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Abstract For a given arithmetical function f : N → N, let F : N → N be defined by

F (n) = min{m ≥ 1 : n|f(m)}, if this exists. Such functions, introduced in [4], will be called

as the f -minimum functions. If f satisfies the property a ≤ b =⇒ f(a)|f(b), we shall prove

that F (ab) = max{F (a), F (b)} for (a, b) = 1. For a more restrictive class of functions, we

will determine F (n) where n is an even perfect number. These results are generalizations of

theorems from [10], [1], [3], [6].
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ers.

§1. Introduction

Let N = {1, 2, . . . } be the set of positive integers, and f : N → N a given arithmetical
function, such that for each n ∈ N there exists at least an m ∈ N such that n|f(m). In 1999
and 2000 [4], [5], as a common generalization of many arithmetical functions, we have defined
the application F : N→ N given by

F (n) = min{m ≥ 1 : n|f(m)}, (1)

called as the ”f -minimum function”. Particularly, for f(m) = m! one obtains the Smarandache
function (see [10], [1])

S(n) = min{m ≥ 1 : n|m!}. (2)

Moree and Roskam [2], and independently the author [4], [5], have considered the Euler
minimum function

E(n) = min{m ≥ 1 : n|ϕ(n)}, (3)

where ϕ is Euler’s totient. Many other particular cases of (1), as well as, their ”dual” or
analogues functions have been studied in the literature; for a survey of concepts and results,
see [9].

In 1980 Smarandache discovered the following basic property of S(n) given by (2):

S(ab) = max{S(a), S(b)} for (a, b) = 1. (4)

Our aim in what follows is to extend property (4) to a general class of f -minimum functions.
Further, for a subclass we will be able to determine F (n) for even perfect numbers n.
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§2. Main results

Theorem 1. Suppose that F of (1) is well defined. Then for distinct primes pi, and
arbitrary αi ≥ 1 (i = 1, 2 · · · , r) one has

F

(
r∏

i=1

pαi
i

)
≥ max{F (pαi

i ) : i = 1, 2 · · · , r}. (5)

The second result offers a reverse inequality:
Theorem 2. With the notations of Theorem 1 suppose that f satisfies the following

divisibility condition:
a|b =⇒ f(a)|f(b) (a, b ≥ 1) (∗)

Then one has

F

(
r∏

i=1

pαi
i

)
≤ l.c.m.{F (pαi

i ) : i = 1, 2 · · · , r}, (6)

where l.c.m. denotes the least common multiple.
By replacing (∗) with another condition, a more precise result is obtainable:
Theorem 3. Suppose that f satisfies the condition:

a ≤ b =⇒ f(a)|f(b) (a, b ≥ 1). (∗∗)

Then
F (mn) = max{F (m), F (n)} for (m,n) = 1. (7)

Finally, we shall prove the following:
Theorem 4. Suppose that f satisfies (∗∗) and the following two assumptions:
(i) n|f(n); (ii) For each prime p and m < p we have p - f(n). (8)
Let k be an even perfect number. Then

F (k) = k/2s, where 2s‖k. (9)

Remarks . (1) The function ϕ satisfies property (∗). Then relation (6) gives a result for
the Euler minimum function E(n) (see [7], [8]).

(2) Let f(m) = m!. Then clearly (∗∗) holds true. Thus (7) extends relation (4). For
another example, let f(m) = l.c.m.{1, 2, . . . , m}. Then the function F given by (1) satisfies
again (7), proved e.g. in [1].

(3) If f(n) = n!, then both (i) and (ii) of (8) are satisfied. This relation (9) for F ≡ S

follows. This was first proved in [3] (see also [6]).

§3. Proof of theorems

Theorem 1. There is no loss of generality to prove (5) for r = 2. Let pα, qβ be two
distinct prime powers. Then

F (pαqβ) = min{n ≥ 1 : pαqβ |f(m)} = m0,
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so pαqβ |f(m0). This is equivalent to pα|f(m0), qβ |f(m0). By definition (1) we get m0 ≥ F (pα)
and m0 ≥ F (qβ), i.e. F (pαqβ) ≥ max{F (pα), F (qβ)}. It is immediate that the same proof
applies to F

(∏
pα

)
≥ max{F (pα)}, where pα are distinct prime powers.

Theorem 2. Let F (pα) = m1, F (qβ) = m2. By definition (1) of function F it follows
that pα|F (m1) and qβ |F (m2). Let l.c.m.{m1,m2} = g. Since m1|g, one has f(m1)|f(g) by (∗).
Similarly, since m2|g, one can write f(m2)|f(g). These imply pα|f(m1)|f(g) and qβ |f(m2)|f(g),
yielding pαqβ |f(g). By definition (1) this gives g ≥ F (pαqβ), i.e. l.c.m.{F (pα), F (qβ)} ≥
F (pαqβ), proving the theorem for r = 2. The general case follows exactly by the same lines.

Theorem 3. By taking into account of (5), one needs only to show that the reverse
inequality is true. For simplicity, let us consider again r = 2. Let F (pα) = m, F (qβ) = n

with m ≤ n. By definition (1) one has pα|f(m), qβ |f(n). Now, by assumption (∗∗) we can
write f(m)|f(n), so pα|f(m)|f(n). Therefore, one has pα|f(n), qβ |f(n). This in turn implies
pαqβ |f(n), so n ≥ F (pαqβ); i.e. max{F (pα), F (qβ)} ≥ F (pαqβ). The general case follows
exactly the same lines. Thus, we have proved essentially, that F (pαqβ) = max{F (pα), F (qβ)},
or more generally

F

(
r∏

i=1

pαi
i

)
= max{F (pαi

i ) : i = 1, 2 · · · , r}. (10)

Now, relation (7) is an immediate consequence of (10), for by writing

m =
r∏

i=1

pαi
i , n =

s∏

j=1

q
βj

j , with (pi, qj) = 1,

it follows that

F (mn) = max{F (pαi
i ), F (qβj

j ) : i = 1, 2 · · · , r, j = 1, 2 · · · , s}

= max{max{E(pαi
i ) : i = 1, 2 · · · , r},max{E(qβj

j ) : j = 1, 2 · · · , s}}
= max{F (m), F (n)},

by equality (10).
Theorem 4. By (i) and definition (1) we get

F (n) ≤ n. (11)

Now, by (i), one has p|f(p) for any prime p, but by (ii), p is the least such number. This
implies that

F (p) = p for any prime p. (12)

Now, let k be an even perfect number. By the Euclid-Euler theorem (see e.g. [7]) k may
be written as k = 2n−1(2n − 1), where p = 2n − 1 is a prime (”Mersenne prime”). Since (∗∗)
holds true, by Theorem 3 we can write

F (k) = F (2n−1(2n − 1)) = max{F (2n−1), F (2n − 1)}.

Since F (2n − 1) = 2n − 1 (by (12)), and F (2n−1) ≤ 2n−1 (by (11)), from 2n−1 < 2n − 1

for n ≥ 2, we get F (k) = 2n − 1 =
k

2s
, where s = n − 1 and 2s‖k. This finishes the proof of

Theorem 4.
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