics to evaluate solely the status of the rangeland without
taking the grazing cattle into account. The assessment further clarifies the significance of sensor
technology for quickly and easily detecting changes in cattle health and movement at the field level.
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Sensors (bio sensors), like any other technology, have limitations, such as measurement accuracy and
repetitive data complaints. However, the assessment clarifies the usage of sensor technology, which
saves time and energy in animal production that would otherwise require a lot of it.

Numerical example

The applications of the suggested methodologies in this research are illustrated and their viability
and efficacy are shown using an example concerning investment possibilities for a MADM problem
that has been adapted from experts. In Figure 2, some views of cattle farms are shown.

Assume that a standard MADM problem Cattle farm evaluation of developing technology
commercialization—needs to be resolved. Θ1, Θ2, Θ3 and Θ4 on a panel represent four potential
developing technology such as, Sensor and data technologies, robots, temperature and moisture
sensors, aerial images, and GPS technology respectively. Four factors must be taken into account while
making a decision: (Ĉ1) Technological development; (Ĉ2) Risk premium and prospective markets; (Ĉ3)
Environment for production, human resources and financial circumstances; and (Ĉ4) Opportunities for
employment.

Figure 2. Views of cattle farming using technology.

Step-1. The information of professionals are given in Table 1(a)–(d) in the form of SV-NPHFRS.
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Table 1(a). Expert details.

Ĉ1 Ĉ2

Θ1




(0.5/0.5, 0.2/0.5) ,

(0.6/0.6, 0.3/0.4) ,

(0.3/1.0)

 ,
(0.9/1.0) ,

(0.6/0.8, 0.5/0.2)

(0.2/0.3, 0.5/0.7)








(0.3/1.0) ,

(0.9/1.0) ,

(0.1/0.3, 0.7/0.7)

 ,
(0.4/1.0) ,

(0.2/1) ,

(0.7/1.0)





Θ2




(0.4/0.1, 0.6/0.9) ,

(0.7/1.0) ,

(0.8/0.4, 0.9/0.6)

 ,
(0.3/0.2, 0.5/0.8) ,

(0.1/0.5, 0.6/0.5)

(0.8/1.0)








(0.8/1.0) ,

(0.2/0.5, 0.5/0.5) ,

(0.9/1.0)

 ,
(0.6/0.3, 0.7/0.7) ,

(0.2/1.0) ,

(0.5/1.0)




Table 1(b). Expert details.

Ĉ3 Ĉ4

Θ1






(0.4/0.8, 0.5/0.2) ,

(0.6/1.0) ,

(0.4/1.0)


 ,


(0.9/1.0) ,

(0.6/1.0) ,

(0.1/1.0)











(0.2/1.0) ,

(0.3/1.0) ,

(0.2/0.4, 0.3/0.6)


 ,


(0.9/1.0) ,

(0.6/0.4, 0.3/0.6) ,

(0.3/1.0)






Θ2






(0.2/1.0) ,

(0.6/0.7, 0.3/0.3) ,

(0.4/1.0)


 ,


(0.2/1.0) ,

(0.8/1.0) ,

(0.2/0.2, 0.5/0.8)











(0.9/1.0) ,

(0.4/1.0) ,

(0.4/1.0)


 ,


(0.5/1.0) ,

(0.3/0.6, 0.4/0.4) ,

(0.4/1.0)
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Table 1(c). Expert details.

Ĉ1 Ĉ2

Θ3






(0.5/1.0) ,

(0.6/0.6, 0.3/0.4) ,

(0.3/0.7, 0.4/0.3


 ,


(0.5/0.5, 0.2/0.5) ,

(0.3/1.0) ,

(0.8/0.2, 0.9/0.8)











(0.5/0.7, 0.2/0.2, 0.9/0.1) ,

(0.3/1.0) ,

(0.3/0.2, 0.4/0.8)


 ,


(0.7/0.3, 0.3/0.7) ,

(0.3/1.0) ,

(0.3/0.6, 0.4/0.4)






Θ4






(0.2/1.0) ,

(0.8/1.0) ,

(0.4/1.0)


 ,


(0.2/0.4, 0.5/0.6) ,

(0.3/0.6, 0.3/0.4) ,

(0.1/1.0)











(0.2/1.0) ,

(0.6/0.4, 0.4/0.4, 0.3/0.2) ,

(0.4/1.0)


 ,


(0.9/1.0) ,

(0.3/1.0) ,

(0.7/0.2, 0.1/0.8)





Table 1(d). Expert details.

Ĉ3 Ĉ4

Θ3






(0.9/1.0) ,
(0.4/1.0) ,
(0.1/1.0)


 ,


(0.2/1.0) ,

(0.9/0.7, 0.3/0.3) ,
(0.3/1.0)











(0.5/1.0) ,
(0.3/1.0) ,
(0.4/1.0)


 ,


(0.5/1.0) ,

(0.2/0.6, 0.4/0.4) ,
(0.4/1.0)






Θ4






(0.2/1.0) ,
(0.1/1.0) ,

(0.5/0.3, 0.3/0.2, 0.4/0.5)


 ,


(0.8/1.0) ,

(0.7/0.6, 0.4/0.4) ,
(0.4/1.0)











(0.2/0.8, 0.5/0.1, 0.2/0.1) ,
(0.6/1.0) ,
(0.1/1.0)


 ,


(0.5/0.6, 0.2/0.4) ,

(0.6/1.0) ,
(0.3/0.2, 0.4/0.8)





Step-2. Expert opinion is of the beneficiary type. As a result, we don’t need to normalize the SV-

NPHFRNs in this context.

Step-3. In this problem, just one professional is evaluated for the collection of questionable data. As a
result, we are not obligated to detect the information gained.

Step-4. The SV-NPHFRWA operator is used to evaluate the alternatives’ aggregation details under the
given list of attributes:
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Γ = (0.34, 0.55, 0.11)T , we obtain the overall preference values Θχ of the alternative Lχ(χ =

1, 2, 3, 4) by utilizing the suggested SV-NPHFRWA operator.

For illustration,

S V − NPHFREWA

 (=1,=2, ....,=p)
(δ1, δ2, ...., δp)



=






⋃

ξ
=>
∈υ
=>

Ξ
=>
∈Ξ
=>

Π
p
>=1

(
1+ξ

=>

)Γ>
−Π

p
>=1

(
1−ξ

=>

)Γ>

Π
p
>=1

(
1+ξ

=>

)Γ>
+Π

p
>=1

(
1−ξ

=>

)Γ>
/Π
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>=1Ξ

=>


⋃

ξδ>∈υδ>
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Π
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−Π
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Π
p
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p
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/Π
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>=1Ξδ

>
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=>

$
=>
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=>
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Λ
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Λ
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)Γ>
/Π

p
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⋃

Λδ>
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2Π
p
>=1(Λδ> )Γ>

Π
p
>=1(2−Λδ> )Γ>+Π
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>=1$δ
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⋃

Υ
=>
∈ξ
=>

φ
=>
∈φ
=>

2Π
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>=1

(
Υ
=>

)Γ>

Π
p
>=1

(
2−Υ

=>

)Γ>
+Π

p
>=1

(
Υ
=>

)Γ>
/Π
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>=1φ=>
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.

After obtain the overall preference values Θχ of the alternative Lχ(χ = 1, 2, 3, 4)

s(Θχ) =
1
2




(

1
MΘ

∑
τ`ġ∋ג{ , p̃ג∈p̃`ġ

ג{) · p̃ג)
)
+(

1
MΘ

∑
τ`ġ∋ג{ , p̃ג∈p̃`ġ

ג{) · p̃ג)
) −

(
1

NΘ

∑
Ξ`ς∋ג% ġ`$∋ג$,

ג%) (ג$·
)
+(

1
NΘ

∑
Ξ`ς∋ג% ġ`$∋ג$,

ג%) (ג$·
) −

(
1

ZΘ

∑
Ξ`ς∋ג> ,φג∈φ`ġ

ג%) · φג)
)
+(

1
ZΘ

∑
Ξ`ς∋ג> ,φג∈φ`ġ

ג%) · φג)
) 



.
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Step-5. Score values of all alternatives under developed aggregation operator are presented using
Table 1. The Score values are presented in Table 2.

Table 2. Score values.
Operator s(Θ1) s(Θ2) s(Θ3) s(Θ4)
S V-NPHFREWA 0.1517 0.1248 0.1402 0.1419

Step-6. Categorize the alternatives. Θχ(χ = 1, 2, ...., 4) are listed in Table 3.

Table 3. Ranking of the alternatives.
Operator Score Most Effective Alternative
S V-NPHFREWA s(Θ1) > s(Θ4) > s(Θ3) > s(Θ2) Θ1

We determined from the preceding mathematical formulation that choice Θ1 is the best option
among the rest, and it is therefore strongly recommended.

6.1. Discussion and comparative studies

The viability of the proposed process, the adaptability of its aggregation to handle certain inputs and
outputs, the influence of score functions, sensitivity analysis, superiority, and, finally, the comparison
of the proposed methodology with existing methodologies are all covered in this part. Also present
the relationship strategy between alternatives and crossposting criteria using quaternion relationship
function are presented. The suggested approach was exact and appropriate for all types of input data.
The framework that was developed worked well for handling uncertainties. Using Einstein AOs,
it contained the PHFS, RS, and NS spaces. We may effectively employ our model in a number of
scenarios by extending the gap between the pleasure and displeasure classes by altering the practical
significance of particular parameters. We faced a variety of elements and input parameters under the
appropriate conditions in various MCDM problems. The suggested approaches are straightforward,
easy to comprehend, and easily adaptable to a wide range of options and attributes. It should be
highlighted that none of these theories provide a comprehensive explanation of how to handle a
scenario in which the attributes are intertwined. The effectiveness of the aforementioned MADM
tactics was further confirmed through this comparative analysis and relationship function with other
approaches.
Example: We take into account four records of the cattle-forums that are cited in Table 4 data.

Table 4. Quaternion neutrosophic fuzzy relation S (cattle-farm→Alternatives).

S Θ1 Θ2 Θ3 Θ4

Forum-1 (0.8,0.3,0.6) (0.4,0.6,0.9) (0.9,0.8,0.6) (0.5,0.5,0.8)
Forum-2 (0.3,0.4,0.8) (0.5,0.3,0.6) (0.7,0.9,0.9) (0.8,0.9,0.3)
Forum-3 (0.3,0.2,0.2) (0.1,0.6,0.8) (0.9,0.3,0.4) (0.3,0.6,0.9)
Forum-4 (0.6,0.4,0.8) (0.3,0.4,0.1) (0.2,0.6,0.1) (0.8,0.3,0.9)
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We take into account four entries that are cited in Table 5 data.

Table 5. Quaternion neutrosophic fuzzy relation T (Alternatives→Criteria).

T Ĉ1 Ĉ2 Ĉ3 Ĉ4

Θ1 (0.3,0.5,0.9) (0.7,0.8,0.9) (0.6,0.7,0.8) (0.9,0.3,0.5)
Θ2 (0.6,0.7,0.7) (0.8,0.3,0.4) (0.7,0.3,0.4) (0.5,0.6,0.7)
Θ3 (0.9,0.6,0.3) (0.7,0.8,0.3) (0.0.8,0.3,0.1) (0.8,0.6,0.2)
Θ4 (0.8,0.3,0.7) (0.9,0.3,0.4) (0.7,0.3,0.2) (0.6,0.4,0.5)

The Table 6 shows the relationship between Table 4 and Table 5.

Table 6. Quaternion neutrosophic fuzzy relation R (cattle-farm→Criteria).

R Ĉ1 Ĉ2 Ĉ3 Ĉ4

Forum-1 (0.9,0.5,0.6) (0.7,0.5,0.6) (0.8,0.4,0.6) (0.8,0.3,0.6)
Forum-2 (0.8,0.5,0.5) (0.7,0.3,0.4) (0.7,0.3,0.5) (0.7,0.4,0.5)
Forum-3 (0.9,0.5,0.4) (0.7,0.6,0.4) (0.8,0.3,0.4) (0.8,0.3,0.3)
Forum-4 (0.8,0.6,0.3) (0.8,0.6,0.3) (0.7,0.3,0.3) (0.6,0.3,0.4)

In the Table 7, We find the results of relationship function. The results are found using the following
formulas on quaternion neutrosophic numbers:

ξT (Pi, Fk) =
∨
s∈S

[ξT (Pi,T )
∧

ξR(T, Fk)]

τT (Pi, Fk) =
∧
s∈S

[τT (Pi,T )
∨

τR(T, Fk)]

ΥT (Pi, Fk) =
∧
s∈S

[ΥT (Pi,T )
∨

ΥR(T, Fk)].

After getting the information relationship of (cattle-farm→Criteria), we apply the following formula
on the neutrosophic quaternion numbers to obtained the Table 7. S R = ξR − =R.ΘR by following the
rule of the quaternion numbers, i j = k, jk = i, ki = j.

Table 7. Results of relationship.

Ĉ1 Ĉ2 Ĉ3 Ĉ4

Forum-1 0.6 0.4 0.56 0.62
Forum-2 0.55 0.58 0.55 0.5
Forum-3 0.7 0.46 0.68 0.71
Forum-4 0.58 0.62 0.61 0.48

In this Table 7 we can find that, form cattle-farm-2 and cattle-farm-4, the best criteria is Ĉ2. For
cattle-farm-1, Ĉ4 is best, and for cattle-farm-3 the best option is Ĉ4.

In particular, the comparison study was based on the same example situation, where the weight of
the traits was the same as above. Table 8 below shows the results utilizing multiple approaches and
complete weight data. We apply the single-valued neutrosophic probabilistic hesitant fuzzy Dombi
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weighted averaging and geometric (SV-NPHFDWA and SV-NPHFDWG) AOs [34], single-valued
neutrosophic probabilistic hesitant fuzzy weighted averaging and geometric (SV-NPHFWA and SV-
NPHFWG) AOs [35], and single-valued neutrosophic probabilistic hesitant fuzzy rough weighted
averaging and geometric (SV-NPHFRWA and SV-NPHFRWG) AOs [36].

Table 8. Comparison analysis.
Operators Score Most Effective Alternative

SV-NPHFDWA Undefined No Outcome
SV-NPHFDWG Undefined No Outcome
SV-NPHFWA Undefined No Outcome
SV-NPHFWG Undefined No Outcome

SV-NHFROWA (Defined) Undefined No Outcome
SV-NHFRHWA (Defined) Undefined No Outcome
SV-NHFRHWG (Defined) Undefined No Outcome

SV-NPHFRWA s(Θ1) > s(Θ3) > s(Θ2) > s(Θ4) s(Θ1)
SV-NPHFRWG s(Θ4) > s(Θ1) > s(Θ3) > s(Θ2) s(Θ4)

SV-NPHFREWA(Proposed) s(Θ1) > s(Θ4) > s(Θ3) > s(Θ2) s(Θ1)
SV-NPHFRWG (Defined) s(Θ1) > s(Θ3) > s(Θ4) > s(Θ2) s(Θ1)

The desirable alternative is therefore s(Θ1) when the SV-NPHFREWA operator is employed. If
another types of procedures is used, the best option is s(Θ1). For all of the compared methods, the
worst alternative is always s(Θ2). The other operators failed to give output because our information
had rough data that cannot be handled by other operators. The results show the effectiveness and
viability of the SV-NPHFREWA and SV-NPHFREWG operators utilizing the compared methods and
the suggested method in this paper for the identical single-valued neutrosophic hesitant fuzzy rough
information.

6.2. Limitations of the present work

The SV-NPHFRE-AO) has a number of benefits for decision-making, but there are also certain
drawbacks and concerns to take into account:

• SV-NPHFRE-AO is a complex method that requires a deep understanding of the underlying
concepts and mathematical operations. This can make it challenging to apply in practice,
particularly for decision-makers who are not familiar with advanced mathematical methods.
• SV-NPHFRE-AO requires a significant amount of data to be effective. This can be a limitation in

decision-making situations where data is scarce or difficult to obtain.
• There is currently no standard approach to using SV-NPHFRE-AO in decision making, which can

make it difficult to compare results across different studies or applications.
• SV-NPHFRE-AO is a subjective method that relies on human judgment to some extent. This

can introduce bias and inconsistencies into the decision-making process, particularly if there are
differences in opinion among decision-makers.
• SV-NPHFRE-AO can be difficult to interpret, particularly for non-experts. This can make it

challenging to communicate the results of the decision-making process to stakeholders or other
decision-makers.
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• SV-NPHFRE-AO may not be scalable to large decision-making problems due to the complexity
of the method and the amount of data required.

The limitations and issues of SV-NPHFREA in decision making should be carefully considered
before applying the method. Decision-makers should ensure that they have the necessary expertise and
data to use SV-NPHFREA effectively, and that they are aware of the limitations and potential biases
inherent in the method.

7. Conclusions

We deal with significant and technical data every day. To work more efficiently and compute full
information, we developed methodologies and tools for this type of data. Aggregation entails inherent
costs to reduce the volume of data to a single value. For situations where each item has a range of
probable values specified by MD, indeterminacy, and non-MD, the SV-NPHFRE-AO was created as
a potent fusion of an SV-N, PHFS, and RS. More information about these techniques’ advantages is
provided below.

(1) First, we’ve established some SV-NPHFRS operational standards based on Einstein operations.

(2) Due to the significance of operating procedures, the weighted averaging and geometric Einstein
aggregation operators have also been designed to deal with SV-NHFR data, including SV-NHFRA
and SV-NHFRG aggregation data in decision-making issues.

(3) Then, we designed the the weighted averaging Einstein aggregation operators to deal with SV-
NPHFR data, including sv-neutrosophic probabilistic hesitant fuzzy rough Einstein weighted
averaging (SV-NPHFREWA) aggregation operator.

(4) A number of helpful characteristics have been demonstrated for them.

(5) The MCDM techniques proposed in this paper are also capable of recognizing more correlation
between attributes and alternatives, demonstrating that they have a higher accuracy and a larger
setpoint than the existing methodologies, which are unable to take into account the inter-
relationships of attributes in practical uses. This shows that by using the MCDM methodologies
outlined in this paper, even additional links between features may be discovered.

(6) Proposed AOs could be used in studies of two-sided matching decisions with multi-granular and
incomplete criterion weight information, as well as studies of consensus reaching with non-
cooperative behavior management. This analysis of the constraints imposed by proposed AOs
does not take into account the degrees of participation, abstention, or non-membership. Over here,
the intended AOs are being implemented with a novel hybrid structure of prioritized, interactive
AOs.

(7) Future work will use state-of-the-art decision-making methods like TOPSIS, VIKOR, TODAM,
GRA, and EDAS to examine the theoretical basis of SV-NPHFSs for Einstein operations. We
will also talk about the ways in which these techniques are used in other areas, including soft
computing, robotics, horticulture, intelligent systems, the social sciences, economics, and human
resource management.
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25. N. Gonul Bilgin, D. Pamučar, M. Riaz, Fermatean neutrosophic topological spaces
and an spplication of neutrosophic Kano method, Symmetry, 14 (2022), 2442.
https://doi.org/10.3390/sym14112442

26. Z. Xu, W. Zhou, Consensus building with a group of decision makers under the
hesitant probabilistic fuzzy environment, Fuzzy Optim. Deci. Ma., 16 (2017), 481–503.
https://doi.org/10.1007/s10700-016-9257-5

27. S. Shao, X. Zhang, Y. Li, C. Bo, Probabilistic single-valued (interval) neutrosophic hesitant
fuzzy set and its application in multi-attribute decision making, Symmetry, 10 (2018), 419.
https://doi.org/10.3390/sym10090419

28. R. M. Zulqarnain, A. Iampan, I. Siddique, H. Abd, E. W. Khalifa, Some fundamental operations for
multi-polar interval-valued neutrosophic soft set and a decision-making approach to solve MCDM
problem, Neutrosophic Sets Sy., 51 (2022), 205–220.

29. R. M. Zulqarnain, X. L. Xin, M. Saqlain, M. Saeed, F. Smarandache, M. I. Ahamad, Some
fundamental operations on interval valued neutrosophic hypersoft set with their properties,
Neutrosophic Sets Sy., 40 (2021), 134–148. https://doi.org/10.5281/zenodo.4549352

30. M. Kamran, S. Ashraf, M. Naeem, A promising approach for decision modeling with single-
valued neutrosophic probabilistic hesitant fuzzy Dombi operators, Yugoslav J. Oper. Res., 2023.
http://dx.doi.org/10.2298/YJOR230115007S

31. R. Sahin, F. Altun, Decision making with MABAC method under probabilistic single-valued
neutrosophic hesitant fuzzy environment, J. Amb. Intel. Hum. Comp., 11 (2020), 4195–4212.
https://doi.org/10.1007/s12652-020-01699-4

32. M. Riaz, Y. Almalki, S. Batool, S. Tanveer, Topological structure of single-valued neutrosophic
hesitant fuzzy sets and data analysis for uncertain supply chains, Symmetry, 14 (2022), 1382.
https://doi.org/10.3390/sym14071382

33. C. F. Liu, Y. S. Luo, New aggregation operators of single-valued neutrosophic hesitant fuzzy set
and their application in multi-attribute decision making, Pattern Anal. Appl., 22 (2019), 417–427.
https://doi.org/10.1007/s10044-017-0635-6

34. M. Kamran, S. Ashraf, M. Naeem, A promising approach for decision modeling with single-valued
neutrosophic probabilistic hesitant fuzzy Dombi operators, Jugoslav J. Oper. Res., 2023.

35. G. Kaur, H. Garg, A novel algorithm for autonomous parking vehicles using adjustable
probabilistic neutrosophic hesitant fuzzy set features, Expert Syst. Appl., 2023, 120101.
https://doi.org/10.1016/j.eswa.2023.120101

36. M. Kamran, R. Ismail, E. H. A. Al-Sabri, N. Salamat, M. Farman, S. Ashraf, An
optimization strategy for MADM framework with confidence level aggregation operators
under probabilistic neutrosophic hesitant fuzzy rough environment, Symmetry, 15 (2023), 578.
https://doi.org/10.3390/sym15030578

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 9, 20612–20653.

http://dx.doi.org/https://doi.org/10.3390/sym14112442
http://dx.doi.org/https://doi.org/10.1007/s10700-016-9257-5
http://dx.doi.org/https://doi.org/10.3390/sym10090419
http://dx.doi.org/https://doi.org/10.5281/zenodo.4549352
http://dx.doi.org/http://dx.doi.org/10.2298/YJOR230115007S
http://dx.doi.org/https://doi.org/10.1007/s12652-020-01699-4
http://dx.doi.org/https://doi.org/10.3390/sym14071382
http://dx.doi.org/https://doi.org/10.1007/s10044-017-0635-6
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2023.120101
http://dx.doi.org/https://doi.org/10.3390/sym15030578
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Construction of single valued neutrosophic probabilistic hesitant fuzzy rough sets
	SV-Neutrosophic probabilistic hesitant fuzzy rough Einstein aggregation operators
	Multi-attribute decision-making methodology
	Case study
	Discussion and comparative studies
	Limitations of the present work

	Conclusions

