On a Conjecture of F. Smarandache

Wang Yang ${ }^{1.2} \quad$ Zhang Hong $\mathrm{Li}^{1.3}$
(1. Department of Mathematics, Northwest University; 2.Department of Mathematics, Nanyang Teacher's College, Henan China 473061; 3.Xi'an Finance and Accounting School, Xi'an Shanxi China 710048)

Abstract

The main purpose of this paper is to solve a problem generated by Professor F.Smarandache.

Key word: Permutation sequence; k-power.

Let n be a positive integer, n is called a k-power if $n=m^{k}$, where k and m are positive integer, and $k \geq 2$. Obviously, if n is a k-power, p is a prime, then we have $p^{k} \mid n$, if $p \mid n$.

In his book "Only Problems, not Solutions", Professor F.Smarandache defined a permutation sequence: 12, 1342, 135642, 13578642, 13579108642, 135791112108642, $1357911131412108642,13579111315161412108642,135791113151718161412108642, \ldots$, and generated a conjecture: there is no any k-power among these numbers. The main purpose of this paper is to prove that this conjecture is true.

Suppose there is a k-power $a(n)$ among the permutation sequence. Noting the fact: $12=2^{2} \times 3$, we may immediately get: $a(n) \geq 1342>10000$. For the last two digits of $a(n)$ is 42 , so we have $a(n) \equiv 42(\bmod 100)$

Noting that $4 \| 100$, we may immediately deduce : $a(n) \equiv 42 \equiv 2(\bmod 4)$.
So we get $2 \mid a(n), 4 \nmid a(n)$. However, 2 is a prime, then $4 \mid a(n)$ contradicts with $4 \nmid a(n)$. So $\mathrm{a}(\mathrm{n})$ is not a k-power.

This complete the proof of the conjecture.

REFERENCES

[1] Chengdong Pang. Chengbiao Pang. Elementary Number Theory. 6 th ed. Being, 1992. [2] F.Smarandache. Only problems, not Solutions [M]. Xiquan publishing House, 1993;25.

