The Forcing Domination Number of Hamiltonian Cubic Graphs

H.Abdollahzadeh Ahangar
(Department of Mathematics, University of Mysore, Manasagangotri, Mysore- 570006
Pushpalatha L.
(Departmant of Mathematics, Yuvaraja's College, Mysore-570005)
E-mail: ha.ahangar@yahoo.com, pushpakrishna@yahoo.com

Abstract

A set of vertices S in a graph G is called to be a Smarandachely dominating k-set, if each vertex of G is dominated by at least k vertices of S. Particularly, if $k=1$, such a set is called a dominating set of G. The Smarandachely domination number $\gamma_{k}(G)$ of G is the minimum cardinality of a Smarandachely dominating set of G. For abbreviation, we denote $\gamma_{1}(G)$ by $\gamma(G)$. In 1996, Reed proved that the domination number $\gamma(G)$ of every n-vertex graph G with minimum degree at least 3 is at most $3 n / 8$. Also, he conjectured that $\gamma(H) \geq\lceil n / 3\rceil$ for every connected 3 -regular n-vertex graph H. In [?], the authors presented a sequence of Hamiltonian cubic graphs whose domination numbers are sharp and in this paper we study forcing domination number for those graphs.

Key Words: Smarandachely dominating k-set, dominating set, forcing domination number, Hamiltonian cubic graph.

AMS(2000): 05C69

§1. Introduction

Throughout this paper, all graphs considered are finite, undirected, loopless and without multiple edges. We refer the reader to [12] for terminology in graph theory.
Let G be a graph, with n vertices and e edges. Let $N(v)$ be the set of neighbors of a vertex v and $N[v]=N(v) \cup\{v\}$. Let $d(v)=|N(v)|$ be the degree of v. A graph G is r-regular if $d(v)=r$ for all v. Particularly, if $r=3$ then G is called a cubic graph. A vertex in a graph G dominates itself and its neighbors. A set of vertices S in a graph G is called to be a Smarandachely dominating k-set, if each vertex of G is dominated by at least k vertices of S. Particularly, if $k=1$, such a set is called a dominating set of G. The Smarandachely domination number $\gamma_{k}(G)$ of G is the minimum cardinality of a Smarandachely dominating set of G. For abbreviation, we denote $\gamma_{1}(G)$ by $\gamma(G)$. A subset F of a minimum dominating set S is a forcing subset for S if S is the unique minimum dominating set containing F. The forcing domination number $f(G, \gamma)$ of S is the minimum cardinality among the forcing subsets of S, and the forcing domination number $f(G, \gamma)$ of G is the minimum forcing domination number among

[^0]the minimum dominating sets of $G([1],[2],[5]-[7])$. For every graph $G, f(G, \gamma) \leq \gamma(G)$. Also The forcing domination number of several classes of graphs are determined, including complete multipartite graphs, paths, cycles, ladders and prisms. The forcing domination number of the cartesian product G of k copies of the cycle $C_{2 k+1}$ is studied.

The problem of finding the domination number of a graph is NP-hard, even when restricted to cubic graphs. One simple heuristic is the greedy algorithm, ([11]). Let d_{g} be the size of the dominating set returned by the greedy algorithm. In 1991 Parekh [9] showed that $d_{g} \leq n+1-\sqrt{2 e+1}$. Also, some bounds have been discovered on $\gamma(G)$ for cubic graphs. Reed [10] proved that $\gamma(G) \leq \frac{3}{8} n$. He conjectured that $\gamma(H) \geq\left\lceil\frac{n}{3}\right\rceil$ for every connected 3regular (cubic) n-vertex graph H. Reed's conjecture is obviously true for Hamiltonian cubic graphs. Fisher et al. [3]-[4] repeated this result and showed that if G has girth at least 5 then $\gamma(G) \leq \frac{5}{14} n$. In the light of these bounds on γ, in 2004 Seager considered bounds on d_{g} for cubic graphs and showed that ([11]):

$$
\text { For any graph of order } n,\left\lceil\frac{n}{1+\Delta G}\right\rceil \leq \gamma(G) \text { (see [4]) and for a cubic graph } G, d_{g} \leq \frac{4}{9} n \text {. }
$$

In this paper, we would like to study the forcing domination number for Hamiltonian cubic graphs. In [8], the authors showed that:

Lemma A. If $r \equiv 2$ or $3(\bmod 4)$, then $\gamma\left(G^{\prime}\right)=\gamma(G)$.
Lemma B. If $r \equiv 0$ or $1(\bmod 4)$, then $\gamma\left(G^{\prime}\right)=\gamma(G)-1$.
Theorem C. If $r \equiv 1(\bmod 4)$, then $\gamma\left(G_{0}\right)=m\left\lceil\frac{n}{4}\right\rceil-\left\lceil\frac{m}{3}\right\rceil$.

§2. Forcing domination number

Remark 2.1 Let $G=(V, E)$ be the graph with $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ for $n=2 r$ and $E=$ $\left\{v_{i} v_{j}| | i-j \mid=1\right.$ or $\left.r\right\}$. So G has two vertices v_{1} and v_{n} of degree two and $n-2$ vertices of degree three. By the graph G is the graph described in Fig.1.

Fig.1. The graph G.
For the following we put $N_{p}[x]=\{z \mid z$ is only dominated by $x\} \cup\{x\}$.
Remark 2.2 Suppose that the graphs G^{\prime} and $G^{\prime \prime}$ are two induced subgraphs of G such that $V\left(G^{\prime}\right)=V(G)-\left\{v_{1}, v_{n}\right\}$ and $V\left(G^{\prime \prime}\right)=V(G)-\left\{v_{1}\right\}\left(\right.$ or $\left.V\left(G^{\prime \prime}\right)=V(G)-\left\{v_{2 r}\right\}\right)$.

Remark 2.3 Let G_{0} be a graph of order $m n$ that $n=2 r, V\left(G_{0}\right)=\left\{v_{11}, v_{12}, \ldots\right.$,
$\left.v_{1 n}, v_{21}, v_{22}, \ldots, v_{2 n}, \ldots, v_{m 1}, v_{m 2} \ldots, v_{m n}\right\}$ and $E=\cup_{i=1}^{m}\left\{v_{i j} v_{i l}| | j-l \mid=1\right.$ or $\left.r\right\} \cup\left\{v_{i n} v_{(i+1) 1} \mid i=\right.$ $1,2, \ldots, m-1\} \cup\left\{v_{11} v_{m n}\right\}$. By the graph G_{0} is 3-regular graph. Suppose that the graph G_{i}
is an induced subgraph of G_{0} with the vertices $v_{i 1}, v_{i 1}, \ldots, v_{i n}$. By the graph G_{0} is the graph described in Fig. 2.

Fig. 2. The graph G_{0}.

Proposition 2.4 If $r \equiv 0(\bmod 4)$, then $f(G, \gamma) \leq 2$, otherwise $f(G, \gamma)=1$.
proof First we suppose that $r \equiv 1(\bmod 4)$. It is easy to see that $f(G, \gamma)>0$, because G has at least two minimum dominating set. Suppose $F=\left\{v_{1}\right\} \subset S$ where S is a minimum dominating set. Since $\gamma(G)=2\lfloor r / 4\rfloor+1$, for two vertices v_{x} and v_{y} in $S,\left|N\left[v_{x}\right] \cup N\left[v_{y}\right]\right| \geq 6$. This implies that $\left\{v_{2}, v_{r+1}\right\} \cap S=\emptyset$, then $v_{r+3} \in S$. A same argument shows that $v_{5} \in S$. Thus S must be contains $\left\{v_{r+7}, v_{9}, \ldots, v_{2 r-2}, v_{r}\right\}$, therefore $f(G, \gamma)=1$.

If $r \equiv 2(\bmod 4)$, we consider $S=\left\{v_{2}, v_{6}, v_{10}, \ldots, v_{r}, v_{r+4}, v_{r+8}, \ldots, v_{2 r-6}, v_{2 r-2}\right\}$. Assign the set $F=\left\{v_{2}\right\}$ then it follows $f(G, \gamma) \leq 1$, because $\left|N_{p}[x]\right|=4$ to each vertex $x \in S$. On the other hand since G has at least two minimum dominating set. Hence $f(G, \gamma)=1$.

If $r \equiv 3(\bmod 4)$, for $S=\left\{v_{1}, v_{5}, v_{9}, \ldots, v_{r-2}, v_{r+3}, v_{r+7}, \ldots, v_{2 r-4}, v_{2 r}\right\}$, the set $F=\left\{v_{1}\right\}$ shows that $f(G, \gamma) \leq 1$. Further, since G has at least two minimum dominating set, then it follows $f(G, \gamma)=1$.

Finally let $r \equiv 0(\bmod 4)$, we consider $S=\left\{v_{1}, v_{5}, v_{9}, \ldots, v_{r-3}, v_{r+1}, v_{r+3}\right.$, $\left.v_{r+7}, \ldots, v_{2 r-5}, v_{2 r-1}\right\}$. If $F=\left\{v_{1}, v_{r+1}\right\}$, a simple verification shows that $f(G, \gamma) \leq 2$.

Proposition 2.5 If $r \equiv 1(\bmod 4)$ then $f\left(G^{\prime}, \gamma\right)=0$.
Proof By Lemma B, we have $\gamma\left(G^{\prime}\right)=2\lfloor r / 4\rfloor$. Now, we suppose that S is an arbitrary minimum dominating set for G^{\prime}. Obviously for each vertex $v_{x} \in S,\left|N_{p}\left[v_{x}\right]\right|=4$, so $\left\{v_{r-1}, v_{r+2}\right\} \subset S$. But $\left\{v_{2 r-2}, v_{r-2}\right\} \cap S=\emptyset$ therefore $v_{2 r-3} \in S$. Thus S must be contains $\left\{v_{r-5}, v_{r-9}, \ldots, v_{r+10}, v_{r+6}\right\}$, then S is uniquely determined and it follows that $f\left(G^{\prime}, \gamma\right)=0$.

Proposition 2.6 If $r \equiv 0(\bmod 4)$ then $f\left(G^{\prime \prime}, \gamma\right)=0$.
Proof Let $r \equiv 0(\bmod 4)$ and S be an arbitrary minimum dominating set for $G^{\prime \prime}$ with $V\left(G^{\prime \prime}\right)=V(G)-\left\{v_{1}\right\}$. If $\left\{v_{2 r}, v_{2 r-1}\right\} \cap S \neq \emptyset$. Without loss of generality, we assume that $v_{2 r} \in S$ then S must be contains $\left\{v_{r+2}, v_{r-2}, v_{r-6}, \ldots, v_{10}, v_{6}, v_{2 r-4}, v_{2 r-8}, \ldots, v_{r+8}\right\}$. On the other hand by Lemma B, $\gamma\left(G^{\prime \prime}\right)=2\lfloor r / 4\rfloor$ (Note that by Proof of Lemma B one can see
$\gamma\left(G^{\prime}\right)=\gamma\left(G^{\prime \prime}\right)$ where $\left.r \equiv 0(\bmod 4)\right)$. So the vertices v_{3}, v_{4}, v_{r+4} and v_{r+5} must be dominated by one vertex and this is impossible. Thus necessarily $v_{r} \in S$, but $\left\{v_{r-1}, v_{2 r-1}\right\} \cap S=\emptyset$ which implies $v_{2 r-2} \in S$. Finally the remaining non-dominated vertices $\left\{v_{r+1}, v_{r+2}, v_{2}\right\}$ is just dominated by v_{r+2}. Therefore the set $S=\left\{v_{4}, v_{8}, \ldots, v_{r-4}, v_{r}, v_{r+2}, v_{r+6}, \ldots, v_{2 r-2}\right\}$ is uniquely determined which implies $f\left(G^{\prime \prime}, \gamma\right)=0$.

§3. Main Results

Theorem 3.1 If $r \equiv 2$ or $3(\bmod 4)$, then $f\left(G_{0}, \gamma\right)=m$.
Proof Let $r \equiv 2(\bmod 4)$ and S be a minimum dominating set for G_{0}. If there exists $i \in\{1,2, \ldots, m\}$ such that $S \cap\left\{v_{i 1}, v_{i n}\right\} \neq \emptyset$ then it implies $\left|S \cap G_{i}\right|>2\lfloor r / 4\rfloor+1$. Moreover $\gamma\left(G_{0}\right)=m(2\lfloor r / 4\rfloor+1)$. From this it immediately follows that there exists $j \in\{1,2, \ldots, m\}-$ $\{i\}$ such that $\left|S \cap G_{j}\right|<2\lfloor r / 4\rfloor+1$ and this is contrary to Lemma A. Hence $S \cap\left\{v_{i 1}, v_{i n}\right\}=\emptyset$ for $1 \leq i \leq m$. On the other hand $f\left(G_{i}, \gamma\right)=1$ for $1 \leq i \leq m$ which implies $f\left(G_{0}, \gamma\right)=m$.

Now we suppose that $r \equiv 3(\bmod 4)$ and S is minimum dominating set for G_{0}, such that $F=\left\{v_{i 1} \mid 1 \leq i \leq m\right\} \subset S$. Since $v_{i 1} \in S$ and $\gamma\left(G_{0}\right)=2\lfloor r / 4\rfloor+2$ then $\left\{v_{i 2}, v_{i 3}\right\} \cap S=\emptyset$ and this implies $v_{i(r+3)} \in S$. With similar description, we have $\left\{v_{i 5}, v_{i 9}, \ldots, v_{i(r-2)}, v_{i(r+6)}, v_{i(r+11)}, \ldots\right.$, $\left.v_{i(2 r-4)}\right\} \subset S$. But for the remaining non-dominated vertices $v_{i r}, v_{i(2 r)}$ and $v_{i(2 r-1)}$ necessarily implies that $v_{i(2 r)} \in S$. Hence S is the unique minimum dominating set containing F. Thus $f\left(G_{0}, \gamma\right) \leq m$. A trivial verification shows that $f\left(G^{\prime}, \gamma\right), f\left(G^{\prime \prime}, \gamma\right) \geq 1$ for $i \in\{1,2, \ldots, m\}$, therefore $f\left(G_{0}, \gamma\right)=m$.

Theorem $3.2 f\left(G_{0}, \gamma\right)=\left\{\begin{array}{ccc}1 & \text { if } m \equiv 0(\bmod 3) \\ 2 & \text { otherwise }\end{array} \quad\right.$ for $r \equiv 1(\bmod 4)$.
Proof If $m \equiv 0(\bmod 3)$, we suppose that $F=\left\{v_{1 n}\right\} \subset S$ and S is a minimum dominating set for G_{0}. By Theorem C, we have $\gamma\left(G_{0}\right)=m\lceil n / 4\rceil-\lfloor m / 3\rfloor$, then $v_{3,1} \in S$. Here, we use the proof of Propositions 4 and 5 . From this the sets $S \cap V\left(G_{1}\right), S \cap V\left(G_{2}\right), S \cap V\left(G_{3}\right)$ uniquely characterize. By continuing this process the set S uniquely obtain, then $f\left(G_{0}, \gamma\right)=1$.

If $m \equiv 1$ or $2(\bmod 3)$, then the set $F=\left\{v_{1 n}, v_{m n}\right\}$ uniquely characterize the minimum dominating set for G_{0}, therefore $f\left(G_{0}, \gamma\right)=2$.

Proof If $m \equiv 0(\bmod 3)$ the set $F=\left\{v_{21}, v_{2(r+4)}, v_{5(r+4)}, v_{8(r+4)}, \ldots, v_{m-1(r+4)}\right\}$ determine the unique minimum dominating set for G_{0} then $f\left(G_{0}, \gamma\right) \leq\lfloor m / 3\rfloor+1$. But $\gamma\left(G_{i}\right)=2\lfloor r / 4\rfloor$ for $\lfloor m / 3\rfloor$ of G_{i} s. Hence $f\left(G_{0}, \gamma\right)=\lfloor m / 3\rfloor+1$. The proof of the case $m \equiv 1$ or $2(\bmod 3)$ is similar to the previous case.

Acknowledgement

The authors would like to thank the referee for his helpful suggestions.

References

[1] G. Chartrand, H. Galvas, R. C. Vandell and F. Harary, The forcing domination number of a graph, J. Comb. Math. Comb. Comput., 25 (1997), 161-174.
[2] W. E. Clark, L. A. Dunning, Tight upper bounds for the domination numbers of graphs with given order and minimum degree, The Electronic Journal of Combinatorics, 4 (1997), \#R26.
[3] D. Fisher, K. Fraughnaugh, S. Seager, Domination of graphs with maximum degree three, Proceedings of the Eighth Quadrennial Internationa Conference on Graph Theory, Combinatorics, Algorithms and Applications, Vol I (1998) 411-421.
[4] D. Fisher, K. Fraughnaugh, S. Seager, The domination number of cubic graphs of larger girth, to appear in Proceedings of the Ninth Quadrennial Internatioal Conference on Graph Theory, Combinatorics, Algorithms and Applications.
[5] W. Goddard, M. A. Henning, Clique/connected/total domination perfect graphs, Bulletin of the ICA, Vol. 41 (2004), 20-21.
[6] S. Gravian, M. Mollard, Note on domination numbers of cartesian product of paths, Discrete Applied Mathematics, 80 (1997) 247-250.
[7] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc, New York, (1998).
[8] D. Mojdeh, S. A. Hassanpour, H. Abdollahzadeh. A, A. Ahmadi. H, On domination in Hamiltonian cubic graphs, Far East J. Math. Sci. (FJMS), 24(2), (2007), 187-200.
[9] A.K.Parekh, Analysis of a greedy heuristic for finding small dominating sets in graphs, Information Processing Letters, 39 (1991) 237-240.
[10] B. Reed, Paths, starts, and the number three, Combin. Probab. Comput., 5 (1996) 277-295.
[11] S. M. Seager, The greedy algorithm for domination in cubic graphs, Ars Combinatoria, 71(2004), pp.101-107.
[12] D. B. West, Introduction to Graph Theory, Prentice Hall of India, (2003).

[^0]: ${ }^{1}$ Received April 3, 2009. Accepted June 2, 2009.

