Forcing (G,D)-number of a Graph

K.Palani
(Department of Mathematics A.P.C. Mahalaxmi College for Women, Thoothukudi, India)
A.Nagarajan
(Department of Mathematics V.O.C. College, Thoothukudi, India)
E-mail: kp5.6.67apcm@gmail.com, nagarajan.voc@gmail.com

Abstract

In [7], we introduced the new concept (G,D)-set of graphs. Let $G=(V, E)$ be any graph. $\mathrm{A}(\mathrm{G}, \mathrm{D})$-set of a graph G is a subset S of vertices of G which is both a dominating and geodominating(or geodetic) set of G . The minimum cardinality of all (G,D)-sets of G is called the (G,D)-number of G and is denoted by $\gamma_{G}(G)$. In this paper, we introduce a new parameter called forcing (G,D)-number of a graph G. Let S be a γ_{G}-set of G. A subset T of S is said to be a forcing subset for S if S is the unique γ_{G}-set of G containing T. A forcing subset T of S of minimum cardinality is called a minimum forcing subset of S . The forcing (G,D)-number of S denoted by $f_{G, D}(S)$ is the cardinality of a minimum forcing subset of S . The forcing (G,D)-number of G is the minimum of $f_{G, D}(S)$, where the minimum is taken over all γ_{G}-sets S of G and it is denoted by $f_{G, D}(S)$.

Key Words: (G,D)-number, Forcing (G,D)-number, Smarandachely k-dominating set.
AMS(2010): 05C69

§1. Introduction

By a graph $G=(V, E)$, we mean a finite, undirected connected graph without loops and multiple edges. For graph theoretic terminology, we refer [5]. A set of vertices S in a graph G is said to be a Smarandachely k-dominating set if each vertex of G is dominated by at least k vertices of S. Particularly, if $k=1$, such a set is called a dominating set of G, i.e., every vertex in $V-D$ is adjacent to at least one vertex in D. The minimum cardinality among all dominating sets of G is called the domination number $\gamma(G)$ of $\mathrm{G}[6]$. A u-v geodesic is a u-v path of length $\mathrm{d}(\mathrm{u}, \mathrm{v})$. A set S of vertices of G is a geodominating (or geodetic) set of G if every vertex of G lies on an $\mathrm{x}-\mathrm{y}$ geodesic for some x, y in S . The minimum cardinality of a geodominating set is the geodomination (or geodetic) number of G and it is denoted by $\mathrm{g}(\mathrm{G})[1[-[4]$. $\mathrm{A}(\mathrm{G}, \mathrm{D})$-set of G is a subset S of $V(G)$ which is both a dominating and geodetic set of G. The minimum cardinality of all (G,D)-sets of G is called the (G,D)-number of G and is denoted by $\gamma_{G}(G)$.

[^0]Any (G,D)-set of G of cardinality γ_{G} is called a γ_{G}-set of $\mathrm{G}[7]$.In this paper, we introduce a new parameter called forcing (G,D)-number of a graph G. Let S be a γ_{G}-set of G. A subset T of S is said to be a forcing subset for S if S is the unique γ_{G}-set of G containing T. A forcing subset T of S of minimum cardinality is called a minimum forcing subset of S . The forcing (G,D)-number of S denoted by $f_{G, D}(S)$ is the cardinality of a minimum forcing subset of S . The forcing (G,D)-number of G is the minimum of $f_{G, D}(S)$, where the minimum is taken over all γ_{G}-sets S of G and it is denoted by $\mathrm{f}_{G, D}(\mathrm{~S})$.

§2. Forcing (G,D)-number

Definition 2.1 Let G be a connected graph and S be a γ_{G}-set of G. A subset T of S is called a forcing subset for S if S is the unique γ_{G}-set of G containing T. A forcing subset T of S of minimum cardinality is called a minimum forcing subset for S. The forcing (G, D)-number of S denoted by $f_{G, D}(S)$ is the cardinality of a minimum forcing subset of S. The forcing (G, D)number of G is the minimum of $f_{G, D}(S)$, where the minimum is taken over all γ_{G}-sets S of G and it is denoted by $f_{G, D}(G)$. That is, $f_{G, D}(G)=\min \left\{f_{G, D}(S): S\right.$ is any γ_{G}-set of $\left.G\right\}$.

Example 2.2 In the following figure,

Fig. 2.1
$S_{1}=\{u, x\}$ and $S_{2}=\{v, y\}$ are the only two γ_{G}-sets of G. $\{u\},\{x\}$ and $\{u, x\}$ are forcing subsets of S_{1}. Therefore, $f_{G, D}\left(S_{1}\right)=1$. Similarly, $\{v\},\{y\}$ and $\{v, y\}$ are the forcing subsets of $f_{G, D}\left(S_{2}\right)$. Therefore, $f_{G, D}\left(S_{2}\right)=1$. Hence $f_{G, D}(G)=\min \{1,1\}=1$. For G, we have, $0<f_{G, D}(G)=1<\gamma_{G}(G)=2$.

Remark 2.3 1. For every connected graph $G, 0 \leqslant f_{G, D}(G) \leqslant \gamma_{G}(G)$.
2. Here the lower bound is sharp, since for any complete graph $S=V(G)$ is a unique γ_{G}-set. So, $T=\Phi$ is a forcing subset for S and $f_{G, D}\left(K_{p}\right)=0$.
3. Example 2.2 proves the bounds are strict.

Theorem 2.4 Let G be a connected graph. Then,
(i) $f_{G, D}(G)=0$ if and only if G has a unique γ_{G}-set;
(ii) $f_{G, D}(G)=1$ if and only if G has at least two γ_{G}-sets, one of which, say, S has forcing (G, D)-number equal to 1 ;
(iii) $f_{G, D}(G)=\gamma_{G}(G)$ if and only if every γ_{G}-set S of G has the property, $f_{G, D}(S)=$ $|S|=\gamma_{G}(G)$.

Proof (i) Suppose $f_{G, D}(G)=0$. Then, by Definition 2.1, $f_{G, D}(S)=0$ for some γ_{G}-set S of G. So, empty set is a minimum forcing subset for S. But, empty set is a subset of every set. Therefore, by Definition 2.1, S is the unique γ_{G}-set of G. Conversely, let S be the unique γ_{G}-set of G. Then, empty set is a minimum forcing subset of S. So, $f_{G, D}(G)=0$.
(ii) Assume $f_{G, D}(G)=1$. Then, by $(i), G$ has at least two γ_{G}-sets. $f_{G, D}(G)=\min \left\{f_{G, D}(S)\right.$: S is any $\gamma_{\mathrm{G}}-$ setof $\left.G\right\}$. So, $f_{G, D}(S)=1$ for at least one γ_{G}-set S. Conversely, suppose G has at least two γ_{G}-sets satisfying the given condition. By $(i), f_{G, D}(G) \neq 0$. Further, $f_{G, D}(G) \geqslant 1$. Therefore, by assumption, $f_{G, D}(G)=1$.
(iii) Let $f_{G, D}(G)=\gamma_{G}(G)$. Suppose S is a γ_{G}-set of G such that $f_{G, D}(S)<|S|=\gamma_{G}(\mathrm{G})$. So, S has a forcing subset T such that $|T|<|S|$. Therefore, $f_{G, D}(G)=\min \left\{f_{G, D}(S)\right.$: S is a $\gamma_{\mathrm{G}}-$ set of $\left.G\right\} \leqslant|T|<|S|=\gamma_{G}(G)$. This is a contradiction. So, every γ_{G}-set S of G satisfies the given condition. The converse is obvious. Hence the result.

Corollary $2.5 f_{G, D}\left(P_{n}\right)=0$ if $n \equiv 1(\bmod 3)$.
Proof Let $P_{n}=\left(v_{1}, v_{2}, \ldots, v_{3 k+1}\right), k \geqslant 0$. Now, $S=\left\{v_{1}, v_{4}, v_{7}, \ldots, v_{3 k+1}\right\}$ is the unique γ_{G}-set of P_{n}. So, by Theorem 2.4, $f_{G, D}\left(P_{n}\right)=0$.

Observation 2.6 Let G be any graph with at least two γ_{G}-sets. Suppose G has a γ_{G}-set S satisfying the following property:
S has a vertex u such that $u \in S^{\prime}$ for every γ_{G}-set S^{\prime} different from S
Then, $f_{G, D}(G)=1$.
Proof As G has at least two γ_{G}-sets, by Theorem 2.4, $f_{G, D}(G) \neq 0$. If G satisfies (I), then we observe that $f_{G, D}(S)=1$. So, by Definition 2.1, $f_{G, D}(G)=1$.

Corollary 2.7 Let G be any graph with at least two γ_{G}-sets. Suppose G has a γ_{G}-set S such that $S \bigcap S^{\prime}=\phi$ for every γ_{G}-set S^{\prime} different from S. Then $f_{G, D}(G)=1$.

Proof Given that G has a γ_{G}-set S such that $S \bigcap S^{\prime}=\phi$ for every γ_{G}-set S^{\prime} different from S. Then, we observe that S satisfies property (I) in Observation 2.6. Hence, we have, $f_{G, D}(G)=1$.

Corollary 2.8 Let G be any graph with at least two γ_{G}-sets. If pair wise intersection of distinct γ_{G}-sets of G is empty, then $f_{G, D}(G)=1$.

Proof The proof proceeds along the same lines as in Corollary 2.7.

Corollary $2.9 f_{G, D}\left(C_{n}\right)=1$ if $n=3 k, k>1$.
Proof Let $n=3 k, k>1$. Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{3 k}\right\}$. Note that the only γ_{G}-sets of C_{n} are $S_{1}=\left\{v_{1}, v_{4}, \ldots, v_{3(k-1)+1}\right\}, S_{2}=\left\{v_{2}, v_{5}, \ldots, v_{3(k-1)+2}\right\}$ and $S_{3}=\left\{v_{3}, v_{6}, \ldots, v_{3 k}\right\}$.

Further, we have, $S_{1} \bigcap S_{2}=S_{1} \bigcap S_{3}=S_{2} \bigcap S_{3}=\emptyset$. That is, pair wise intersection of distinct γ_{G}-sets of C_{n} is empty. Hence, from Corollary 2.8, we have $f_{G, D}\left(C_{n}\right)=1$ if $n=3 k$.

Definition 2.10 A vertex v of G is said to be a (G, D)-vertex of G if v belongs to every γ_{G}-set of G.

Remark 2.11 1. All the extreme vertices of a graph G are (G,D)-vertices of G.
2. If G has a unique γ_{G}-set S, then every vertex of S is a (G,D)-vertex of G.

Lemma 2.12 Let $G=(V, E)$ be any graph and $u \in V(G)$ be a ($G, D)$-vertex of G. Suppose S is a γ_{G}-set of G and T is a minimum forcing subset of S, then $u \notin T$.

Proof Since u is a (G,D)-vertex of G, u is in every γ_{G}-set of G. Given that S is a γ_{G}-set of G and T is a minimum forcing subset of S. Suppose $u \in T$. Then, there exists a γ_{G}-set S^{\prime} of G different from S such that $T-\{u\} \subseteq S^{\prime}$. Otherwise, $T-\{u\}$ is a forcing subset of S. Since $u \in S^{\prime}, T \subseteq S^{\prime}$. This contradicts the fact that T is a minimum forcing subset of S. Hence, from the above arguments, we have $u \notin T$.

Corollary 2.13 Let W be the set of all (G,D)-vertices of G. Suppose S is a γ_{G}-set of G and T is a forcing subset of S. If W is non-empty, then $T \neq S$.

Definition 2.14 Let G be a connected graph and S be a γ_{G}-set of G. Suppose T is a minimum forcing subset of S. Let $E=S-T$ be the relative complement of T in its relative γ_{G}-set S. Then, \mathscr{L} is defined by

$$
\begin{aligned}
\mathscr{L}= & \{E \mid E \text { is a relative complement of a minimum } \\
& \text { forcing subset } \left.T \text { in its relative } \gamma_{G}-\text { set } S \text { of } G\right\} .
\end{aligned}
$$

Theorem 2.15 Let G be a connected graph and $\zeta=$ The intersection of all $E \in \mathscr{L}$. Then, ζ is the set of all (G, D)-vertices of G.

Proof Let W be the set of all (G,D)-vertices of G.
Claim $W=\zeta$, the intersection of all $E \in \mathscr{L}$. Let $v \in W$. By Definition 2.10, v is in every γ_{G}-set of G. Let S be a γ_{G}-set of G and T be a minimum forcing subset of S. Then, $v \in S$. From Lemma 2.12, we have, $v \notin T$. So, $v \in E=S-T$. Hence, $v \in E$ for every $E \in \mathscr{L}$. That is, $v \in \zeta$. Conversely, let $v \in \zeta$. Then, $v \in E=S-T$, where T is a minimum forcing subset of the γ_{G}-set S. So, $v \in S$ for every γ_{G}-set S of G. That is, $v \in W$.

Corollary 2.16 Let S be a γ_{G}-set of a graph G and T is a minimum forcing subset of S. Then, $W \cap T=\emptyset$.

Remark 2.17 The above result holds even if G has a unique γ_{G}-set.
Corollary 2.18 Let W be the set of all (G,D)-vertices of a graph G. Then, $f_{G, D}(G) \leqslant$ $\gamma_{G}(G)-|W|$.

Remark 2.19 In the above corollary, the inequality is strict. For example, consider the following graph G.

Fig. 2.2
For $G, S_{1}=\left\{v_{1}, v_{4}, v_{5}\right\}, S_{2}=\left\{v_{1}, v_{3}, v_{5}\right\}, S_{3}=\left\{v_{1}, v_{4}, v_{6}\right\}$ are the only distinct γ_{G}-sets. Therefore, $\gamma_{G}(G)=3$. But, $f_{G, D}\left(S_{1}\right)=2$ and $f_{G, D}\left(S_{2}\right)=f_{G, D}\left(S_{3}\right)=1$. So, $f_{G, D}(G)=$ $\min \left\{f_{G, D}(S): S\right.$ is a γ_{G}-set of $\left.G\right\}=1$. Also, $W=\{1\}$. Now, $\gamma_{G}(G)-|W|=3-1=2$. Hence $f_{G, D}(G) \leqslant \gamma_{G}(G)-|W|$.

Also the upper bound is sharp. For example, consider the following graph G.

Fig. 2.3
For $G, S_{1}=\left\{v_{1}, v_{4}, v_{5}\right\}, S_{2}=\left\{v_{1}, v_{3}, v_{6}\right\}$ are different γ_{G}-sets. Therefore, $\gamma_{G}(G)=3$. But, $f_{G, D}\left(S_{1}\right)=f_{G, D}\left(S_{2}\right)=2$. So, $f_{G, D}(G)=\min \left\{f_{G, D}(S): \quad S\right.$ is a γ_{G}-set of $\left.G\right\}=2$. Also, $W=\{1\}$. Now, $\gamma_{G}(G)-|W|=3-1=2$. Hence, $f_{G, D}(G)=\gamma_{G}(G)-|W|$.

Corollary $2.20 \quad f_{G, D}(G) \leqslant \gamma_{G}(G)-k$ where k is the number of extreme vertices of G.
Proof The result follows from $|W| \geqslant k$.
Theorem 2.21 For a complete graph $G=K_{p}, f_{G, D}(G)=0$ and $|W|=p$.

Proof $V\left(K_{p}\right)$ is the unique γ_{G}-set of K_{p}. Hence by Theorem 2.4, $f_{G, D}\left(K_{p}\right)=0$. By Remark 2.11, $W=V(G)$ with $|W|=p$.

References

[1] G.Chartrand, F.Harary and P.Zhang, Geodetic sets in graphs, Discussiones Mathematicae Graph Theory, 20(2000),129-138e
[2] G.Chartrand, F.Harary and H.C.Swart P.Zhang, Geodomination in graphs, Bulletin of the ISA, 31(2001), 51-59.
[3] G.Chartrand , M.Palmer and P.Zhang, The Geodetic number of a graph-A Survey, Congressus Numerantium, 156 (2002), 37-58.
[4] G.Chartrand, F.Harary and P.Zhang, On the Geodetic number of a graph, Networks, Vol 39(1)(2002),1-6.
[5] F. Harary, Graph Theory, Addison Wesley Reading Mass, 1972.
[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Decker, Inc., New York 1998.
[7] K.Palani and A.Nagarajan, (G,D)-Number of a Graph, International Journal of Mathematics Research, Vol.3, No. 3 (2011), 285-299.

[^0]: ${ }^{1}$ Received January 21, 2011. Accepted August 30, 2011.

