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Abstract In this paper we study the Finite Smarandache-2-algebraic structure of Finite-near-ring,

namely, Finite-Smarandache-near-ring, written as Finite-S-near-ring. We define Finite Smarandache

near-ring with examples. We introduce some equivalent conditions for Finite S-near-ring and obtain

some of its properties.
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§1. Introduction

In this paper, we studied Finite-Smarandache 2-algebraic structure of Finite-near-rings,
namely, Finite-Smarandache-near-ring, written as Finite-S-near-ring. A Finite-Smarandache
2-algebraic structure on a Finite-set N means a weak algebraic structure A0 on N such that
there exist a proper subset M of N , which is embedded with a stronger algebraic structure A1,
stronger algebraic structure means satisfying more axioms, by proper subset means a subset
different from the empty set, from the unit element if any, from the whole set [5]. By a Finite-
near-ring N , we mean a zero-symmetric Finite- right-near-ring. For basic concept of near-ring
we refer to Gunter Pilz [2].

Definition 1. A Finite-near-ring N is said to be Finite-Smarandache-near-ring. If a
proper subset M of N is a Finite-near-field under the same induced operations in N .

Example 1 [2]. Let N = {0, n1, n2, n3} be the Finite-near-ring defined by:
Let M = {0, n1} ⊂ N be a Finite-near-field. Defined by
Now (N, +, .) is a Finite-S-near-ring .
Example 2 [4]. Let N = {0, 6, 12, 18, 24, 30, 36, 42, 48, 54} (mod 60) be the Finite-

near-ring since every ring is a near-ring. Now N is a Finite-near-ring, Whose proper subset
M = {0, 12, 24, 36, 48} (mod 60) is a Finite-field. Since every field is a near-field, then M is a
Finite-near-field. Therefore N is a Finite-S-near-ring.

Theorem 1. Let N be a Finite-near-ring. N is a Finite-S-near-ring if and only if there
exist a proper subset M of N , either M ∼= Mc(z2) or Zp, integers modulo p, a prime number.

Proof. Part-I: We assume that N is a Finite-S-near-ring. By definition, there exist
a proper subset M of N is a Finite-near-field. By Gunter Pilz Theorem (8.1)[2], either M ∼=
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Mc(z2) or zero-symmetric. Since Z,S
p is zero-symmetric and Finite-fields implies Zp, S are zero-

symmetric and Finite-near-fields because every field is a near-field. Therefore in particular M

is Zp.
Part-II: We assume that a proper subset M of N , either M ∼= Mc(z2) or Zp. Since

Mc(z2) and Zp are Finite-near-fields. Then M is a Finite-near-field. By definition, N is a
Finite-S-near-ring.

Theorem. Let N be a Finite-near-ring. N is a Finite-S-near-ring if and only if there
exist a proper subset M of N such that every element in M satisfying the polynomial xpm− x.

Proof. Part-I: We assume that N is a Finite-S-near-ring. By definition, there exist
a proper subset M of N is a Finite-near-field. By Gunter Pilz, Theorem (8.13)[2]. If M is
a Finite-near-field, then there exist p ∈ P, ∃m ∈ M such that | M |= pm. According to
I.N.Herstein[3]. If the Finite-near-field M has pm element, then every a ∈ M satisfies apm = a,
since every field is a near-field. Now M is a Finite-near-field having pm element, every element
a in M satisfies apm = a. Therefore every element in M satisfying the polynomial xpm − x.

Part-II: We assume that there exist a proper subset M of N such that every element
in M satisfying the polynomial xpm − x, which implies M has pm element. According to
I.N.Herstein[3], For every prime number p and every positive integer m, there is a unique field
having pm element. Hence M is a Finite-field implies M is a Finite-near-field. By definition,
N is a Finite-S-near-ring.

Theorem 3. Let N be a Finite-near-ring. N is a Finite-S-near-ring if and only if M

has no proper left ideals and M0 6= M . Where M is a proper sub near-ring of N , in which
idempotent commute and for each x ∈ M , there exist y ∈ M such that yx 6= 0.

Proof. Part-I :We assume that N is a Finite-S-near-ring. By definition A proper subset
M of N is a Finite-near-field. In [1] Theorem (4),it is zero-symmetric and hence every left-ideal
is a M-subgroup. Let M1 6= 0 be a M-subgroup and m1 6= 0 ∈ M1. Then m−1

1 m1 = 1 ∈ M1.
therefore M = M1. Hence M has no proper M-subgroup, which implies M has no proper left
ideal.

Part-II: We assume that a proper sub-near-ring M of N has no proper left ideals and
M0 6= M , in which idempotent commute and for each x ∈ M there exist y ∈ M such that yx 6= 0.
Let x 6= 0 in M . Let F (x) = {m ∈ M | mx = 0}. Clearly F (x) is a left ideal. Since there
exist y ∈ M such that yx 6= 0. Then y /∈ F (x). Hence F (x) = 0. Let φ : (M, +) −→ (Mx, +)
given by φ(m) = mx. Then φ is an isomorphism. Since M is finite then Mx = M . Now by a
theroem(2) in [1], M is a Finite-near-field. Therefore, by definition N is a Finite-S-near-ring.

We summarize what has been studied in
Theorem 4. Let N be a Finite-near-ring. Then the following conditions are equivalent.
1. A proper subset M of N , either M ∼= Mc(z2) or Zp, integers modulo p, a prime number.
2. A proper subset M of N such that every element in M satisfying the polynomial xpm−x.
3. M has no proper left ideals and M0 6= M . Where M is a proper sub near-ring of N , in

which idempotent commute and for each x ∈ M , there exist y ∈ M such that yx 6= 0.
Theorem 5. Let N be a Finite-near-ring. If a proper subset M , sub near-ring of N , in

which M has left identity and M is 0-primitive on MM . Then N is a Finite-S-near-ring.
Proof. By Theorem(8.3)[2], the following conditions are equivalent:



Vol. 1 On finite Smarandache near-rings 51

(1) M is a Finite-near-field;
(2) M has left identity and M is 0-primitive on MM .
Now Theorem is immediate.
Theorem 6. Let N be a Finite-near-ring. If a proper subset M , sub near-ring of N , in

which M has left identity and M is simple. Then N is a Finite-S-near-ring.
Proof. By Theorem(8.3)[2], the following conditions are equivalent:
(1) M is a Finite-near-field;
(2) M has left identity and M is simple. Now the Theorem is immediate.
Theorem 7. Let N be a Finite-near-ring. If a proper subset M , sub near-ring of N is a

Finite-near-domain, then N is a Finite-S-near-ring.
Proof. By Theorem(8.43)[2], a Finite-near- domain is a Finite-near-field. Therefore M

is a Finite-near-field. By definition N is a Finite-S-near-ring.
Theorem 8. Let N be a Finite-near-ring. If a proper subset M of N is a Finite-Integer-

domain. Then N is a Finite-S-near-ring.
Proof. By I.N.Herstein[3], every Finite-Integer-domain is a field, since every field is a

near-field. Now M is a Finite-near-field. By definition N is a Finite-S-near-ring.
Theorem 9. Let N be a Finite-near-ring. If a proper subset M of N is a Finite-division-

ring. Then N is a Finite-S-near-ring.
Proof. By Wedderburn’s Theorem(7.2.1)[3], a Finite-division-ring is a necessarily com-

mutative field, which gives M is a field, implies M is a Finite-near-field. By definition N is a
Finite-S-near-ring.
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