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Muhammad Naveed 1,2, Muhammad Azam 3, Nasrullah Khan 4, Muhammad Aslam 5*, 
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In this manuscript, we construct an attribute control chart (ACC) for the number of defective items 
using time-truncated life tests (TTLT) when the lifetime of a manufacturing item follows two lifetime 
data distributions: the half-normal distribution (HND) and the half-exponential power distribution 
(HEPD). To assess the potential of the proposed charts, necessary derivations are made to obtain the 
value of the average run length (ARL) when the production process is in-control and out-of-control. 
The performance of the presented charts is evaluated for different sample sizes, control coefficients, 
and truncated constants for shifted phases in terms of ARL. The behavior of ARLs is studied for the 
shifted process by introducing shifts in its parameters. The advantages of the proposed HEPD-based 
chart are discussed in the form of ARLs with HND and Exponential Distribution (ED) based ACCs 
under TTLT, showing the excellent assessment of the proposed chart. Additionally, the advantages 
of another proposed ACC using HND are compared with ED-based ACC, and the findings support the 
HND in the form of smaller ARLs. Finally, simulation testing and real-life implementation are also 
discussed for functional purposes.

A control chart (CC) is a graph that portrays whether an ongoing production process meets the intended specifi-
cations, and if not, the degree by which it deviates from those specifications. A CC is considered more effective if 
it can identify variations more rapidly. CCs are mainly divided into two types based on the nature of the dataset. 
If the quality nature of the study variable is in a quantifiable structure, such as the weight of an item or the height 
of a plastic jug, then variable CCs are used to inspect the ongoing process. Whereas, when we face a situation 
where we classify the manufacturing unit as either good or damaged, ACCs are preferred. The advantage of using 
ACC over variable CC is that it quickly analyzes the outcomes by reducing cost and time since it only requires 
defining units as good or defective. Many researchers have extensively studied the use of ACCs, for instance Ref. 
1 designed the np control chart with curtailment to enhance its effectiveness while keeping false alarm rates at a 
specified level. The effectiveness of the proposed charting structure is measured by calculating the OOC average 
time to signal (ATS) in steady-state mode. Later on Ref. 2 proposed another np chart using multiple dependent 
state (MDS) sampling. This CC involves two pairs of control limits whose parameters are established based on 
the desired IC ARL. Thereafter Ref. 3 introduced another ACC based on multiple-dependent state repetitive 
sampling (MDSRS). This control chart is more capable of detecting smaller process shifts than existing ACCs. 
Later on Ref. 4 developed a variable batch-size ACC to monitor the non-conforming items. The CC coefficient 
was determined through non-linear optimization and used to calculate the ARL. Subsequently Ref. 5 discussed 
the ACC using the neutrosophic statistical interval method. Later on, a comparison between the proposed chart 
and an existing chart was conducted in terms of neutrosophic average run length (NARL). Following that, a 
neutrosophic exponentially weighted moving average (NEWMA) CC for attribute data was introduced by Ref. 6. 
They employed neutrosophic Monte Carlo simulation to determine the NARL. Another advancement in ACC was 
presented by Ref. 7. The authors proposed ACC utilizing neutrosophic statistics to monitor blood components. 
The practical applications of the presented chart demonstrated that the proposed chart was effective, suitable, 
adaptable, and informative for monitoring blood components in uncertain environments.
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In the assembling industry, testing the lifetime of finished products can be time-consuming, as quality person-
nel often have to wait until the testing time is complete. To address this issue, researchers have utilized the TTLT 
method to test the lifetime of manufacturing items using predefined time intervals. Literature review reveals that 
many researchers have developed CCs for attribute nature using TTLT under the assumption that the quality of 
interest follows some life data distributions as Ref. 8 developed an ACC for the Weibull distribution (WD) using 
the concept of TTLT and calculated the ARLs to assess the capability of the proposed idea. A real-life example 
was also incorporated in this context. After that Ref. 9 proposed the np chart using life time data distribution 
named as Exponentiated Weibull Distribution (EWD) under TTLT. The effectiveness of the presented chart was 
compared to other existing CCs in the form of ARLs and found the better results. Again Ref. 10 applied TTLT to 
the Pareto distribution of the second kind to develop the np chart. The researchers assumed that the lifetime of 
the product followed this distribution with a known or unknown shape parameter. The researchers conducted 
a simulation study to demonstrate how well the proposed control chart could monitor non-conforming items 
in industries. Later on TTLT technique has been used by Ref. 11. The author applied the TTLT to Exponentiated 
half logistic distribution for the construction of ACC. The performance of the proposed charting structure was 
assessed using a Monte Carlo simulation to determine its ARL. Additionally, the evaluation of the proposed 
CC was also discussed using simulated data sets for industrial purposes. More work using the concept of TTLT 
can be seen in Ref. 12. The researchers proposed ACC using neutrosophic Weibull distribution to monitor the 
process more efficiently. The authors presented an example related to automobile manufacturing to demonstrate 
the applicability of the proposal. Recently Ref.13 presented an attribute np control chart (CC) in their research, 
which was based on multiple dependent state repetitive sampling (MDSRS) for the purpose of monitoring the 
lifetime of products using TTLT. The study assumed that the lifetime of the product could be modeled using 
three different lifetime distributions: Weibull, gamma, and Pareto distributions of the second kind with known 
shape parameters. The performance of the chart was evaluated using the OOC average run length and compared 
to the results of the CC designed under a single sampling procedure, which showed outstanding performance 
of the proposed idea.

The existing work on the control charts using TTLT has limitations in that these charts cannot be applied 
when the lifetime does not follows the half-normal distribution and the half-exponential power distribution. 
Notably, these distributions have not been explored in the existing literature concerning the development of CCs 
under TTLT. Motivated by previous research that explores the use of ACCs through TTLT in manufacturing 
industries using various life data distributions, in this paper, we will develop ACCs using two widely recognized 
life data distributions: the half-normal distribution and the half-exponential power distribution. We will discuss 
the application of the proposed control charts using real data.

The rest of the paper is organized as follows: “Introduction of two life data distribution” section, provides a 
brief overview of the two life data distributions. “Designing of proposed control charts” section, describes the 
proposed CC design under the assumption that its parameters are shifted. “Results discussion” section, discusses 
the advantages of the presented chart. “Advantages of proposed control charts” section, presents the results of 
a simulation study conducted to evaluate the effectiveness of the suggested CC. “Simulation study” section, 
presents a real-world application of the recommended chart. Finally, concluding remarks are discussed in “Real 
life examples” section.

Introduction of two life data distribution
In this section, we present a concise introduction based on HND and HEPD. In “Half normal distribution 
(HND)” section, we discuss the application of HND in the field of statistical quality control, and in “Half expo-
nential power distribution (HEPD)” section, we discuss the application of HEPD in the field of SQC.

Half normal distribution (HND).  Half Normal Distribution (HND) is broadly used distribution for mod-
eling life data and was developed by Ref.14. They studied its properties and application in quality control. it is 
also used when we are handling the data under fatigue 15. Fatigue is the structural destruction that happens when 
a material is in constant exposure to stress. The HND is a special case of normal distribution. The probability 
distribution of the half normally distributed variable t  is given by

here α is the scale parameter. The CDF denoted by F(t) is given by

The erf  is error function defined as

The mean and variance of HND are given by
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The application of HND can also be seen in the area of sports science, fiber buckling, physiology, blowfly, 
stochastic frontier model and particularly in the area of reliability. The application of HND in the area of ASPs 
can be seen in Refs. 16–19.

Half exponential power distribution (HEPD).  The HEPD is the positive truncation of Exponential 
Power Distribution developed by Ref. 20. This is the generalization of HND and ED for non-negative variables. 
HEPD is extensively used in the field of reliability and quality control like Ref. 21 developed the sampling plan for 
HEPD using TTLT. The author discussed its operating characteristic function and associated risks. Later on, real 
life example has also been discussed for practical implementation. After that Ref. 22 proposed double acceptance 
sampling plan for HEPD using TTLT. The probability distribution function (pdf) and cumulative distribution 
function (cdf) of HEPD are given by

here α is the scale parameter and � is the shape parameter. HEPD is converted to the ED when the value of its 
shape parameter � = 1 and transformed to HND for � = 2 . The mean of HEPD is as follows

Let the average life time of the failure products for the in-control (IC) process is µ0.

Designing of proposed control charts
In this section, we propose two types of CCs based on HND and HEPD. Firstly, we describe the procedure for 
constructing the CC based on HND, followed by the procedure for constructing the CC based on HEPD.

Designing of the control chart using Half Normal Distribution.  Here, we suppose that the failure 
time of the manufacturing item follows the HND. The probability that an item fails before time t0 is given by

replace the value of t0 = hµ0 where h indicates the truncated constant for HND and the value of α in term of µ 
using Eq. (4), then Eq. (9) can be written as

The process is considered to be IC when µ = µ0 then Eq. (10) becomes

The lower and upper control limits for the proposed np charting structure using HND are as follows

The working procedure for the presented chart is as follows

Stage 1 Draw an arbitrary sample from the process of size n in each subgroup. Count the number of items 
(denoted by D) that failed before reaching a predefined time t0 = hµ0,
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Stage 2 we declare the process as IC if LCL ≤ D ≤ UCL . Conversely, the process is declared as OOC if 
D < LCLorD > UCL.

It should be noted that the number of failure items D for the IC process follows the Binomial Distribution 
(BD) with parameters nandP0HND . Where P0HND is the probability that an item fails before time t0 and k is the 
control coefficient. In most cases, the value of P0HND is not known, so to tackle that situation we draw a prelimi-
nary sample from the IC process to determine the value of P0HND . Consequently the control limits which are 
designed for the practical objectives are

where D =
∑

D
n  denotes the mean failure time of items before time t0 in a subgroup over a preliminary sample.

The probability that the manufacturing operation is declared to be IC when it is actually IC is given as

The competency of the proposed idea is assessed by using ARL. ARL for the IC process is given as

Evaluation of the proposed HND based CC when its scale parameter is shifted.  Here, we assume that the scale 
parameter of HND is shifted due to some extraneous source of variation from α0toα1 = cα0. Where c is the 
amount of shift introduced. The probability that an item fails before reaching the specified time t0 is represented 
by P1HND derived as,

Rewrite Eq. (10)

Since, the scale parameter of HND is changed as α1 = cα0 , accordingly the mean level of HND is also shifted 
as µ = µ1 where

So, the above equation becomes
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Now the probability that the process is IC when in fact it is switched due to the change in its scale parameter 
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ARL for shifted process denoted ARL1HND is given as

We currently employ the following algorithm to calculate the ARLs for suggested CC.

(1)	 Fix the value of ARL say(r0 = 300, 370etc)
(2)	 Determined the value of h, k according to the given sample size n for which ARL0HND in Eq. (18) is nearer 

to r0.
(3)	 Utilize the values of h, candn obtained in step 2 to calculate the value of ARL1HND using Eq. (23) for different 

values of c.

Designing of the control chart using Half Exponential Power Distribution.  Now, we assume that 
the failure time of the item follows the HEPD. The probability that an item fails before time t0 is given by where 
t0 = h1µ0

Substituting the value of t0 = h1µ0 where h1 represents the truncated constant for HEPD, also put the value 
of α in terms of µ using Eq. (8), then Eq. (24) can be written as

The process is declared to be IC when µ = µ0 (or � = �0 and α = α0 ) then Eq. (25) can be written as

The lower and upper control limits for the presented np chart using HEPD is as follows

The execution for recommended charting structure is as follows:

Step 1 Choose a random sample of size n from the process in each subgroup. Count the number of items (say 
D1 ) that are rejected before reaching a preset time t0 = h1µ0

Step 2 Process is considered to be IC if LCL ≤ D1 ≤ UCL . Otherwise, the process is declared as OOC if 
D1 < LCLorD1 > UCL.

Here again D1 the number of failure items follows the BD with parameters nandP0HEPD . Where P0HEPD is the 
likelihood that an item fails before time t0 and k1 is the control coefficient. For the situation when the value of 
P0HEPD is unknown, we extract a preliminary sample from the IC process to compute the value of P0HEPD . As a 
result, the control limits which are used for realistic purposes are
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where D1 =
∑

D1

n  is the mean failure time of items in a subgroup before time t0 over a preliminary sample. The 
probability that an item is considered to be IC when the process is working in normal conditions is given as

Consequently, ARL for the IC process denoted by ARL0HEPD is given as

Evaluation of the suggested CC using HEPD when its scale parameter is changed.  In this section, we assume that 
one of the parameters of HEPD, i.e., the scale parameter, has been changed from α0toα1 = qα0 due to some vari-
ation, where q denotes the amount of shift introduced. The probability of an item failing before the specified time 
t0 is denoted by P1HEPD , which can be calculated as follows:

Rewrite Eq. (25)

Since, the scale level is changed from α1 = qα0 , as a result the mean value of HEPD is also changed as µ0 = µ1 
where
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Now the probability that operation is IC for shifted process due to the change in scale parameter is as follows:

The ARL for shifted process denoted by ARL1HEPD is given as follows

Now, we utilize the subsequent algorithm to process the Tables of ARLs for suggested CC based on HEPD 
when its scale parameter is shifted.

(1)	 Firstly, we set the value of the shape parameter �0 and ARL say(r0 = 300, 370etc)
(2)	 After that we determine the values h1, k1 according to the given sample size n for which ARL0HEPD in Eq. (33) 

is close to r0.
(3)	 Use the values of h1, k1ndn acquired in step 2 to ascertain the value of ARL1HEPD using Eq. (38) for different 

values of q.

Evaluation of proposed CC when its shape parameter is transferred.  In this case, we presume that the shape 
parameter (the second parameter) of HEPD has changed due to some deviation. Suppose it is changed from 
�0to�1 . Where �1 = w�0. Now, the probability of an object collapsing sooner than the predefined period t0 des-
ignated by P2HEPD is calculated as.

Rewrite Eq. (25)

As the shape parameter is shifted from �1 = w�0 , so its mean level is also changed as µ = µ1 where
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Substituting the values µ1,α = α0 and µ0 =
α0�

1/�0
0

Ŵ

(

1/�0

)Ŵ

(

2
/

�0

)

 in above equation

Now the probability that ongoing operation is reported as IC when in fact it is moved to the alteration in 
shape parameter as follows

The ARL for shifted process due to its shape parameter denoted by ARL2HEPD is given as follows

Now we utilize the accompanying calculation to register the Table of ARLs for offered CC using HEPD when 
its shape parameter is shifted.

(1)	 Predefine the value of ARL and shape parameter designated by r0and�0 respectively .
(2)	 Determined the values of h1, k1 according to the predetermined sample size n , for which ARL0HEPD in 

Eq. (33) is approach to r0.
(3)	 Use the values of h1, k1ndn attain in step 2 to determine the value of ARL2HEPD using Eq. (43) for assorted 

values of w.

Evaluation of proposed CC when both scale and shape parameters are shifted.  In this section, we consider the 
scenario where both parameters of HEPD are shifted due to some extraneous variation. We suppose that the 
scale parameter is shifted as α1 = qα0 and the shape parameter is shifted as �1 = w�0. The probability of an item 
failing before the predetermined period t0 designated by P3HEPD , can now be calculated as:

Rewrite Eq. (25)

As both parameters are shifted as α1 = qα0and�1 = w�0 , so its mean level is also changed as µ = µ1 where

(39)

µ1 =
α0�

1/�1
1

Ŵ

�

1
�

�1

�Ŵ

�

2
�

�1

�

P(t < t0) =

γ







1
�

�1
,







h
�1
1 Ŵ

�

2/�1

��1

�

Ŵ

�

1/�1

���1







�

µ0
µ1

��1







Ŵ

�

1
�

�1

�

(40)

P(t < t0) =

γ



















1
�

�1






,
h
�1
1 Ŵ

�

2/�1

��1

�

Ŵ

�

1/�1

���1























α0�

1/�0
0

Ŵ

�

1/�0

�Ŵ

�

2/�0

�

α0�

1/�1
1

Ŵ

�

1/�1

�Ŵ

�

2/�1

�

















�1


















Ŵ

�

1
�

�1

�

P2HEPD = P(t < t0) =

γ



















1
�

�1
,







h
�1
1 Ŵ

�

2/�1

��1

�

Ŵ

�

1/�1

���1























�

1/�0
0

Ŵ

�

1/�0

�Ŵ

�

2/�0

�

�

1/�1
1

Ŵ

�

1/�1

�Ŵ

�

2/�1

�

















�1


















Ŵ

�

1
�

�1

�

(41)P2in = P(LCL ≤ D1 ≤ UCL|P2HEPD)

(42)P2in =
∑UCL

d1=LCL+1

(

n
d1

)

(P2HEPD)
d1(1− P2HEPD)

n−d1

(43)ARL2HEPD =
1

1− P2in

P(t < t0) =

γ







1
�

�,







h�1Ŵ

�

2/�

��

�

Ŵ

�

1/�

���







�

µ0
µ

��







Ŵ

�

1
�

�

�



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8632  | https://doi.org/10.1038/s41598-023-35884-0

www.nature.com/scientificreports/

Substituting the values µ1,α1 = qα0 andµ0 =
α0�

1/�0
0

Ŵ

(

1/�0

)Ŵ

(

2
/

�0

)

 in the above equation

Now the probability for IC is given by

The ARL for shifted process due to change in both parameters denoted by ARL3HEPD is given as follows

Now, we use the subsequent calculation to register the Table of ARLs for suggested CC when both parameters 
of HEPD are shifted.

(1)	 Fix the values of ARL and shape parameter designated by r0and�0 respectively .
(2)	 Finding the values of h1, k1 according to the predetermined sample size n , for which ARL0HEPD in Eq. (33) 

is approach to r0.
(3)	 Use the values of h1, k1ndn attain in step 2 to determine the value of ARL3HEPD using Eq. (48) for different 

combinations of qandw.

Results discussion
In this section, we discuss the results obtained from two life data distributions. The values of ARL1HND , 
ARL1HEPD ,ARL2HEPD and ARL3HEPD for various shifts in scale and shape parameters are given in Tables 1, 2, 
3, 4, 5, 6 and 7.

Table 1 shows the values of ARLs for HND for various scale parameter shifts and sample sizes when the 
ARLs are 300,370. The shifted constant has a range of 1 to 0.1. when the value of shifted constant c = 1, the 
corresponding value of ARL is closed to predefine r0 . Table 1 displays decreasing behavior in ARLs as the 
shifted constant c increases. We also observe that the performance of the given charting structure is improved 
for a larger sample size. For example, when r0 = 370, k = 3.085, h = 0.2961, q = 0.93 and n = 15 the cal-
culated value of out-of-control (OOC) ARL1HND is 231.81, indicating that on average, it would take 231.81 
subgroups to be sampled before the CC detects an OOC condition and for larger sample size say n = 25, 
r0 = 370, k = 3.013, , h = 0.5565, q = 0.93 the OOC ARL1HND is reduced to 190.90, implying that on average, 
only 190.90 subgroups would be sampled before the CC signals an OOC condition. The values of ARL1HND using 
sample sizes 15 and 25 are also plotted in Fig. 1, which shows that a larger sample size leads to smaller ARLs, 
thus demonstrating an improvement.
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Table 1.   The ARL values of proposed CC using HND.

n = 15 n = 25 n = 15 n = 25

Control coefficient → k = 2.837 k = 2.866 k = 3.085 k = 3.103

Truncated constant → h = 0.3058 h = 0.6284 h = 0.2961 h = 0.5565

c ARL1HND ARL1HND ARL1HND ARL1HND

1 300.26 300.12 370.03 370.10

0.95 216.20 198.25 265.61 234.66

0.93 188.95 161.79 231.81 190.90

0.90 153.80 116.63 188.29 138.00

0.85 108.03 65.48 131.73 78.54

0.80 74.89 36.24 90.90 44.12

0.75 51.21 20.06 61.83 24.72

0.70 34.54 11.23 41.45 13.92

0.60 15.11 3.81 17.84 4.67

0.50 6.35 1.64 7.33 1.89

0.30 1.34 1.00 1.41 1.00

0.10 1.00 1.00 1.00 1.00

Table 2.   The ARL values of Proposed CC using HEPD when its scale parameter is shifted using 
ro = 300andn = 15.

� = 1 � = 2 � = 3 � = 4

Control coefficient → k1 = 2.775 k1 = 2.837 k1 = 2.884 k1 = 2.923

Truncated constant → h1 = 0.2141 h1 = 0.3058 h1 = 0.429 h1 = 0.4493

q ARL1HEPD ARL1HEPD ARL1HEPD ARL1HEPD

1 300.58 300.26 300.69 300.67

0.90 163.25 153.80 141.08 140.37

0.80 84.92 74.89 62.64 61.89

0.70 42.16 34.54 26.29 25.73

0.60 19.95 15.11 10.52 10.16

0.50 9.05 6.35 4.15 3.94

0.40 4.02 2.70 1.79 1.68

0.30 1.88 1.34 1.07 1.04

0.20 1.11 1.01 1.00 1.00

0.10 1.00 1.00 1.00 1.00

Table 3.   The ARL values of proposed CC using HEPD when its scale parameter is shifted using 
ro = 370andn = 15.

� = 1 � = 2 � = 3 � = 4

Control Coefficient → k1 = 3.081 k1 = 3.085 k1 = 3.091 k1 = 3.116

Truncated Constant → h1 = 0.2067 h1 = 0.2961 h1 = 0.417 h1 = 0.4368

q ARL1HEPD ARL1HEPD ARL1HEPD ARL1HEPD

1 370.40 370.03 370.24 370.23

0.90 199.63 188.29 172.51 171.71

0.80 102.87 90.90 75.89 75.05

0.70 50.48 41.45 31.45 30.82

0.60 23.53 17.84 12.35 11.95

0.50 10.45 7.33 4.74 4.51

0.40 4.51 3.01 1.95 1.83

0.30 2.03 1.41 1.10 1.06

0.20 1.14 1.01 1.00 1.00

0.10 1.00 1.00 1.00 1.00
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Tables 2, 3 show the OOC ARL1HEPD values of HEPD when its scale parameter is shifted. As we know that 
the range of shape parameter � > 0, we considered different values of � (namely, � = 1, 2, 3, 4) for the construc-
tion of Tables 2, 3. Such parametric values have been used by several researchers like in Refs. 8, 23,24. The values 
of OOC ARL1HEPD are calculated using various shifts 

(

q
)

 in scale parameter with ro = 300and370andn = 15 , 
these values are also plotted in Figs. 2, 3. The in-control ARLs are presented for the shifted values 

(

q = 1
)

.We 
see the decline inclination in ARLs by changing the value of shifted constant 

(

q
)

 in these Tables from 1 to 0.1. 
Upon examining Tables 2, 3, it becomes apparent that as the value of shape parameter � increases, the effec-
tiveness of the proposed chart improves even with the same amount of shift in the scale parameter. We also 
see that larger diversions in parameters have been detected more quickly. Diversion refers to any significant 
deviation or change in the process from its expected behavior. The ARL values in CCs are used to measure the 
performance of a chart in detecting such deviations. The larger values of shifted constantly are more sensitive 
to detecting process deviations. The larger the value of the constant, the higher the probability of detecting a 
deviation in the process, which means that the ARL values are smaller. By detecting deviations more quickly, 
the control chart can help prevent the occurrence of defects or other undesirable outcomes. For example, In 
Table 3 when r0 = 370, n = 15, � = 3, h1 = 0.417, k1 = 3.091 and the shifted amount q = 0.90 , the value of 
OOC AARL1HEPD is 172.51. it means that on average, it takes 172.51 subgroups to be sampled before the CC 
signals an OOC condition, and for larger shifts say q = 0.80 , we notice the OOC ARL1HEPD is 75.89. it means 
that on average, it takes just 75.89 subgroups to be sampled before the CC signals an OOC condition. Similarly, 
for q = 0.70,ARL = 31.45, for q = 0.30,ARL = 1.10.

Table 4.   The ARL values of proposed CC using HEPD when its shape parameter is shifted using 
ro = 300, 370andn = 15.

� = 2 � = 4 � = 2 � = 4

Control Coefficient → k1 = 2.837 k1 = 2.923 k1 = 3.085 k1 = 3.116

Truncated Constant → h1 = 0.3058 h1 = 0.4493 h1 = 0.2961 h1 = 0.4368

w ARL2HEPD ARL2HEPD ARL2HEPD ARL2HEPD

1 300.26 300.674 370.03 370.23

0.99 242.76 150.281 298.53 183.94

0.98 197.05 77.037 241.79 93.64

0.95 108.07 12.547 131.67 14.82

0.90 43.41 1.606 52.17 1.74

0.85 19.66 1.003 23.26 1.01

0.80 10.10 1.00 11.74 1.00

0.75 5.90 1.00 6.74 1.00

0.70 3.90 1.00 4.37 1.00

0.65 2.88 1.00 3.18 1.00

0.60 2.35 1.00 2.56 1.00

0.50 2.02 1.00 2.17 1.00

Table 5.   The ARL values of proposed CC using HEPD when both shape and scale parameters are shifted using 
ro = 300, 370andn = 15.

� = 2 � = 4 � = 2 � = 4

Control Coefficient → k1 = 2.837 k1 = 2.923 k1 = 3.085 k1 = 3.116

Truncated Constant → h1 = 0.3058 h1 = 0.4493 h1 = 0.2961 h1 = 0.4368

(w, q) ARL3HEPD ARL3HEPD ARL3HEPD ARL3HEPD

(1, 1) 300.26 300.674 370.03 370.23

(0.99, 0.99) 227.69 139.907 279.83 171.13

(0.98, 0.98) 173.52 67.082 212.64 81.41

(0.95, 0.95) 79.33 9.356 96.28 10.98

(0.90, 0.90) 24.32 1.267 28.93 1.34

(0.85, 0.85) 8.91 1.00 10.34 1.00

(0.80, 0.80) 4.00 1.00 4.51 1.00

(0.75, 0.75) 2.22 1.00 2.43 1.00

(0.70, 0.70) 1.51 1.00 1.60 1.00

(0.65, 0.65) 1.21 1.00 1.26 1.00

(0.60, 0.60) 1.09 1.00 1.11 1.00

(0.50, 0.50) 1.02 1.00 1.02 1.00
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Table 4 displays the OOC ARL2HEPD values of HEPD for different shifts in the shape parameter. It is nota-
ble that as the process shift becomes larger, the value of ARL2HEPD decreases sharply. Additionally, when λ 
has a larger value, the outcomes show significant improvement in terms of smaller ARL2HEPD . These find-
ings are visually represented in Fig.  4. Table 5 presents the OOC ARL3HEPD values of HEPD for differ-
ent shifts in both the scale and shape parameters. These results are also plotted in Fig. 5. It can be observed 
that the suggested charting structure is greatly enhanced when both parameters are shifted simultaneously. 
r0 = 370, � = 2, k1 = 2.807, h1 = 0.2961,

(

w, q
)

= (0.9, 0.9) and n = 15 the value of ARL3HEPD = 28.93. In con-
trast, when only the scale parameter is shifted (as shown in Table 3), ARL1HEPD is188.29 with q = 0.9, � = 2, 
h1 = 0.2961, k1 = 3.085, ro = 370andn = 15 . Similarly, when only the shape parameter is shifted (as shown in 
Table 4), the value of ARL2HEPD is 52.17 with w = 0.90 and the remaining values are kept the same.

Advantages of proposed control charts
This section evaluates the benefits of the presented control charts using HND and HEPD compared to the exist-
ing CC recommended by Ref. 8. Furthermore, the superiority of ACC for HEPD is examined over the ACC for 
HND under TTLT. The ability of the suggested CC is assessed in terms of OOC ARL. As previously mentioned 
in the Results Discussion Section, the performance of the proposed chart improves with larger values of � . 
Therefore, in the comparison section, we have set � = 4 for the proposed HEPD-based chart for the purpose 
of comparison. We have tabulated the OOC ARLs for various shifts in the scale parameter, shape parameter, 
and both parameters simultaneously for the proposed HEPD. We have also included the OOC ARLs for other 
proposed HND and OOC ARLs recommended by Ref. 8 in Table 6. A smaller value of OOC ARL indicates a 
better ability to detect the OOC condition.

Table 6.   Comparison of ARLs when ro = 370andn = 15.

Proposed HEPD 
based chart when both 
parameters are shifted 
using � = 4

Proposed HEPD when 
shape parameter is shifted 
using � = 4

Proposed HEPD when 
scale parameter is shifted 
using � = 4

Proposed chart based on 
HND

Existing chart proposed 
by Ref. 8

Control Coefficient → k1 = 3.116 k1 = 3.116 k1 = 3.116 k1 = 3.085 k1 = 3.081

Truncated constant → h1 = 0.4368 h1 = 0.4368 h1 = 0.4368 h1 = 0.2961 h1 = 0.2067

Shift (w, q) ARL3HEPD Shift ARL2HEPD ARL1HEPD ARL1HND ARL1

(1, 1) 370.23 1 370.23 370.23 370.03 370.4

(0.99, 0.99) 171.13 0.99 183.90 343.70 346.60 348.90

(0.98, 0.98) 81.41 0.98 93.64 318.90 324.50 328.40

(0.95, 0.95) 10.98 0.95 14.82 253.90 265.60 273.40

(0.90, 0.90) 1.34 0.90 1.74 171.70 188.29 199.60

(0.85, 0.85) 1.00 0.85 1.01 114.40 131.70 144.20

(0.80, 0.80) 1.00 0.80 1.00 75.04 90.90 102.09

(0.75, 0.75) 1.00 0.75 1.00 48.46 61.83 72.52

(0.70, 0.70) 1.00 0.70 1.00 30.82 41.45 50.47

(0.65, 0.65) 1.00 0.65 1.00 19.31 27.39 34.68

(0.60, 0.60) 1.00 0.60 1.00 11.95 17.84 23.52

(0.50, 0.50) 1.00 0.50 1.00 4.51 7.33 10.45

(0.30, 0.30) 1.00 0.30 1.00 1.06 1.41 2.02

(0.10, 0.10) 1.00 0.10 1.00 1.00 1.0 1.0

Table 7.   Simulated data.

D1 D1 D1 D1

3 4 3 5

1 1 6 5

2 5 6 2

2 4 3 7

3 4 7 10

6 4 8 4

7 2 3 5

1 5 5 4

4 8 3 4

4 1 3 6
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Comparison of the Attribute control chart for HEPD versus the attribute control chart 
for exponential distribution (ED) under TTLT.  Here, we discuss the dominance of the planned 
chart by comparing it with the chart suggested by Ref. 8. The suggested chart is the generalization of ACC 
for ED under TTLT. The suggested control chart is converted to Ref. 8 when its shape parameter � = 1. The 
values of OOC ARLs using ACC for ED and the proposed chart using HEPD for the case scale parameter, 
shape parameter and both the parameters are shifted under TTLT for sample size 15 and r0 = 370 are pre-
sented in Table  6. We perceive the smaller OOC ARLs of the suggested CC for sundry shifts in all cases of 
shifted parameters. For example, when r0 = 370, n = 15, h1 = 0.4368, � = 4, k1 = 3.116 and q = 0.98 the 
value of OOC ARL1HEPD is 343.70, ARL2HEPD is 183.90 and ARL3HEPD is 171.13, and for 8 it was 348.90 when 
r0 = 370, n = 15, h1 = 0.2067, k1 = 3.081andq = 0.98. The above result indicates that recommended CC is 
more powerful in pointing out the smaller shifts in process parameters. Figure 6 also demonstrates the contrast 
between these two distributions.

Comparison of the attribute control chart for HEPD verses attribute control chart for half nor-
mal distribution under TTLT.  Here we examine the benefits of recommended HEPD chart as compared 
to the other proposed ACC for HND under TTLT. The proposed HEPD chart is converted to the ACC for HND 
under TTLT when its shape parameter � = 2 . So, we can utter that suggested chart is the extension of the HND 
under TTLT. The OOC ARL values of HND under TTLT are reported in Tables 1 and 6 for different levels of 
shift. We observe the smaller ARLs of the recommended HEPD chart for different shifts. For example,, when 

Figure 1.   Graph of ARLs for HND using ro = 370andn = 15and25.

Figure 2.   Graph of ARLs for HEPD when scale parameter is shifted using ro = 300andn = 15.
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r0 = 370, � = 4, n = 15, h1 = 0.4368, k1 = 3.116 and q = 0.98, the OOC value for HEPD based chart are as 
follows: ARL1HEPD = 318.90,ARL2HEPD = 93.64andARL3HEPD = 81.41, whereas for HND, it is 324.50 when 
r0 = 370, n = 15, h1 = 0.2961, k1 = 3.085andq = 0.98. Thus, the proposed charting scheme using HEPD is 
more effective in identifying minor shifts in process parameters compared to the ACC of HND under TTLT. The 
comparison of these two distributions can also be seen in Fig. 7.

Comparison of the Attribute control chart for half normal distribution verses attrib-
ute control chart for exponential distribution under TTLT.  Here, we confer the advantages 
of proposed ACC for HND by comparing it to the ACC for ED under TTLT proposed by Ref. 8. Both dis-
tributions are special cases of HEPD. If � = 1, HEPD convert to ED and for � = 2, HEPD reduce to HND. 
ARLs values of both distributions under TTLT are presented in Table  6 for different shifts. We notice that 
HND has smaller ARL values when compared to ED under TTLT for different shifts. For example when 
r0 = 370, n = 15, h1 = 0.2961, k1 = 3.085 and q = 0.80 the value of OOC ARL for HND is 90.90 and for ED it 
was 102.87 when r0 = 370, n = 15, h1 = 0.2067, k1 = 3.081andq = 0.80. Thus, HND has competency to search 
the minor shifts in parameter earlier than ED under TTLT. The contrast between these two distributions can 
also be observed in Fig. 8. 

Simulation study
This section presents a simulation study to verify the effectiveness of the proposed charting scheme. To con-
duct the study, we generated 20 observations of subgroup size 15 from HEPD with scale parameter α = 1 
and shape parameter � = 2 , assuming the process is in a normal state with r0 = 300 . We then introduced a 

Figure 3.   Graph of ARLs for HEPD when scale parameter is shifted using ro = 370andn = 15.

Figure 4.   Graph of the ARLs for HEPD when shape parameter is shifted, using ro = 370, n = 15and� = 2and4

.
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shift in the manufacturing process and generated another 20 observations of subgroup size 15 from HEPD 
with the shifted scale parameter α1 = qα0 , q = 0.60 . The truncated time t0 = (h1 ∗ µ) , calculated as using 
parameter α = 1, � = 2 and r0 = 300 , gives the value of h1 from Table  2 as h1 = 0.3058 , and value of µ 
using Eq. (8) against parameter α = 1, � = 2 calculated as µ = 0.7978 . Hence the value of truncated time 
t0 = (h1 ∗ µ) = 0.3058 ∗ 0.7978 = 0.244. The number of failure items that occurred before the truncated time 
t0 in each subgroup is denoted as D1 and recorded in Table 7. By using these values, we calculated the LCL = 0 
and UCL = 9 , using Eqs. (29) and (30) and with k1 = 2.837 from Table 2 based on the parameter α = 1, � = 2 
and r0 = 300 . These observations are also plotted in Fig. 9 which demonstrates the procedure is OOC at the 
35th observation, which is the 15th observation after the shift. The same ARL value is reported in Table 2. Sub-
sequently, it is evidently demonstrating that the proposed CC identifies the shifts proficiently.

Real life examples
In this section, we will discuss three real data-based examples to illustrate the effectiveness of their proposed idea. 
The first two examples are based on HEPD, while the third example is based on HND. Our aim is to improve the 
generalizability of the results and provide a more comprehensive assessment of the evaluation of the proposed 
control charts.

Figure 5.   Graph of the ARLs for HEPD when both the parameters are shifted, using 
ro = 370, n = 15and� = 2and4.

Figure 6.   Graph of ARLs for HEPD verses ED when r0 = 370, n = 15.
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Figure 7.   Graph of ARLs for HEPD verses HND when r0 = 370, n = 15.

Figure 8.   Graph of ARLs for HND verses ED when r0 = 370, n = 15.
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Figure 9.   Graph of the proposed CC for simulated data.
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Application I.  The effectiveness of suggested CC is also judged with the assistance of real-life examples. 
The data on the 90% stress level of Kevlar 49/epoxy stands comprised of one hundred and one observations 
that were exposed to enduring pressure until their breakdown time. The same dataset has been discussed 
by numerous authors, like Refs.25,26. It is noted that the life time of one hundred and one observations pur-
sues the HEPD with � = 0.8815 and α = 0.9689 . The average life of the data is given as µ0 = 1.025 h 20. It is 
assuming that r0 = 370, n = 15 and h1 = 0.1877 . Now, by utilizing Eq. (26), the value of P0 using the values 
� = 0.8815, h1 = 0.1877 we have P0 = 0.1867. The LCL and UCL using Eqs. (27, 28) are 0 and 7, respectively 
when n = 15,P0 = 0.1867andk1 = 3.02.The truncated time t0 = h1 ∗ µ0 = 0.1877 ∗ 1.025 = 0.1924h . The 
working procedure of the intended chart is as follows:

Stage 1 we draw an arbitrary sample of size fifteen at each subgroup from HEPD using scale parameter 
α = 0.9689 and shape parameter � = 0.8815 , and put them on truncated time t0 = 0.19244 hours. Count the 
number of failure items ( D ) during the test which is also plotted in Fig. 10.
Stage 2 we determine the working procedure as IC if the number of failure items is between 0and7(0 ≤ D ≤ 7) . 
If the number falls outside this range, the process is deemed OOC.

Application II.  The effectiveness of the proposed CC is also evaluated using real-life data obtained from 
Gui (2013b), which consists of plasma ferritin cluster measurements from 202 athletes gathered at the Aus-
tralian Institute of Sport. This dataset has been studied by several authors, including Refs. 27–29. The data set 
follows the HEPD with a mean of 76.88 plasma ferritin and a standard deviation of 47.50 plasma ferritin. The 
scale parameter α is known to be 97.1311 and the shape parameter � is 2.5109. Assuming r0 = 300, n = 15 and 
h1 = 0.3274 , we can obtain the value of P0 using Eq. (26) when � = 2.5109andh1 = 0.3274 , as P0 = 0.193. The 
LCL and UCL using Eqs. (27, 28) are 0 and 8 respectively, when n = 15,P0 = 0.193andk1 = 3.2 . The truncated 
time t0 = h1 ∗ µ0 = 0.3274 ∗ 76.88 = 25.17plasmaferritin . The following steps describe how the chart works:

Stage 1 A sample of 15 items is randomly selected from the HEPD distribution with a scale param-
eter α = 97.1311 and a shape parameter � = 2.5109 . These items are then placed on a truncated time 
t0 = 25.17plasmaferritin. The number of failed items (D) is counted during the test, and the results are plot-
ted in Fig. 11.
Stage 2 The process is declared as IC if 0 ≤ D ≤ 8 ; otherwise, it is considered as OOC.

Application III.  In this section, we assess the efficacy of the suggested CC using an 86-sample dataset 
acquired from the mining department. The data measures the concentration of zinc (Zn) in soil samples and 
was previously used in a study conducted by Ref.26. The soil data is known to follow the HND with a mean of 
96.72 Zn, standard deviation of 148.4 Zn and scale parameter α = 176.44 Zn. we suppose that r0 = 300, n = 15, 
and h = 0.3058 . Now, by utilizing Eq.  (11), the value of P0 when h = 0.3058 is P0 = 0.1928. The LCL and 
UCL using Eqs. (12, 13) are 0 and 7 respectively when n = 15,P0 = 0.1928andk = 2.837.The truncated time 
t0 = h ∗ µ0 = 0.3058 ∗ 96.72 = 29.58Zn . The working procedure of the intended chart is as follows; firstly, we 
randomly select a subgroup of size fifteen from HND using scale parameter α = 176.44 and place them on the 
truncated time, t0 = 29.58 . We then count the number of failure items (D) during the test and plot the results 
in Fig. 12. If the plotted values fall within the range of 0to7(0 ≤ D ≤ 7) we declare the working procedure as IC. 
Otherwise, the process is recognized as OOC.

Figure 10.   Graph of proposed CC using HEPD with real life data Application I.
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Concluding remarks
In this paper, we recommend two types of ACC based on HND and HEPD, utilizing TTLT. ARL Tables have been 
constructed by using HND with different levels of shift in scale parameter, and for HEPD, we have constructed 
tables of ARL using shifts in three cases: firstly, we consider shifts in scale parameter only, after that, we introduce 
shifts in shape parameter; and lastly, we have constructed tables when both parameters are shifted simultane-
ously under TTLT. The results of ARLs based on HEPD have shown smaller ARLs when we compare them with 
ED and HND based ACC under TTLT. Additionally, we have made a comparison of the proposed ACC using 
HND under TTLT versus ED based ACC with the support of ARLs. It has been shown that the presented chart-
ing structure based on HND detects process variation more quickly than the chart based on ED. The usage of a 
planned chart based on HEPD is exhibited with the aid of simulated data and real-life examples that fully support 
the implementation of the proposed idea. The inclusion of multiple real-life examples in the study strengthens the 
research and improves the potential applicability of the proposed control chart in a broader range of scenarios.

The suggested chart can undoubtedly be stretched out to other life data distributions like Alpha power inverse 
Weibull distribution proposed by Ref.30, and the generalized odd Burr III family of distributions suggested by 
Ref.31. for further research. In conclusion, the proposed ACC using HND and HEPD based on TTLT is an effec-
tive method to detect process variation in manufacturing processes. The results of OOC ARLs and comparison 
with ED based ACC have shown the superiority of the proposed methods. The application of the proposed 
charting structure in real-life examples further confirms its practicality. The extension of the proposed method 
to other life data distributions opens up new avenues for future research.

Data availability
The data is given in the paper.

Figure 11.   Graph of proposed CC using HEPD with real life data Application II.

Figure 12.   Graph of proposed CC using HND with real life data Application II.
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