On a Generalized Bisector Theorem
 J. Sándor

Babeş-Bolyai University, 3400 Cluj, Romania

In the book [1] by Smarandache (see also [2]) appears the following generalization of the well-known bisector theorem.

Let $A M$ be a cevian of the triangle which forms the angles u and v with the sides $A B$ and $A C$, respectively. Then

$$
\begin{equation*}
\frac{A B}{A C}=\frac{M B}{M C} \cdot \frac{\sin v}{\sin u} . \tag{76}
\end{equation*}
$$

We wish to mention here that relation (1) also appeared in my book [3] on page 112, where it is used for a generalization of Steiner's theorem. Namely, the following result holds true (see Theorem 25 in page 112):

Let $A D$ and $A E$ be two cevians ($D, E \in(B C)$) forming angles α, β with the sides $A B, A C$, respectively. If $\widehat{A} \leq 90^{\circ}$ and $\alpha \leq \beta$, then

$$
\begin{equation*}
\frac{B D \cdot B E}{C D \cdot C E} \leq \frac{A B^{2}}{A C^{2}} . \tag{77}
\end{equation*}
$$

Indeed, by applying the area resp. trigonometrical formulas of the area of a triangle, we get

$$
\frac{B D}{C D}=\frac{A(A B D)}{A(A C D)}=\frac{A B \sin \alpha}{A C \sin (A-\alpha)}
$$

(i.e. relation (1) with $u=\alpha, v=\beta-\alpha$). Similarly one has

$$
\frac{B E}{C E}=\frac{A B \sin (A-\beta)}{A C \sin \beta}
$$

Therefore

$$
\begin{equation*}
\frac{B \dot{D} \cdot B E}{C D \cdot C E}=\left(\frac{A B}{A C}\right)^{2} \frac{\sin \alpha}{\sin \beta} \cdot \frac{\sin (A-\beta)}{\sin (A-\alpha)} \tag{78}
\end{equation*}
$$

Now, identity (3), by $0<\alpha \leq \beta<90^{\circ}$ and $0<A-\beta \leq A-\alpha<90^{\circ}$ gives immediately relation (2). This solution appears in [3]. For $\alpha=\beta$ one has

$$
\begin{equation*}
\frac{B D \cdot B E}{C D \cdot C E}=\left(\frac{A B}{A C}\right)^{2} \tag{79}
\end{equation*}
$$

which is the classical Steiner theorem. When $D \equiv E$, this gives the well known bisector theorem.

References

[1] F. Smarandache, Problèmes avec et sans... problèmes!, Somipress, Fes, Marocco,
1983.
[2] M.L. Perez, htpp/www.gallup.unm.edu/~smarandache/
[3] J. Sándor, Geometric Inequalities (Hungarian), Ed. Dacia, 1988.

