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Abstract: Hydraulic power systems are commonly used in heavy industry (usually highly energy-

intensive) and are often associated with high power losses. Designing a suitable system to allow an

early assessment of the wear conditions of components in a hydraulic system (e.g., an axial piston

pump) can effectively contribute to reducing energy losses during use. This paper presents the

application of a deep machine learning system to determine the efficiency state of a multi-piston

positive displacement pump. Such pumps are significant in high-power hydraulic systems. The

correct operation of the entire hydraulic system often depends on its proper functioning. The wear

and tear of individual pump components usually leads to a decrease in the pump’s operating pressure

and volumetric losses, subsequently resulting in a decrease in overall pump efficiency and increases

in vibration and pump noise. This in turn leads to an increase in energy losses throughout the

hydraulic system, which releases excess heat. Typical failures of the discussed pumps and their

causes are described after reviewing current research work using deep machine learning. Next, the

test bench on which the diagnostic experiment was conducted and the selected operating signals

that were recorded are described. The measured signals were subjected to a time–frequency analysis,

and their features, calculated in terms of the time and frequency domains, underwent a significance

ranking using the minimum redundancy maximum relevance (MRMR) algorithm. The next step

was to design a neural network structure to classify the wear state of the pump and to test and

evaluate the effectiveness of the network’s recognition of the pump’s condition. The whole study

was summarized with conclusions.

Keywords: learning systems; deep machine learning; diagnostics; signal analysis; multi-piston pump;

vibration; feature ranking

1. Introduction

A positive displacement pump is one of the most important components of hydrostatic
systems. A special place in the construction of such systems is occupied by axial piston
pumps, which, due to the possibility of working with high and very high pressures (higher
than other pump designs such as gear pumps) and the possibility of working with a
wide range of regulators and adjusters (e.g., regulators of power, pressure, and flow), are
regarded as the main pumps of such drives [1–3].

The possibility of assessing the state of wear of an operating pump is not only an
interesting research issue but also leads to the elimination of the uncontrolled downtime of
hydrostatic systems due to their failures.

Maintaining a hydraulic system in good working order requires constant supervision
of both its basic hydraulic parameters (pressures and flow rates) and additional operating
signals associated with the working of such a system, including vibration signals, tempera-
ture changes, and the purity class of the operating medium, that are often present in these
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types of systems. This usually requires retrofitting a system in operation with additional
measuring transducers found in their typical locations. The signals measured with the
transducers provide diagnostic information that is used to develop a system that monitors
the condition of the hydraulic system.

In current research work and the systems already in use to control the performance of
entire hydraulic systems (as well as individual components), it is possible to distinguish
three main approaches [4,5]:

✓ Diagnostic systems for hydraulics (components) based on the developed model of the
diagnosed system

Such a solution was used in specific papers [6,7] to detect malfunctions in axial
displacement pumps and consisted of assessing the resulting leaks in the piston–cylinder
pairs of these pumps using an extended Kalman filter [8] as a condition observer. The
detection of hydraulic cylinder piston seal leaks by means of an adaptive Kalman filter was
suggested in [9]. An interesting application of a sliding observer with modified (adaptable)
gain in an electrohydraulic positioning system diagnosis was presented in [10].

✓ Diagnostic systems for hydraulic systems (components) based on signal analysis

Wavelet analysis and the Hilbert–Huang transform as well as well-known methods of
the time–frequency analysis of signals are commonly used in these types of systems [11].

The use of the wavelet transform to monitor the condition of hydraulic cylinder seals,
the failure of which lead to leaks outside (and inside) the cylinder, was described in [12].
Moreover, the issue of leakage inside the actuator and its detection using the Hilbert–Huang
transform to analyze the measured signals was described in [13]. Another example of the
use of signal analysis in the diagnosis of a common malfunction of multi-piston pumps,
i.e., damage to the piston rod feet, is the use of adaptive morphological analysis [14].

✓ Diagnostic systems for hydraulics (components) using the so-called intelligent
fault identification

A lot of research on intelligent fault identification has been conducted and successfully
applied to the diagnostics of hydraulic systems [15–18]. This type of system is based on
using machine learning algorithms and deep machine learning [19].

In [20], the authors describe the use of the support vector machine (SVM) algorithm in
the classification of the degree of wear of hydraulic brakes. Another example of the use
of machine learning methods is the use of the extreme learning machine (ELM) classifier
described in [21] to assess the wear condition of the piston feet of multi-piston pumps.

The application of deep machine learning in monitoring the performance of hydraulic
system components was described using the example of employing such a system in the
diagnostics of a two-stage hydraulic distributor [22]. The article presented the possibility
of classifying the damage of such a distributor based on the newly developed multi-stage
classifier using the Dezert–Smarandache theory. The proposed method had a high efficiency
(98.1%) and was compared with other systems utilizing convolutional neural networks
(CNNs) and long short-term memory network (LSTM) recurrent networks as classifiers.
The use of deep machine learning to detect cavitation phenomena in centrifugal pumps’
suction ports based on the pressure signal measurements in their discharge ports was
described in [23].

Articles presented the application of deep machine learning using DBNs (deep belief
networks) in fault classification in axial piston pumps [24]. An experimental study was
carried out to detect and classify the four most typical axial piston pump faults. The
classification accuracy rate was 97.40%, which confirmed the feasibility and effectiveness of
detecting multiple faults in axial piston pumps with the use of DBNs (deep belief networks).

From the examples of the diagnosis of hydrostatic components and systems presented
above, it can be seen that the diagnosis of these systems is usually conducted under
stationary operating conditions, i.e., at a stabilized working fluid temperature. In the
authors’ opinion, this approach places a significant limitation on the assessment of the
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degree of wear of the components being tested. Therefore, to assess the wear condition of
a multi-piston pump, it was proposed to analyze the signals measured both in stationary
and non-stationary conditions of its operation [5].

A large proportion of the work devoted to the subject of the diagnosis of malfunctions
in positive displacement pumps is based on the use of pre-prepared failures of pump
components, which are then incorporated into their design. With this approach, the
damage development cannot be fully pictured and is only an approximation. The authors
of an article used a different approach [5] based on obtaining the wear of elements of the
tested pump in a natural way based on its lengthy operation under the assumed load at a
lower oil-cleanliness class. Except for achieving the natural wear of the pump components,
the presented method gives the opportunity to control the development of damage and
associated symptoms.

In this article, the authors present the use of deep machine learning [25,26] to classify
the wear state of a multi-piston positive displacement pump. In engineering applications,
deep machine learning systems are valued due to numerous advantages, among which
is the ability to develop a system with good classification accuracy utilizing a reasonable
amount of learning data and short learning times for the developed diagnostic models.
From the outset [5], it was assumed that the learning system would rest upon measures
(features) derived from vibration signals recorded at characteristic locations in the pump
body and additional signals from static and dynamic pressure transducers fitted in the
discharge port obtained as a result of a passive diagnostic experiment. The selection
of measures calculated from the measured signals and the subsequent ranking of their
relevance in the classification of the pump’s wear state was completed using the minimum
redundancy maximum relevance (MRMR) algorithm [27].

The original nature of this paper is the result of the following methods:

- The application of the minimum redundancy maximum relevance (MRMR) algorithm
in ranking the features determined from the measured signals;

- Designing a neural classifier of the pump wear state based on the ranked features of
the measured signals;

- Preparing and carrying out a test experiment to naturally obtain the wear and tear
of the pump components based on the lengthy operation of the pump at a lower
oil grade;

- The use of signals measured across the entire operating range of the pump (i.e., when
in stationary and non-stationary operating conditions) to assess the wear state of the
tested pump.

2. Object of the Study

An axial multi-piston pump with a swashplate (the simplified design scheme of which
is shown in Figure 1) was the object of the research. This type of design is characterized by
the rotor (2) and piston assembly (3) mounted coaxially on the drive shaft (1). The feet (4)
of the pistons cooperating with a stationary disc (5) pivoted at an angle (γ) with regard to
the axis of the pump rotor.

The pistons, together with the rotor, perform a rotary motion, and, sliding on the
surface of the stationary swashplate, their feet (4) further force a progressive-return motion
in the rotor cylinders. The rotor slides on a stationary valve plate (6) in which the pump’s
suction and discharge ports are provided. The wear and tear of the elements within
the positive displacement pumps are determined by the forces that occur during the
cooperation of various elements forming kinematic pairs (e.g., piston–cylinder, valve plate–
rotor, and piston foot–swashplate) and the inadequate operating conditions of the pumps,
e.g., exceeding the nominal working pressure, low viscosity of the operating medium, or its
insufficient filtration. The type of wear that occurs most typically in positive displacement
pump components is abrasive wear [29,30]. This type of wear appears in all elements of the
pump experiencing relative motion and contact between them. In the case of the analyzed
multi-piston pump designs, this applies, for instance, to the surface of its swashplate.
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Swashplate wear is associated with the phenomenon of a deepening elliptical depression
on its surface, caused by a permanent or partial loss of hydrostatic support between the
surface of the disc and the surface of the piston foot sliding on it. The lack of hydrostatic
support of the piston foot–swashplate pair can be a result of the excessive operating
pressure of the pump at the same time as its operating medium has low viscosity. This
leads to the disappearance of the lubricating layer between the moving components (the
disappearance of hydrostatic support) and a shift of the components working together into
the mixed or dry friction range.

Figure 1. Simplified design diagram of an axial piston pump with a swashplate: 1—shaft, 2—rotor,

3—piston, 4—sliding shoe, 5—swashplate, 6—valve plate, 7—bearing [28].

The progressive wear of pump components can be tracked using conventional diag-
nostic methods, which are based on time and time–frequency analyses of the measured
signals [11].

3. Course of the Study

Studies devoted to the subject of wear development in the multi-piston pump compo-
nents were conducted on a laboratory bench specially built for this purpose. One of the
main objectives of this study was to achieve the wear of the pump components in a natural
way; therefore, the tests lasted many hours and were conducted in the actual operating
conditions of the pump. During the study experiment, the live recording of diagnostic
signals was carried out with the following assembled measuring transducers:

• A static pressure transducer;
• A dynamic pressure transducer;
• A pump body vibration acceleration transducer.

Measurements of vibrating body acceleration were made for three measurement axes
(X, Y, and Z) after mounting transducers on the pump body near the swashplate, rotor, and
valve plate (Figure 2).

Figure 2. View of the vibration transducers mounted on the body of the tested pump.
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The pressures (static and dynamic) were measured in the pump’s discharge line
directly at its outlet. The sampling frequency of the measured signals equaled 50 kHz. A
simplified diagram of the test bench is shown in Figure 3. Taking advantage of the fact
that during the measurements of the signals the pump shaft rotation marker signal was
also measured, each of the recorded signals underwent division according to this signal. In
the case of the pump operating at nominal speed (n = 1500 rpm), 25 splits were obtained
from a signal of 1 s. This provided signal matrices with a length of one rotation (i.e., with
a duration of: 0.04 s). One-second signals were recorded with fifteen-minute intervals
between the measurements. Under a static load, the experiment included 10 h of pump
operation per day (the whole experiment took about a week).

Figure 3. Simplified diagram of the test bench: Pb—multi-piston pump being tested, Pw—booster

pump, Zb—maximum valve, Zp—bypass valve, Zd—throttle valve, Zo—shut-off valve, Z1—non-

return valve, Fs—low-pressure filter, Fw—filler filter, M—pressure gauge, n—rotometer, Q—flow

meter, Ps—static pressure transducer, Pd—dynamic pressure transducer.

The operating status of the pump was supervised by measuring the change in static
pressure at its output. Comparing the pressure values (for individual measurements) day
by day, it was assumed that if the permissible pressure drop at the outlet of the pump
reached a value of up to 10% of the value of the constant pressure of its load (this pressure
was 70 bar), the tested pump remained operational (classifier: pump in working order). A
further increase in the pressure drop at the pump outlet (up to 20% from the initial pressure)
was classified as a near end-of-life condition of the pump (classifier: end of life). If the
pressure drop at the pump outlet exceeded 20% of its initial value, the pump was treated as
worn out (classifier: worn-out pump). A total of 441 waveforms of the measured signals
(pump body vibration, static pressure, and dynamic pressure) were recorded, out of which
294 (147 each) constituted signals measured for an operational pump (classifier: pump
in working order) or a pump in the transition condition (classifier: end of life). The last
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147 runs were obtained in the operation process of a worn-out pump (classifier: worn-out
pump). The next step in preparing the data for the pump performance status classification
system was to divide them into data used in the learning process of the neural network
and data meant for its subsequent testing and validation. It was assumed that a total of
30% of the general data would be used for validation and testing the correctness of the
resulting classifier. The rest of the data (i.e., 70% of the general data) would be used in the
process of network learning. The data thus prepared were loaded into the workspace of
the Matlab package [31,32], where their further analysis was carried out, consisting of the
following steps:

• The selection and calculation of appropriate signal features;
• The ranking of the calculated features with regard to the information they contained;
• Designing the structure of a neural network in a classifier system;
• Evaluating the effectiveness of the designed network in the classification of the wear

state of the studied pump.

Selection of Classification System Features

Another critical issue in the classification system construction was selecting signal
features on which the system would rely. The features of signals in the time domain, as well
as the frequency domain, were identified for each of the obtained pump body vibration
signal matrices [22,33]. The same was performed to analyze the signals from the static and
dynamic pressure transducers fitted in the pump discharge port.

When the temporal characteristics of the measured signals were determined, their
variability and the amount of information they contained were determined. Statistical
measures of location, concentration, and variability were used. A summary of the mathe-
matical relationships (with their descriptions), according to which the characteristics of the
measured signals were calculated, is included in table in the next section.

The following were taken as frequency measures commonly used to describe signals
in the frequency domain: the maximum value of the power spectral density (PSD) and the
frequency value at which the amplitude of the PSD reached its maximum.

A total of 84 features were calculated from the measured signals, 66 of which were
features derived from vibration signals, and 22 of which were obtained from measured
pressures (static and dynamic). The calculated features of the signals (vibration and
pressure) were sorted in tables, the last columns of which presented the classes (labels) of
the pump’s operating status, i.e., pump in working order, end of life, and worn-out pump.

4. Significance Ranking of Signal Features

The calculated characteristics of the signals (Table 1) were carriers of information
about the wear status of the monitored pump. As a general perception, the more informa-
tion, the better the discriminatory power of the method used to classify sets of varying
characteristics [34,35]. In theory, the number of calculated signal features (the input data
for the classifier) is infinite, but the actual aim was to obtain the smallest number of
features that provides a good description of the studied object’s properties. This was con-
ducive to obtaining a compact model with a good fit in this article. The authors assumed
that the five most relevant features would be selected to determine the wear state of the
analyzed pump.

In order to improve the performance of the practical classifiers, it was necessary to
remove correlated or irrelevant features, which led to a reduction in the dimensionality of
the feature matrix and saved computational effort in developing the classifier models [36].

In this article, the minimum redundancy maximum relevance (MRMR) algorithm was
used as a method for ranking the relevance of the calculated features.

A discussion of the feature relevance ranking algorithm is presented below.
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Table 1. List of features of the measured signals.

No. Expression: Feature: Description:

1 x = 1
n

n
∑

i=1
xi

Mean
sum of all data divided by the

number of data

2
δ =

√
δ

2 where

δ
2 = 1

n−1

n
∑

i=1

(

xi − x
)2 Standard deviation

square root of variance; the
variance was estimated using a

consistent and
unbiased estimator

3 xRMS =

√

1
n

n
∑

i=1
xi

2 Root mean square
square root of the arithmetic

mean of the data squared

4 xkurt =
1
n ∑

n
i=1(xi−x)

4

δ
4

Kurtosis
measure of the shape
of feature distribution

5 xskw =
1
n ∑

n
i=1(xi−x)

3

δ
3

Skewness
defines the degree to which the

distribution differs from the
normal distribution

6 xsf =
xRMS

1
n ∑

n
i=1|xi|

Shape factor
root mean square of the signal

divided by the mean value
of the signal

7 xif =
max(|xi|)
1
n ∑

n
i=1|xi|

Impulse Factor
maximum absolute value of

the signal divided by the mean
absolute value of the signal

8 xcrest =
max(|xi|)

xRMS
Crest Factor

maximum absolute value in
the data divided by the root

mean square of the data

9 xclear =
max(|xi|)

(

1
n ∑

n
i=1

√
|xi|
)2

Clearance Factor

maximum absolute value of
the signal divided by the

square root of the
signal amplitude

10 max PSD
Peak amplitude

of PSD
maximum value of the power

spectral density

11 max Freq.
Peak frequency

of PSD
frequency of the maximum

value of power spectral density

xi—i-th measurement data point, n—total number of data in the measurement

Application of the Minimum Redundancy Maximum Relevance (MRMR) Algorithm in Ranking
Calculated Features of Measured Signals

Optimizing the selection of features suitable for evaluating the wear rate of a multi-
piston pump was carried out with the use of the minimum redundancy maximum rel-
evance (MRMR) algorithm [27]. This algorithm identified the optimal—given a pump
state classification (y)—set (S) of features x and z that maximized their applicability (VS)
and simultaneously minimized redundancy (WS). The algorithm relied on the pairwise
computed mutual information (I(x, z)) of features and the mutual information of features
and pump condition (I(x, y)).

Vs =
1

|S| ∑
x∈S

I(x, y) (1)

Ws =
1

|S|2 ∑
x,z∈S

I(x, z) (2)

where:
Vs—applicability of features from set S;
Ws—redundancy of features from set S;
|S|—number of features in set S;
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I(x, y)—calculated value of the mutual information of features x and y for the condition
of the pump;

I(x, z)—calculated value of the mutual information of features x and z from set S.
The mutual information value (3) of features x and z in set S was calculated according

to their joint probability distribution (p(x, y)) and the separate probability distributions (p(x)
and p(y)) of the variables x and y by means of the adaptive algorithm described in [37]. In
the same way, the mutual information value (I(x, y)) of the x features and the y state of the
pump were calculated.

I(x, y) = ∑
i, j

p
(

xi, yj

)

· log
p
(

xi, yj

)

p(xi)p
(

yj

) (3)

where:
p(x, y)—joint probabilistic distribution of feature x and state y;
p(x)—probability distribution of feature x;
p(y)—probability distribution of feature y.
Finding the optimal set (S) of features (from the full set (Ω) of all 62 calculated features

from vibration signals and 22 features calculated on the basis of pressure signals) that
minimized their redundancy and, at the same time, maximized their applicability required
an algorithm that calculated the value of the mutual information coefficient (MIQX) (the
quotient of a feature’s applicability to its redundancy). Feature classification rested upon
the selection of those characterized by the largest MIQX coefficient values (practically, larger
than the assumed cut-off value).

max
x ∈ ScMIQX =

max
x ∈ Sc

I(x, y)
1
|S| ∑z∈S I(x, z)

(4)

The significance rankings of the features calculated separately from vibration signal
measurements and pressure signal measurements are graphically shown in Figure 4 (for
vibration signals) and Figure 5 (for pressure signals).

Figure 4. Significance ranking of features that satisfied the condition of the most significant applica-

bility with minimal redundancy. Obtained from pump body vibration runs.
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Figure 5. Significance ranking of the features that satisfied the condition of the greatest applicability

with minimal redundancy. Obtained from the pressure waveforms (static and dynamic) in the

discharge port of the pump.

Among the 62 features that were obtained from the pump body vibration measure-
ments, the 5 most relevant features (i.e., the 3 features with calculated MIQX coefficient
values greater than 0.05 and the next 2 highest-ranked coefficients) were chosen to evaluate
the wear state of the pump. The features that satisfied the foregoing condition are listed in
Table 2.

Table 2. Fundamental features of vibration signals.

Feature MIQX Coefficient Value

XT_PeakFreq 0.37

YW_PeakAmp 0.31

YT_CreastFactor 0.05

XW_RMS 0.015

YR_Skewness 0.015

XT_PeakFreq—frequency of the maximum value of the power spectral density (PSD) of the vibration signal
measured on the pump disc in the X direction, YW_PeakAmp—maximum value of the power spectral density
(PSD) of the vibration signal measured on the pump rotor in the Y direction, YT_CreastFactor—peak factor of the
vibration signal measured on the pump disc in the Y direction, XW_RMS—RMS of the vibration acceleration
signal measured on the pump rotor in the X direction, YR_Skewness—skewness of the vibration signal measured
on the pump timing in the Y direction.

Among the 22 features obtained from measurements of static and dynamic pressure
in the pump’s discharge port, the 5 most significant features (i.e., with calculated MIQX

coefficient values greater than 0.05) were chosen for the evaluation of the pump’s wear
state. The features that satisfied the foregoing condition are listed in Table 3.

The most relevant features of vibration signals and pressure signals obtained from the
ranking were used as input variables in the designed system.
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Table 3. Fundamental features of pressure signals.

Feature MIQX Coefficient Value

CD_PeakAmp 0.33

CS_Skewness 0.24

CS_Kurtosis 0.07

CD_ImpulseFactor 0.06

CS_PeakAmp 0.05

CD_PeakAmp—maximum value of the power spectral density (PSD) of the dynamic pressure signal,
CS_Skewness—skewness of the static pressure signal, CS_Kurtosis—kurtosis of the static pressure signal,
CD_ImpulseFactor—impulse factor of the dynamic pressure signal, CS_PeakAmp—maximum value of power
spectral density (PSD) for the static pressure signal.

5. Structure of the Neural Network Used in the Classification System

A typical neural network used in classification problems consists of an input layer, one
or more hidden layers, and an output layer (Figure 6). The number of neurons in the input
and output layers depends on the number of input variables (selected from a ranking of
signal features) and the number of states to be classified. The number of hidden layers and
the number of neurons contained therein determine the network’s ability to obtain a correct
classification result and are is usually selected experimentally or by means of appropriate
algorithms [38,39].

Figure 6. General structure of a typical multilayer neural network.

The designed classification system using deep machine learning involved a network
consisting of three layers, i.e., an input layer, an output layer, and a hidden layer with N, M,
and Q nodes (neurons). A block diagram of the neural network (modeled in the MATLAB
suite [40]), with additional blocks to normalize the data flow between the neurons of each
layer, is provided in Figure 7.
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Figure 7. Block structure of the network adopted for the classification of the wear state of the studied

pump [40].

The input layer (WAR. WEJ.) allowed the entry of data into the network and performed
data normalization. This layer was composed of N input neurons, to which the values of
the previously selected N most relevant (determined from the ranking) signal features were
given. The entered values of the most relevant features were subjected to normalization,
which involved obtaining data with a mean value of zero and a standard unit of standard
deviation. The normalized feature input vector was written as follows:

x = (x1 , x2 , x3 , x4 , . . . xN)
T (5)

Thus prepared, the data were further analyzed in the hidden layer (WAR. WEW.)
composed of M nodes. The normalized input data were multiplied by a weight matrix
(wi, j) with the dimensions N × M, and a load vector (bj) with the dimensions M × 1 was
added. This operation in mathematical notation was expressed as follows:

yj =
N

∑
i=1

xi·wi,j + bj (6)

In order to speed up network training, input data are divided into blocks. The size
of each data block affects the network’s learning time and classification accuracy and is
usually chosen experimentally. In the work presented here, it was assumed that the 308
data points needed for network learning (representing 70% of the 441 available input data)
would be divided into seven blocks containing 44 data points each. The batchnorm block
first normalized the activation of each neuron by subtracting the mean value from the
mini-batch (data block) and dividing it by the standard deviation of the mini-batch. The
layer then shifted the input data by offset β, which was a variable in the learning process,
and performed scaling by a scale factor (ϑ), which was also a variable in the learning
process. Mathematically, the operation was calculated as follows:

x̂i =
xi − µb
√

δ2
b − ε

(7)
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yi = ϑ·x̂i + β (8)

where:
x̂i—normalized i-th input;
µb—mean value of the data block;
δb—standard deviation from a data block;
ε—calculation constant (usually 1 × 10−6).
The nonlinear function ReLU was used as the function activating each node (neuron)

of the network [24,41], which can be written as follows:

yi = max[yi, 0] (9)

The data prepared in this way were further analyzed in the output layer (WAR.WYJ.),
which consisted of K neurons. The input data of this layer were multiplied by a weight
matrix (wi,q) with the dimensions M × K. Then, a load vector (bq) with the dimensions
K × 1 was added. The next step involved activation by means of the activation function
(ϕ), which was usually the Softmax function in classification issues.

The mathematical activation of an example neuron at the output (q) of the network is
shown below:

zq = ϕ·
k

∑
q=1

(

M

∑
l=1

yi·wi,q + bq

)

(10)

The Softmax (ϕ) activation function calculated the probability P(zq) that a variable
given to the input of the network belonged to a given class (label) at the output of
the network:

P
(

zq

)

=
exp
(

zq

)

∑
k
q=1 exp

(

zq

) (11)

The classification layer took the calculated value from the Softmax activation function
and assigned the input variable to one of k mutually exclusive classes using the CE cross
entropy function:

CE = −
N

∑
i=1

k

∑
q=1

ti,q· ln zi,q (12)

where:
N—number of samples;
k—number of class-independent output variables;
ti,q—belonging index of the i-th sample to the q-th class;
zi,q—output value assigning the i-th sample (input) to the q-th class (output); probabil-

ity and association by the network of the i-th input with the q-th output (class).
The normalized input vector of the designed system contained the five most relevant

features (selected from each of the rankings), and the three operating states of the pump
were classified:

• Pump in working order;
• Pump at its end of life;
• Worn-out pump.

The network structure consisted of:

• 5 neurons in the input layer;
• 3 neurons in the classification layer;
• 12 neurons in the hidden layer.
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The number of neurons in the hidden layer was identified according to the following
relationship [38]:

M = 2·E + i (13)

where:
M—number of neurons in the hidden (inner) layer;
E—number of neurons in the input layer;
i—constant from the interval: 0 ÷ 8 (i = 2 was assumed in the study).
The parameters of the designed network, including the number of activated variables

and the variables to be learned, are summarized in Table 4.

Table 4. Main network parameters.

Network Parameters

No. Name Type
Number of Activated

Variables
Variables Subject

to Learning

1 WAR. WEJ. Input layer 5 -

2 WAR. WEW. Inner layer 12
12 × 5 (weights),

12 × 1 (load)

3 ReLU Activation 12 -

4 Batchnorm Data normalization 12
12 × 1 (offset),

12 × 1 (scaling)

5 WAR. WYJ. Output layer 3
3 × 12 (weights),

3 × 1 (load)

6 Softmax Smoothing 3 -

7 KLASYFIKACJA Classification - -

Network Training—Learning Parameters

After adopting the structure and parameters of the neural network, the next step was
to subject it to training. In the training process, the stochastic gradient method [42] using
the Adam (Adaptive moment estimation) solver was used to change the network parameters
(weights and load). The network was trained using seven blocks of data (each block
contained 44 data points for training (MiniBatchSize)). The maximum number of network
training epochs was assumed to be equal to 500.

In addition, the training data were reshuffled before each training epoch, and the
validation data (which accounted for 15% of the 441 available data points) were reshuffled
before each network validation.

A summary of the parameters used in the network training and validation process is
included in Table 5.

Using the features of vibration signals and pressure signals determined earlier from the
rankings, they were given to the network’s inputs for training and subsequent validation.
The progress of network training in the learning and validation process is separately shown
in the waveforms of changes in accuracy and network error for features obtained from
vibration signals (Figure 8) and features obtained from pressure signals (Figure 9).
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Table 5. Parameters used in network training and validation process.

No. Parameter Name Parameter Value

1 Gradient Decay Factor 0.95

2 Squared Gradient Decay Factor 0.99

3 Epsilon 1 × 10−8

4 Initial Learn Rate 1 × 10−3

5 Learn Rate Schedule ‘none’

6 Learn Rate Drop Factor 0.1

7 Learn Rate Drop Period 10

8 L2Regularization 1 × 10−3

9 Gradient Threshold Method ‘l2norm’

10 Gradient Threshold Inf.

11 Max Epochs 500

12 MiniBatch Size 44

13 Verbose 1

14 Verbose Frequency 50

15 Validation Data 66 × 6 table

16 Validation Frequency 20

17 Validation Patience Inf.

18 Shuffle every epoch

20 Execution Environment gpu

Figure 8. Waveforms of changes in accuracy and network error during training and validation

process for the features of the received vibration signals.



Energies 2023, 16, 1408 15 of 19

Figure 9. Curves of changes in accuracy and network error during training and validation process

for the features of the received pressure signals.

A quantitative measure of the accuracy of the waveforms and network errors was the
RMS values determined from the waveforms during the learning and validation process.
The RMS values were determined from the last three hundred epochs of the received
waveforms (i.e., between 200 and 500 epochs) according to the following relationship:

xRMS =

√

√

√

√

1

N

N

∑
n=1

|xi|2 (14)

where:
xi—value of the data string;
N—number of data points.
A summary of the calculated RMS values is shown in Table 6.

Table 6. Accuracy and error values during training and network validation.

Diagnostic Signal
Type

Method of Determining
Features

Accuracy Error

Training (%) Validation (%) Training (-) Validation (-)

Vibrations MRMR 94 93.9 0.17 0.16

Static and dynamic
pressure

MRMR 98.7 96.7 0.07 0.11

An accuracy evaluation of the learned models for classifying the wear state of the
studied displacement pump was carried out in the testing process using the remaining
15% of the data (15% of the 441 available data) that had not been used before (in training
and validating the models). The accuracy (acc) of pump condition classification by the
developed models was calculated from the following relationship:

acc =
∑

N
l (ŷi == yl)

N
·100% (15)
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where:
ŷi —estimated state of the pump at the i-th data point;
yl—the actual state of the pump at the i-th data point;
N—the total number of data.
The error matrices of the networks’ classification of pump status, along with the

calculated values of the accuracy coefficients, are shown below (Figures 10 and 11) and in
Table 7.

Figure 10. Matrix for classifying the wear state of the pump on the basis of features obtained from

vibration signals.

Figure 11. Matrix for classifying the wear state of the pump based on features obtained from

pressure signals.
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Table 7. Accuracy of pump status classification.

Type of Diagnostic Signal Method of Determining Features Accuracy of acc Classifier (%)

Vibrations MRMR 95.5

Static and dynamic pressure MRMR 100

6. Analysis of Obtained Results and Final Conclusions

Following the analysis of the obtained test results of the learned diagnostic models,
it should be noted that one hundred percent accuracy in classifying the wear state of the
pump was achieved with a network trained on features obtained from pressure signals
(both static and dynamic) and ranked using the MRMR algorithm. Another classifier
tested using features obtained from vibrations measured at characteristic locations on
the pump body achieved a classification accuracy of 95.5%, misclassifying three states of
pump efficiency as the end of pump operation. The adopted structure of a three-layer
neural classifier with additional blocks normalizing the data flow between neurons in each
layer proved to be sufficient to conduct the classification of the wear state of the studied
pump. The use of the minimum redundancy maximum relevance (MRMR) algorithm as a
feature relevance ranking method for the designed deep machine learning system allowed
the development of a classifier with relatively good classification accuracy, regardless of
whether vibration signals measured at characteristic pump body sites or pressure signals
recorded at the pump’s discharge port were used as input data. It should be emphasized
that the obtained features were derived from signals measured across the entire range of
pump operation, i.e., under stationary operating conditions (in a thermally steady state) and
under non-stationary operating conditions (i.e., with a changing viscosity of the hydraulic
fluid caused by the conversion of system power losses into heat).

In conclusion, it should be mentioned that using a deep machine learning system
consisting of a three-layer neural network trained on the features of the measured signals
ranked using the MRMR algorithm allowed the evaluation of the wear state of the analyzed
displacement pump, providing a high degree of accuracy.
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