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Abstract: Evidence theory by Dempster-Shafer for determination of hormone receptor status in
breast cancer samples was introduced in our previous paper. One major topic pointed out here
is the link between pieces of evidence found from different origins. In this paper the challenge of
selecting appropriate ways of fusing evidence, depending on the type and quality of data involved is
addressed. A parameterized family of evidence combination rules, covering the full range of potential
needs, from emphasizing discrepancies in the measurements to aspiring accordance, is covered. The
consequences for real patient samples are shown by modeling different decision strategies.
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1. Introduction

The Dempster-Shafer theory of evidence (DST) is a generalized framework in proba-
bility theory. First introduced by Dempster between 1966 [1] and 1968 [2] in the context
of Bayesian inference [3], Shafer perpetuated his ideas into a comprehensive theory in a
book in 1976 [4]. A short summary of DST with an illustrative example of how to create
and combine pieces of evidence was given in 1986 by Zadeh [5].

In 1988 Smets [6] (Chapter 9) framed the concept of credibility in terms of mathematical
logic. In contrary to Shafer [4] he propagated the “open-world assumption”, thus the
possibility of outcomes beyond the “frame of discernment” (e.g., example of broken coin).
At the same time, in 1988, Dubois and Prade [7] gave an axiomatic description of how to
define and combine pieces of evidence mathematically.

One common approach to DST is via the “transferable belief model” (TBM), which
Smets introduced in 1990 [8]. In the TBM evidence is fully described by “basic belief masses”
(BBM). Sometimes the BBM is alternatively called “basic belief assignment” (BBA) [9]. The
open world-assumption is achieved by assuming a positive value for the BBM of the empty
set, as discussed in 1992 [10]. Conditioned belief and plausibility were embedded into a
generalized Bayesian theorem in 1993 [11]. A procedure for a two-step decision making
process within the TBM was outlined in 1994 [12]. In the first step evidence is based on
belief functions as defined in DST and is called “credal” level. The following is a reduction
to general probability functions, which are then used for decision making. This step is
called “pignistic” level.

Among others, an important elaboration of DST is given by the “Theory of Hints”,
which was outlined by Kohlas in 1995 [13]. In 1991, Gebhardt [14] introduced the “context

J. Pers. Med. 2023, 13, 119. https://doi.org/10.3390/jpm13010119 https://www.mdpi.com/journal/jpm

https://doi.org/10.3390/jpm13010119
https://doi.org/10.3390/jpm13010119
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0002-8998-8005
https://orcid.org/0000-0003-1541-7215
https://orcid.org/0000-0003-1294-0027
https://orcid.org/0000-0002-3181-2576
https://orcid.org/0000-0003-1910-5788
https://doi.org/10.3390/jpm13010119
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm13010119?type=check_update&version=1


J. Pers. Med. 2023, 13, 119 2 of 16

model” to distinguish between vagueness and uncertainty which also covers topics such
as refinement and coarsening. The “Dezert-Smarandache theory” (DSmT) [15] specifically
targets the problem of imprecise, uncertain, and highly conflicting sources of data for
information fusion.

While in probability theory the calculus with probabilities is inherent, in DST the
exertion of influence between pieces of evidence opens a wide field of facilities. Combining
two pieces of evidence to improved evidence is, in general, accomplished by evidence
combination rules (ECR). There is certainly a large variety of meaningful ECRs. Dempster’s
original suggestion, which distributes inconsistent BBMs equally among others, was the
most obvious Dempster ECR [4]. The rule is commutative and associative, but fails when
sources of evidence become incompatible or conflicting. To overcome the problem of
combining strongly contradicting pieces of evidence, Yager 1987 [16] suggested assigning
inconsistent BBMs to the BBM of total ignorance. A good summary of about ten popular
ECRs is given therein [17,18]. More sophisticated are “Proportional Conflict Redistribution”
rules (PCR) [19,20] within DSmT or some of the improvements made [21].

As an alternative to Dempster’s ECR and to overcoming the problem of conflicting
evidence, Shafer suggested [18] to manipulate mass functions by weighting and discounting
(“belief in belief”) rather than to diversify the ECR itself. In DSmT [15] evidence from
several origins can additionally be weighted by importance.

The TBM gives a procedure of how to convert evidence into probabilities. However,
there is a push for decision making based on evidence. An axiomatic approach was given
in 1990 [22]. The inclusion of loss functions for classification were discussed in 1997 [9]. A
review of decision-making strategies based on the theory of Neumann and Morgenstern
from 1943 [23] (60th anniversary reprint [24]) was given in 2019 in Denœux [25].

There are many use cases for DST. An obvious one can be found in robotics for
“Simultaneous Localization and Mapping” (SLAM) by combining data from different
sensors [26]. Every sensor serves as an agent and is source of a piece of evidence. Decisions
are based on the linkage of these pieces of evidence by ECR.

Another important application is in combining classifiers as outlined in 2002 by Al-
Ani [27]. Elements of a mostly high-dimensional feature space are to be classified into
a number of labeled categories. In general, this will require random forest classification
or the like. A possible approach via DST will consider the set of labeled categories to
represent a frame of discernment. Each classifier (for each feature vector individually) is
then transformed into a single piece of evidence by assigning a BBM to all subsets of the
appropriate labels. The conjunction of classifiers is again accomplished by linkage of these
pieces of evidence using customized ECRs [28].

The described procedure is very close to our approach with the crucial difference, that
in our model not the full feature space is mapped to categories, but leaves the option of a
feature vector being mapped to an additional category labeled as “undecidable”.

2. Materials and Methods
2.1. Dempster-Shafer Theory

Evidence theory by Dempster-Shafer (DST) is based on combining pieces of evidence
rather than dealing with probabilities. An evidence can be seen as a generalization of a
probability function. The essential difference is, that while in the former the sample space
Ω is mapped to probabilities Pr(a), a ∈ Ω, in DST the power set of the sample space, now
called “frame of discernment” (FOD), P(Ω) = 2Ω is mapped to masses m(A), A ⊆ Ω. The
mass function m(A) assigns basic belief masses (BBM) to the elements A ∈ P(Ω) and
can be interpreted as degrees of trust in some proposition A. Figure 1 shows this for a
sample space respectively FOD with the three possible outcomes Blue, Red and Green, thus
Ω = {B, R, G}.
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(a) (b)

Figure 1. Graphical comparison between probability and evidence: (a) a distribution with probability
function Pr(a). (b) an evidence represented by a mass functions m(A). Note, with three overlapping
disks due to the lack of degrees of freedom (5 instead of 6) not all possible constellations can be
graphically represented.

The function m(A) : P(Ω)→ [0, 1] satisfying ∑A⊆Ω m(A) = 1 represents an evidence
and, in return, every evidence is represented by such a function. Special care has to be
taken for the the empty set m(∅) of BBM. If m(∅) = 0, an evidence is called normalized.
A closed vs. an open FOD are referred to respectively a closed world vs. an open world
assumption, see Figure 2.

(a) (b)

Figure 2. Closed world vs. open world assumption: (a) In a closed world no mass is given to the
empty set, thus no outcome beyond Ω is possible. (b) In an open world a basic belief mass is given
to the empty set allowing the ability to consider completely unexpected events to the model (e.g.,
broken coin) or to deal with data of low quality.

We currently restrict ourselves to normalized evidence, but we will discuss the origin
and opportunities of open world models later in the context of evidence combination rules
(ECR) and vague FOD.

For every set S ∈ P(Ω) the mass function m(A) intrinsically defines two essential
quantities of DST, the “Belief” and the “Plausibility” of the set S.

Bel(S) = ∑
A⊆S

m(A) Pl(S) = ∑
A∩S 6=∅

m(A) (1)

This is why DST is also called the theory of belief functions.
For a normalized evidence we have Bel(Ω) = Pl(Ω) = 1 and Bel(∅) = Pl(∅) = 0.

This implies that we are sure that the correct answer lies somewhere within Ω (closed
world). For better understanding, Figure 3 shows Believe Bel(S) and Plausibility Pl(S) for
two elements of P(Ω), namely {R} and {B, G}.
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(a) (b)

Figure 3. Belief Bel(S) and Plausibility Pl(S) illustrated by overlapping disks. The size of arrays
represents basic believe masses. The difference between plausibility and believe Pl(S)\Bel(S) is
called uncertainty. (a) Bel{R} and Pl{R} of the singleton {R}. (b) Bel{B, G} and Pl{B, G} of the set
{B, G}.

2.2. Evidence Combination Rules

One strength of DST is the flexibility in combining pieces of evidence with various
ECRs in adjustment of necessities. We will show how to take advantage of this by customiz-
ing ECRs, depending on the origin of the data. Put simply, an ECR is a binary operator ⊕
that combines two mass functions m1(A) and m2(A) associated with two pieces of evidence
with a third mass function m(A), representing a fused evidence.

m(A) = m1(A)⊕m2(A) (2)

Basically, such an operator does not need to fulfill any properties, except ∀A ∈ P(Ω) :
m(A) ∈ [0, 1] and ∑A⊆Ω m(A) = 1.

Most ECRs are commutative, but only in very rare cases are they associative, not even
pseudo-associative in terms of [17]. There is a neutral element me(A), called the “vacuous
mass function”, satisfying m(A) = me(A)⊕m(A) = m(A)⊕me(A) with me(Ω) = 1 and
me(A) = 0 for A 6= Ω. The evidence associated with me(A) is also called “total ignorance”,
representing the lack of knowledge. Note that m(A) = m(A)⊕m∗(A) does not necessarily
imply that m∗(A) is a vacuous mass function. A counterexample is given in [29].

Obviously, an inverse function m−1(A) with m(A)⊗m−1(A) = m−1(A)⊗m(A) =
me(A) for every m(A) does not necessarily exist. This is easy to understand when con-
sidering that for a given evidence represented by a mass function m(A) it is unlikely to
find more evidence which results in total ignorance. In general, some knowledge brought
together with some other knowledge cannot end in knowing nothing. In algebraic terms,
the set of all possible m(A) therefore has the structure of an unital magma [30].

An easy way to combine pieces of evidence is by simply multiplying the intersecting
mass functions [8].

m1(A)⊗m2(A) = ∑
B∩C=A

m1(B)m2(C) (3)

This ECR is called the “conjunctive” rule [26] and is fully compatible with the open
world assumption in the TBM framework. Unfortunately, the resulting mass function
m(A) = m1(A)⊗m2(A) is not normalized, so m(∅) 6= 0. Figure 4 illustrates the Formula (3)
for two different cases in mosaic plots, the left one with rather consistent evidence, the
right one with rather contradictory evidence (for details see Appendix A).

The 49 rectangles within the two squares are colored in the color of the corresponding
intersect, where the white areas are masses for contradicting evidence. Areas of the same
color are added. Note that the mosaic plots in Figure 4 can be seen as an operation table
for the operator ∩, thus e.g., {R} ∩ {B, R} = {R}, and so on. For a closed world, the white
areas must be redistributed among all others.
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(a) (b)

Figure 4. Intersection of basic belief masses of two pieces of evidence. The seven colors in the
mosaic plot represent (in order) the seven sets {B}, {R}, {B, R}, {G}, {B, G}, {R, G}, {B, R, G}. The
49 rectangles within the two squares are colored according to the intersect. White represents the
empty set ∅. For a closed world, the white areas must be redistributed among all others. (a) rather
consent pieces of evidence. (b) rather contradicting pieces of evidence.

How to distribute the mass of the empty set m(∅) among all other masses m(A)
depends on the needs of the model. If there is a high chance of contradiction between
m1(A) and m2(A), most of m(∅) will be allocated to m(Ω). Contrarily, if there is a low
chance of contradiction, m(∅) will be distributed equally along the singletons m({a}),
a ∈ Ω. As discussed in the introduction, there is a wide range of possible allocations to
do so.

For a model to distinguish between hormone receptor statuses it is convenient to
use a parameterized family E = {⊕λ}λ∈[0,1] of ECRs, which is very similar to the one
introduced [31], but uses a parameter λ ∈ [0, 1] to customize local requirements. Given two
mass functions m1(A) and m2(A) we define

m(A) = m1(A)⊕λ m2(A) =


0 A = ∅

∑B∩C=A m1(B)m2(C)
1−λ ∑B∩C=∅ m1(B)m2(C)

A ⊂ Ω

1−∑S⊂Ω m(S) A = Ω

(4)

The parameter λ in Formula (4) provides flexibility to adapt to circumstances. The
restriction to λ ≤ 1 is motivated by restricting ourselves to an interpolation type ECR. The
value λ > 1 would yield an extrapolation type ECR as described in [31].

Dempster’s original ECR [4] is equivalent to setting λ = 1. This ECR is associative
and commutative. Unfortunately, it turns out that this particular ECR causes significant
problems when given pieces of evidence that are rather contradictory [4]. The reason for
this is that only the non-contradictory intersect between the two concatenated pieces of
evidence is used for the evaluation of the new masses. If this intersect is small, the re-scaling
due to normalization blurs out information.

In contrast, Yager [16] distributes all contradicting mass to m(Ω) which is equivalent
to setting λ = 0. For most applications this approach is too conservative and hinders
merging similar evidence to a stronger evidence. However, if pieces of evidence originate
from different types of sources this ECR could be very helpful.

Depending on the relation between the agents, different values of λ will be adequate.
For pieces of evidence tending to contradict one another, such as combining gene expression
with immunohistochemical measurements (IHC), a small value of λ will be favored. For
pieces of evidence with low probability of being contradictory, such as combining gene
expression from a receptor gene with the co-gene, a greater value of λ will better allow
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consolidation evidence gained by gene expression. In any case, we should always avoid
giving too much weight to any element of P(Ω), especially singletons .

Another major benefit of introducing λ is when combining different receptor statuses
to one hormone receptor status. We found that this operation can also be represented by
some adequate elements ⊕λ ∈ E . Our data suggests a value of λ ≈ 0.5 as optimum for this
task. An illustrated example of evidence linkage and the implications of λ can be found in
Appendix A.

3. Results
3.1. Model Adaptation

For hormone receptor determination the FOD is restricted to two outcomes, hormone
receptor positive and hormone receptor negative. We will assume a closed world, thus
there are no other possible outcomes than the two elements of Ω.

Ω = {+,−} (5)

The simplicity of this model allows us to describe all BBMs by using only two parame-
ters, α and β.

m({+}) = α m({−}) = β m({+,−}) = m(Ω) = 1− α− β (6)

The current model involves 6 independent data sources to generate evidence. Four of
them originate in gene expression, two in IHC measurements. The gene expression data
consists of normalized values for the abundance of estrogen, co-estrogen, progesterone
and co-progesterone, where the co-genes are genes closely related to the receptor genes
themselves. How to transform gene expression data into BBM given by αexpr and βexpr is
the subject of our previous papers [32,33].

IHC data originates in the IHC-measurements of estrogen and progesterone receptors.
These measurements can be either continuous or discrete (or even missing). How to
transform this data into appropriate αihc and βihc is also previously discussed [32,33].

Putting these together into our existing model, the BBM mhorm describing the evidence
of the hormone receptor status is calculated as

mhorm =
(
(mesr

expr ⊕1 mesr
co )⊕0 mesr

ihc

)
⊗
(
(mpgr

expr ⊕1 mpgr
co )⊕0 mpgr

ihc

)
= mesr ⊗mpgr (7)

Missing data are represented by the vacuous mass function. On the basis of the
Formula (4)⊕1 stands for Dempster’s ECR and⊕0 stands for Yager’s ECR respectively. The
operator ⊗ does not represent a typical ECR, but a formal procedure reflecting common
clinical decision making as given in the below Formula (8).

αhorm = mhorm({+})
= (mesr ⊗mpgr)({+})
= max(mesr({+}), mpgr({+}))
= max(αesr, αpgr) (8)

βhorm = mhorm({−})
= (mesr ⊗mpgr)({−})
= min(mesr({−}), mpgr({−}))
= min(βesr, βpgr)

However, this model suffers from a couple of shortcomings. The following list of
improvements addresses the problems and provides credible results.
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• The operator ⊗, as defined in Formula (8), is not fully compatible with DST. There is
always a dependence between the two receptor status. However, DST in its original
form requires independent BBMs. This is obviously not the case for estrogen and
progesterone receptors. Our suggestion to absorb this correlation is to replace ⊗ by
⊕0.5 giving estrogen and progesterone a balanced contribution to both BBM.

• The operator ⊕1 for combining pieces of evidence coming from gene expression and
co-gene expression might be problematic in case of conflicting expression values. In
a previous paper [32] we introduced mass limits α̂ and β̂ for the BBMs to tackle this
issue. We retain these mass limits, but replace ⊕1 by ⊕0.9 as an additional reinsurance.

• Combining gene expression evidence with IHC evidence, the operator ⊕0 will in
case of conflict put too much weight into the mass of ignorance, m(Ω). Therefore we
suggest slightly increasing λ and replacing ⊕0 by ⊕0.1. On the lower end of the λ-
range, the influence of λ on the ECR is significantly less than on the upper end. As long
as there is a profound confidence in the data, particularly in the IHC measurements,
replacing ⊕0 by e.g., ⊕0.3 is therefore also an option.

• In the past it turned out that the optimal choice for the co-gene of progesterone is
mostly estrogen itself. If so, although mesr

expr and mpgr
co are calculated differently and so

vary numerically, they are basically generated from the same gene expression data. A
preferable assumption in DST is the independence of input data to generate evidence.
In contrary to estrogen, progesterone expression data is often diffuse and it might be
impossible to find a decent co-gene. This issue can be easily resolved by replacing
mpgr

co with the vacuous mass function. Currently, for the sake of consistency, we stick
to the current configuration which uses estrogen as co-gene for progesterone.

Respecting all these issues above we suggest an improved model such as

mhorm =
(
(mesr

expr ⊕0.9 mesr
co )⊕0.1 mesr

ihc

)
⊕0.5

(
(mpgr

expr ⊕0.9 mpgr
co )⊕0.1 mpgr

ihc

)
(9)

The operators ⊕0.1 and ⊕0.9 are small derivations from to the original model and
mainly serve to increase prediction stability in the case as described in [5]. Graphic examples
are shown in Figures 5 and 6.

(a) (b)

Figure 5. Contradictory data inducing undecidable outcome: (a) model (9) illustrated by a sample
with indecisive outcome (sample id = 881). Both IHC measurements esrihc and pgrihc are receptor
negative, but three out of 4 pieces of evidence based on gene expression indicate a receptor positive
status. Red areas represent masses α for positive hormone status, blue areas represent masses β

for negative hormone status, centers represent masses θ = 1− α− β for Ω = {+,−}. (b) choosing
inappropriate λ for the ECRs results in dubious prognosis.
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(a) (b)

Figure 6. Consistent data inducing reliable outcome: (a) model (9) illustrated by a sample with
very clear outcome (sample id = 1980). (b) When evidence is highly consistent, the parameter λ has
practically no influence on the results.

A further detailed explanation is required for the shift from ⊗ to ⊕0.5. For a sample
to be receptor positive, only one of the two receptors (estrogen OR progesterone) needs
to be positive while for being negative both receptors (estrogen AND progesterone) have
to be negative. Therefore, the operator ⊗ as given in Formula (8) will fail and produce a
misleading shift towards hormone receptor positive. If one of the two receptors has medium
evidence for being positive and the other receptor has strong evidence for being negative,
the operator⊗will still result in an evidence favoring a positive outcome hormone receptor.

Moreover, there is a strong connection between the two receptor genes. A progesterone
positive sample will almost always be estrogen positive while an estrogen negative sample
is very likely to be progesterone negative. However, the approach given in Formula (8) is
based on the assumption of almost independent receptors.

Combining receptor evidence with ⊕0.5 will, on the other hand, fix the above issues.
In both cases it is still very likely that the hormone receptor status concluded from the
evidence will be classified as “undecidable”, but in case of misclassification the probability
of erroneously positive classified samples will be reduced by a large amount. This is in line
with clinical demands.

3.2. Examples

The data set for the following results consists of 2559 freely available breast cancer
samples from the Gene Expression Omnibus [34]. For each sample, at least one IHC
measurement of a hormone receptor was performed as part of the respective study. Details
can be found in Appendix B.

In the first example (sample id 881 from the data set), gene expression data and IHC
measurements are contradicting each other. In addition, gene expression of progesterone is
not very accurate, and can be seen from the differing measurements. This leads to a final
very diffuse evidence, and therefore no decision can reliably be made.

Figure 5a shows the evolution of evidence for this particular sample. Figure 5b shows
the importance of choosing the right λ for the ECRs. The example shows that merging gene
expression evidence with unclear IHC evidence can result in a dubious prognosis when
choosing a too large λ.

In the second example (sample id 1980 from the data set), there is strong conformity
in the data. Although one IHC measurement is missing, pieces of evidence accumulate to
a strong belief in hormone receptor positive, see left panel in Figure 6. The right panel in
Figure 6 demonstrates that in case of consistent evidence the influence of the parameter λ
can be neglected.

The last example (sample id 2365 from the data set) is a very contradictory example
concerning the data at hand. Large amounts of the final mass are distributed to lack of
knowledge, which can be seen from the large central circles in Figure 7. The influence of λ
can change from case to case.
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(a) (b)

Figure 7. Contradicting data inducing uncertainty: (a) model (9) illustrated by a sample with very
contradictory input data (sample id = 2365). (b) even when setting all λ = 0.5 in the ECRs no
conclusive evidence is generated. Nevertheless, the influence of λ can change case by case.

3.3. Analysis

As can be seen in Table 1a and Figure 8, the switch from our previous approach
(Formula (7)) to an improved linkage between the two hormone receptors (Formula (9))
entails a shift towards receptor negative. This is reflected by 86 samples clinically classified
as “uncertain”, now being classified as “receptor negative” and 78 samples clinically
classified as “receptor positive”, now being classified as “uncertain”. This shift can be
quantified by a Cohen’s κ = 0.877. Using a constant λ for ECRs instead of (9) only has an
influence on numerically problematic samples, as can be seen in Table 1b.

The left panel of Figure 8 shows the change in the α (red dots) and β (blue dots), while
the right panel illustrates Table 1 in an alluvial diagram.

Table 1. Clinical decision making vs. flexible risk: (a) change from clinical decision making to
Formula (9), κ = 0.877, there is a trend towards receptor negative (upper triangular matrix). (b) an
influence of λ is only given for numerically problematic samples, κ = 0.966.

(a)

flexible risk
pos unc neg

clinical
pos 1287 78 1
unc 3 51 86
neg 0 0 1013

(b)

λ = 0.5 constant
pos unc neg

flexible risk
pos 1268 22 0
unc 14 107 8
neg 0 2 1098
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(a) (b)

Figure 8. Illustration of the shift towards hormone receptor negative outcome by an improved linkage
between hormone receptors (Formula (9)): (a) red dots are weights α for receptor positive, blue dots
are weights β for receptor negative. (b) incorrect favoring of positive hormone receptor status has
been revised by using ⊕0.5 instead of ⊗.

3.4. Decision Making

We will not change our strategy for decision making as proposed in our previous
work [32,33]. This means, we consider an outcome A as “true” if the belief in it has more
mass than the plausibility of its complement A′. Let T ⊆ P(Ω) be the subset of all “true”
elements of P(Ω).

A ∈ T ⇐⇒ Bel(A) > Pl(A′) A′ = Ω\A

In this very simplified case with Ω = {+,−} it reduces to

{+} ∈ T ⇐⇒ α > 0.5 {−} ∈ T ⇐⇒ β > 0.5

Note that Ω ∈ T will clearly always hold under the closed world assumption.

4. Discussion
4.1. Quality of Data

In DST, the dogma “a (machine learning) model is only as good as the data it is fed”
can be understood from a different perspective. This guiding principle is still valid, but
lack of data quality can be coped with in the BBMs and ECRs by adequate parametrization.
Here DST offers additional flexibility.

In our model with only two possible outcomes this is simple. The best example is the
modeling of the BBM for the IHC status. The less confidence there is in the data, the more
mass is assigned to subsets of Ω with more than one element, i.e., blurred decisions. With
increasing confidence in the IHC measurements, the corresponding singletons (i.e., crisp
decisions) are more highly valued.

4.2. From Data to Evidence

This issue was the subject of our earlier papers [32,33] and we will therefore only
briefly discuss it. Gene expression values are converted into BBM using logistic regression.
In addition, two mass limits α̂ and β̂ are introduced for the following purposes.

The most important is to consider the possibility of erroneous gene expression values
by keeping masses significantly smaller than 1. A welcome side effect is to avoid some rare
numerically problematic cases.

The conversion of IHC measurements into BBM is again realized as described in [32,33].
We assume that about 85% of the IHC measurements are correct.
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4.3. The Functionality of λ in ⊕λ

We introduced the parameter λ to specifically adapt decision strategy to the properties
of data and its origin from which evidence is to be generated. The more data sources differ
in nature, the smaller λ should be chosen. This prevents too much mass accumulating in
the singletons when mixing conflicting evidence. We call this strategy a conservative ECR.

On the other hand, if the data sources are homogeneous, a large λ can be chosen. We
call this case a risky ECR. In the case of a risky ECR, care must be taken to ensure that
contradictory singletons do not enter simultaneously with masses close to 1. In our model,
this case is prevented by the mass limits α̂ and β̂.

Theoretically, it would also be possible to choose λ > 1 as suggested [31]. That would
correspond to an extrapolation in the sense that two consistent pieces of evidence not only
increase certainty but also amplify each other to something stronger than the sum of them.
However, our focus is in finding possible contradictions in data and therefore we see no
point in merging evidence for hormone receptor status determination with λ > 1.

There is even more potential in the variation of λ when combining the two hormone
receptors, estrogen and progesterone. Our suggestion (Formula (9)) is choosing λ = 0.5. By
varying λ in the linkage between the two hormone receptors, the amount of unclassified
samples can be regulated conveniently. This is illustrated in Figure 9.

(a) (b)

Figure 9. Uncertainty vs. flexible risk. (a) Increasing risk decreases uncertainty: The number of
uncertain samples depends on the parameter λ in combining the hormone receptors with mesr⊗mpgr.
The yellow area shows 45 out of 2519 samples (1.8%) which will always be uncertain, independent of
the choice of λ. The red area changes from uncertain to receptor positive with increasing λ, the blue
area changes into receptor negative. (b) fixed mass of ignorance: number of classifications by fixing
the weight m(Ω) = ω as described by Formula (11).

4.4. Training of λ in ⊕λ on Real Data

The parameter λ is currently set according to intuitive arguments rather than strict
mathematical rules. It would be interesting to investigate the existence of an algorithm to
calculate λ depending on arbitrary training data and to develop a mechanism that suggests
an optimal choice.

Due to a lack of clean training data of sufficient high quality we have done simulations
to train λ appropriately. It turned out that this task is far from trivial and needs further
investigation.

4.5. Enhanced Evidence Combination Rules

There are many ECRs available and existing ones are constantly being developed
further. However, none of these developments could state with certainty or explain con-
clusively which ECR is beneficial for which application. Therefore we proposed to set the
parameter λ according to expert knowledge on the nature of the data.

In any case, the parameterized ECR introduced in this way covers a very wide range
of possible combinations of evidence. Unfortunately, it is difficult to assess whether
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certain additional mathematical requirements for an ECR, such as commutativity, (pseudo-)
associativity, idem-potency, invertibility or other characteristics of binary operators could
provide additional value.

4.6. An Evidence Combination Rule with Constant Ignorance

The larger the expected contradiction between the two BBMs, the smaller one will
usually choose λ. On the other hand, if expected contradictions are small, increasing risk
may be taken by choosing a larger λ. The question arises as to why one must choose λ at
all and not take a λ adapted according to some formula. For example, the reciprocal value
of the total mass could be used as the setting point:

λ ∝
1

∑B∩C=∅ m1(B)m2(C)
(10)

The net effect of this strategy would be to reduce the variability of m(Ω ) within the
samples.

This approach can be pursued particularly elegantly if one assumes the resulting mass
of total ignorance as an a priori constant, i.e., m(Ω) = ω. The corresponding ECR would
then read

m(A) = m1(A)⊕λ m2(A) =


0 A = ∅

(1−ω)∑B∩C=A m1(B)m2(C)
1−m1(Ω)m2(Ω)−∑B∩C=∅ m1(B)m2(C)

A ⊂ Ω

ω A = Ω

(11)

For the special case Ω = {+,−}, as valid for hormone receptor determination, this
is directly leading to α + β = 1− ω, with ω representing the basic belief mass of total
ignorance.

4.7. Modified Frame of Discernment

Our FOD consists of only two outcomes, “positive” and “negative”, i.e., Ω = {+,−}.
In practice, however, the hormone receptor status is not solely responsible for the therapeu-
tic decisions on therapy. There are different types of receptor-positive patients, and not all
will respond equally well to hormone therapy. Therefore expanding the presented model
at a later time is inevitable. There are two possible approaches to do so:

the first is a refined model. Here, the refinement lies in subdividing “+” further into
{+} = {+1,+0}, i.e., Ω = {+1,+0,−}, which can easily be arranged with part of the
clinical data, since the ESR receptor status is often given as a (quasi-)continuous parameter.

The second is to adapt the “open world assumption”. There are patients for whom
it is basically impossible to make a serious choice for the most suitable treatment method
based on the receptor status – even if it is measured precisely and reliably. The outcome for
such patients is therefore not covered by the FOD. Such a model can be implemented by
allowing a strictly positive BBM of the empty set, ergo m(∅) > 0.

4.8. Risk Function for Decision Making

Finally, another open point is the need for a risk function. Wrong decisions regarding
therapy are not symmetrical. Adjuvant chemotherapy is often vital, even if only hormone
therapy is applied. Some preliminary investigations have already been carried out [25], but
considering the specific case, it is still an open field of research. Creating such risk functions
is a heavily investigated topic and we will come back to it in a succeeding paper.

5. Conclusions

Dempster–Shafer theory of belief functions represents a generalization of Bayes’ prob-
abilities. It provides a powerful framework to proactively involve the outcome “uncertain”
in case of insufficient data availability to make confident decisions. Instead of probabili-
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ties pieces of evidence, represented by basic belief masses, are concatenated by evidence
combination rules.

In this paper, we presented a manner to parameterize evidence combination rules
to adjust models to the nature of the incoming measurements. Data with high potential
to be contradictory (like gene expression and immunohistochemical measurements) is
linked in a more conservative manner than data which is more likely expected to be in
consent. Thus, evidence theory avoids several well-known problems with decisions based
on conventional statistics.

As a major advancement, our work introduces flexible evidence-combination-rules
offering the potential of adaptable risk. Changing the parameters for concatenating pieces
of evidence (respectively data) alters the probability for a sample to be classified as “well-
defined” or as “uncertain”. This is especially helpful to adapt the Dempster-Shafer algo-
rithm to possible different types of risks and directly related possibilities of a treatment
decision. Examples are possible over- and under-treatment of particular patients.

To illustrate the strength of evidence theory we used a case study of hormone receptor
status determined for breast cancer samples. As a key outcome we estimate that slightly too
many patients have been classified as hormone receptor positive by conventional clinical-
decision-making in comparison to our approach. We do not advocate overruling clinical
decisions, but rather flagging questionable samples as “uncertain” and suggesting further
investigations for these particular patients.

Drawing on flexible evidence combination rules in our approach we see great potential
for the advancement in personalized medicine.
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Appendix A. Examples of Combining Pieces of Evidence

For convenience we denote every element S ∈ P(Ω) by an integer a(S). Let Ω =
{x0, x1, . . . xn−1} and S ⊆ Ω. We define

a(S) =
n−1

∑
k=0

χS(xk)2
k (A1)

with indicator function

χS(y) =

{
1 if y ∈ S
0 if y /∈ S

(A2)

and identify m(S) ≡ m(a(S)) ≡ m(a). So m(5) would be the mass of {x0, x2}.
For illustration of a general case we consider three mutually exclusive outcomes (e.g.,

treatments) Ω = {B, R, G} and two pieces of evidence from agents E1 and E2 with mass
functions mi(a) : A→ [0, 1], A = {1, 2, . . . , 7}, i ∈ {1, 2} in the notation above. Note that
for this demonstration example we assume a closed FOD and therefore do not explicitly
write down m1(0) = m2(0) = 0 hereinafter.

Appendix A.1. Two Rather Consistent Agents

This case often occurs when data from similar sources are to be linked. This could be
multiple measurements of the same parameter within a short time span, but also correlated
genes from one gene expression chip.

The example in Figure A1 gives two agents strongly agreeing in Red. While the first
one considers Blue as an alternative, the second one’s first alternative is the preferable
Green.

m1(A) = {0.262, 0.434, 0.130, 0.047, 0.038, 0.039, 0.050}
m2(A) = {0.123, 0.409, 0.122, 0.187, 0.051, 0.042, 0.066}

(m1 ⊕λ m2)(A) =


{0.138, 0.393, 0.032, 0.045, 0.007, 0.007, 0.378} λ = 0.1
{0.166, 0.471, 0.038, 0.054, 0.009, 0.008, 0.254} λ = 0.5
{0.207, 0.589, 0.048, 0.068, 0.011, 0.010, 0.067} λ = 0.9

conservative medium risky

Figure A1. Adding two rather consistent pieces of evidence with Formula (4). A larger value of λ

(less conservative) seems to be preferable. Masses for ambiguous outcomes such as {R, B} almost
vanish. The first and the second rows show different graphical representations of the same situation.
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Appendix A.2. Two Rather Contradictory Agents

When different types of data are to be linked, this case is likely to occur. In our example
this is data from immunohistochemistry with data from gene expression. It will occur more
often when evidence based on different opinions or measurement methods are to be linked.

The example in Figure A2 shows two agents, where the first one strongly believes in
Red, while the second one gives most mass to Blue or Green.

m1(A) = {0.262, 0.434, 0.130, 0.047, 0.038, 0.039, 0.050}
m3(A) = {0.236, 0.085, 0.059, 0.378, 0.100, 0.059, 0.083}

(m1 ⊕λ m3)(A) =


{0.203, 0.161, 0.023, 0.088, 0.013, 0.009, 0.504} λ = 0.1
{0.260, 0.207, 0.029, 0.113, 0.016, 0.012, 0.363} λ = 0.5
{0.365, 0.290, 0.041, 0.158, 0.023, 0.016, 0.108} λ = 0.9

conservative medium risky

Figure A2. Adding two rather contradictory pieces of evidence with Formula (4). A smaller value of
λ (more conservative) seems preferable staying on the safe side. Obviously none of the three possible
outcomes receives the necessary support to represent a good choice. Contradicting masses should
therefore be mostly allocated to total ignorance, m(7) = m(Ω) (compare Formulas (A1) and (A2)),
displayed by the central grey disk.

Appendix B. Data Description

The data used for this study are identical to the data set used in our previous pub-
lications and is described in detail in [32]. It consists of 3753 samples from 38 studies
downloaded from the Gene Expression Omnibus (GEO) [34], including clinical parameters.
Of these, 2559 samples were finally selected in which HER2 status could be determined to
be negative with reasonable confidence.

Clinical parameters and, in particular, immunohistochemical measurements were ob-
tained either from the GEO database metadata directly or from the associated publications.
All input parameters for our models were also subjected to a double plausibility check.
Removal of non-biological batch effects in the gene expression data was done as part of a
normalization process that included all studies simultaneously.
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