Example Implementation of A Simple Algorithm to Calculate S(n), The Smarandache Function:

Because there are more people familiar with C than with C++, this module has been written entirely in C (apart from "//" style comments). The module was compiled using Borland C++ version 3.1.

For efficiency, n is constrained to the limits of an unsigned long. Hence, 0 <= n <= 2^32 - 1 (= 4,294,967,295). ("^" represents exponentiation). Although catering for n of vast magnitude is possible, it imposes heavy storage and processing overheads. The range of an unsigned long therefore seems a reasonable compromise.

The algorithm depends on the most elementary properties of S(n):

1) Calculate the STANDARD FORM (SF) of n: In SF: n = (+/- (p1^a1) * (p2^a2) * ... * (pr^ar)) where p1, p2, ... pr denote the distinct prime factors of n and a1, a2, ... ar are their respective multiplicities.

2) S(n) = max{ S(p1^a1), ... , S(pr^ar)}.

3) S(p^a), where p is prime, is given by:

 3.1) a < p => S(p^a) = p * a.

 3.2) a >= p => S(p^a) = x < p * a. In this case, fortunately rare, x is the smallest integer such that p appears as a factor in the list of all integers > 1 and <= x at least a times. Let the no. of times p appears as a factor in the list of all integers > 1 and <= y be f(y, p). Then:

 f(y, p) = \sum_{i=1}^{y} \left\lfloor \frac{y}{p^i} \right\rfloor

 for i > 0 while y > (p^i).

 Hence, x is the smallest integer such that f(x, p) = a.

 Note that between successive integer multiples of p there are no integers which have p as a factor. The trick here is to look for the largest multiple of p (call it c), such that f(p*c, p) <= a (so that x = p*c, if f(p*c, p) = a, else x = p*(c+1)).

 3.2.1) c = a - 2 (largest possibility for c since f(p*(a-1), p) >= a when a > p (Note: f(p*(a-1), p) = a is not sought for slight performance gain)).

 3.2.2) z = f(p*c, p).

 3.2.3) While(z > a):

 3.2.3.1) d = no. of times p appears as a factor of p*c

 = (no. of times p appears as a factor of c) + 1.

 3.2.3.2) c = c - 1 (next largest possibility for c).

 3.2.3.3) z = z - d (= f(p*c, p)).

 3.2.4) If(z < a), x = p*(c+1).

 3.2.5) Else x = p*c.

To calculate the prime factors of all 32-bit n requires use only of primes < (2^16) (i.e. all primes expressible as an unsigned short integer). This is because any factor of n remaining after division of n by all its prime factors < (2^16) is simply a prime. Since there are only 6542 16-bit primes, the program first creates a list of these (which only takes about 4 seconds on my 20 MHz 386DX PC) so that they never have to be recalculated, thus saving much time.

*/
```c
#define PRIMES16 6542 // The number of 16-bit primes
#define MAX_SFK 9 /* max. distinct primes in the SF of n. The smallest number with more than 9 distinct primes is the product of the 10 smallest primes (= 6,469,693,230), which is substantially more than the largest integer expressible as an unsigned long. Hence, 9 distinct primes are more than ample. */

typedef unsigned long u_long;
typedef unsigned int u_int;
typedef enum {false, true} boolean;

struct SF_struct {
    int sfk; // no. of distinct primes
    u_long sfp[MAX_SFK]; // the distinct primes
    int sfa[MAX_SFK]; // respective multiplicities
};

extern u_int prime[PRIMES16+1]; // list of all 16-bit primes // plus terminating zero.

void make_primes(void); // construct list of all 16-bit primes (prime[]). // Must be called before calls to getSF() or S().
void getSF(u_long n, struct SF_struct *SF); // calc. SF of n and store in SF
u_long S(u_long n); // calc. S(n)
u_long Spa(u_long p, int a); // calc. S(p-a) where p is prime
int f(int x, int p); /* the number of times the prime p appears as a factor in the integers from 1 to x inclusive. This function is only called from Spa(p, a) when a>p with x=p*(a-2) (refer to item (3) of algorithm outline above). Max value of (a) occurs when p is a minimum, n is a maximum and (p-a)=n. So, (2^max(a))=max(n)=(2^32)-1. Hence max(a)<32. So, x<60 when (a) is at its max. Max value of p (and x) occurs when a=p+1 and (p-a)=max(n). So, max(p)^max(p+1)=(2^32)-1. The upshot is that max(p)=9 when a=10. Hence, max(x)=72. This explains why it is safe for x, p and the return value of f(x,p) to be passed as ints. */
```