On the Forcing Hull and Forcing Monophonic Hull Numbers of Graphs

J.John
(Department of Mathematics, Government College of Engineering, Tirunelveli - 627 007, India)
V.Mary Gleeta
(Department of Mathematics ,Cape Institute of Technology, Levengipuram- 627114, India)
E-mail: johnramesh1971@yahoo.co.in, gleetass@gmail.com

Abstract

For a connected graph $G=(V, E)$, let a set M be a minimum monophonic hull set of G. A subset $T \subseteq M$ is called a forcing subset for M if M is the unique minimum monophonic hull set containing T. A forcing subset for M of minimum cardinality is a minimum forcing subset of M. The forcing monophonic hull number of M, denoted by $f_{m h}(M)$, is the cardinality of a minimum forcing subset of M. The forcing monophonic hull number of G, denoted by $f_{m h}(G)$, is $f_{m h}(G)=\min \left\{f_{m h}(M)\right\}$, where the minimum is taken over all minimum monophonic hull sets in G. Some general properties satisfied by this concept are studied. Every monophonic set of G is also a monophonic hull set of G and so $m h(G) \leq h(G)$, where $h(G)$ and $m h(G)$ are hull number and monophonic hull number of a connected graph G. However, there is no relationship between $f_{h}(G)$ and $f_{m h}(G)$, where $f_{h}(G)$ is the forcing hull number of a connected graph G. We give a series of realization results for various possibilities of these four parameters.

Key Words: hull number, monophonic hull number, forcing hull number, forcing monophonic hull number, Smarandachely geodetic k-set, Smarandachely hull k-set.

AMS(2010): 05C12, 05C05

§1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology, we refer to Harary $[1,9]$. A convexity on a finite set V is a family C of subsets of V, convex sets which is closed under intersection and which contains both V and the empty set. The pair (V, E) is called a convexity space. A finite graph convexity space is a pair (V, E), formed by a finite connected graph $G=(V, E)$ and a convexity C on V such that (V, E) is a convexity space satisfying that every member of C induces a connected subgraph of G. Thus, classical convexity can be extended to graphs in a natural way. We know that a set X of R^{n} is convex if

[^0]every segment joining two points of X is entirely contained in it. Similarly a vertex set W of a finite connected graph is said to be convex set of G if it contains all the vertices lying in a certain kind of path connecting vertices of $W[2,8]$. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. A vertex x is said to lie on a $u-v$ geodesic P if x is a vertex of P including the vertices u and v. For two vertices u and v, let $I[u, v]$ denotes the set of all vertices which lie on $u-v$ geodesic. For a set S of vertices, let $I[S]=\bigcup_{(u, v) \in S} I[u, v]$. The set S is convex if $I[S]=S$. Clearly if $S=\{v\}$ or $S=V$, then S is convex. The convexity number, denoted by $C(G)$, is the cardinality of a maximum proper convex subset of V. The smallest convex set containing S is denoted by $I_{h}(S)$ and called the convex hull of S. Since the intersection of two convex sets is convex, the convex hull is well defined. Note that $S \subseteq I[S] \subseteq I_{h}[S] \subseteq V$. For an integer $k \geq 0$, a subset $S \subseteq V$ is called a Smarandachely geodetic k-set if $I\left[S \bigcup S^{+}\right]=V$ and a Smarandachely hull k-set if $I_{h}\left(S \bigcup S^{+}\right)=V$ for a subset $S^{+} \subset V$ with $\left|S^{+}\right| \leq k$. Particularly, if $k=0$, such Smarandachely geodetic 0 -set and Smarandachely hull 0 -set are called the geodetic set and hull set, respectively. The geodetic number $g(G)$ of G is the minimum order of its geodetic sets and any geodetic set of order $g(G)$ is a minimum geodetic set or simply a g - set of G. Similarly, the hull number $h(G)$ of G is the minimum order of its hull sets and any hull set of order $h(G)$ is a minimum hull set or simply a h - set of G. The geodetic number of a graph is studied in $[1,4,10]$ and the hull number of a graph is studied in [1,6].A subset $T \subseteq S$ is called a forcing subset for S if S is the unique minimum hull set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of M. The forcing hull number of S, denoted by $f_{h}(S)$, is the cardinality of a minimum forcing subset of S. The forcing hull number of G, denoted by $f_{h}(G)$, is $f_{h}(G)=\min \left\{f_{h}(S)\right\}$, where the minimum is taken over all minimum hull sets S in G. The forcing hull number of a graph is studied in[3,14]. A chord of a path $u_{o}, u_{1}, u_{2}, \ldots, u_{n}$ is an edge $u_{i} u_{j}$ with $j \geq i+2(0 \leq i, j \leq n)$. A $u-v$ path P is called a monophonic path if it is a chordless path. A vertex x is said to lie on a $u-v$ monophonic path P if x is a vertex of P including the vertices u and v. For two vertices u and v, let $J[u, v]$ denotes the set of all vertices which lie on $u-v$ monophonic path. For a set M of vertices, let $J[M]=\cup_{u, v \in M} J[u, v]$. The set M is monophonic convex or m-convex if $J[M]=M$. Clearly if $M=\{v\}$ or $M=V$, then M is m-convex. The m-convexity number, denoted by $C_{m}(G)$, is the cardinality of a maximum proper m-convex subset of V. The smallest m-convex set containing M is denoted by $J_{h}(M)$ and called the monophonic convex hull or m-convex hull of M. Since the intersection of two m-convex set is m-convex, the m-convex hull is well defined. Note that $M \subseteq J[M] \subseteq J_{h}(M) \subseteq V$. A subset $M \subseteq V$ is called a monophonic set if $J[M]=V$ and a m-hull set if $J_{h}(M)=V$. The monophonic number $m(G)$ of G is the minimum order of its monophonic sets and any monophonic set of order $m(G)$ is a minimum monophonic set or simply a m - set of G. Similarly, the monophonic hull number $m h(G)$ of G is the minimum order of its m-hull sets and any m-hull set of order $m h(G)$ is a minimum monophonic set or simply a $m h$ - set of G. The monophonic number of a graph is studied in $[5,7,11,15]$ and the monophonic hull number of a graph is studied in [12]. A vertex v is an extreme vertex of a graph G if the subgraph induced by its neighbors is complete.Let G be a connected graph and M a minimum monophonic hull set of G. A subset $T \subseteq M$ is called a forcing subset for M
if M is the unique minimum monophonic hull set containing T. A forcing subset for M of minimum cardinality is a minimum forcing subset of M. The forcing monophonic hull number of M, denoted by $f_{m h}(M)$, is the cardinality of a minimum forcing subset of M. The forcing monophonic hull number of G, denoted by $f_{m h}(G)$, is $f_{m h}(G)=\min \left\{f_{m h}(M)\right\}$, where the minimum is taken over all minimum monophonic hull sets M in G.For the graph G given in Figure 1.1, $M=\left\{v_{1}, v_{8}\right\}$ is the unique minimum monophonic hull set of G so that $m h(G)=2$ and $f_{m h}(G)=0$. Also $S_{1}=\left\{v_{1}, v_{5}, v_{8}\right\}$ and $S_{2}=\left\{v_{1}, v_{6}, v_{8}\right\}$ are the only two h-sets of G such that $f_{h}\left(S_{1}\right)=1, f_{h}\left(S_{2}\right)=1$ so that $f_{h}(G)=1$. For the graph G given in Figure 1.2, $M_{1}=\left\{v_{1}, v_{4}\right\}, M_{2}=\left\{v_{1}, v_{6}\right\}, M_{3}=\left\{v_{1}, v_{7}\right\}$ and $M_{4}=\left\{v_{1}, v_{8}\right\}$ are the only four $m h$-sets of G such that $f_{m h}\left(M_{1}\right)=1, f_{m h}\left(M_{2}\right)=1, f_{m h}\left(M_{3}\right)=1$ and $f_{m h}\left(M_{4}\right)=1$ so that $f_{m h}(G)=1$. Also, $S=\left\{v_{1}, v_{7}\right\}$ is the unique minimum hull set of G so that $h(G)=2$ and $f_{h}(G)=0$. Throughout the following G denotes a connected graph with at least two vertices.

G
Figure 1.1

Figure 1.2

The following theorems are used in the sequel

Theorem 1.1 ([6]) Let G be a connected graph. Then
a) Each extreme vertex of G belongs to every hull set of G;
(b) $h(G)=p$ if and only if $G=K_{p}$.

Theorem 1.2 ([3]) Let G be a connected graph. Then
(a) $f_{h}(G)=0$ if and only if G has a unique minimum hull set;
(b) $f_{h}(G) \leq h(G)-|W|$, where W is the set of all hull vertices of G.

Theorem 1.3 ([13]) Let G be a connected graph. Then
(a) Each extreme vertex of G belongs to every monophonic hull set of G;
(b) $m h(G)=p$ if and only if $G=K_{p}$.

Theorem 1.4 ([12]) Let G be a connected graph. Then
(a) $f_{m h}(G)=0$ if and only if G has a unique mh-set;
(b) $f_{m h}(G) \leq m h(G)-|S|$, where S is the set of all monophonic hull vertices of G.

Theorem 1.5 ([12]) For any complete Graph $G=K_{p}(p \geq 2), f_{m h}(G)=0$.

§2. Special Graphs

In this section, we present some graphs from which various graphs arising in theorem are generated using identification.

Let $U_{i}: \alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i}, \alpha_{i}(1 \leq i \leq a)$ be a copy of cycle C_{4}. Let V_{i} be the graph obtained from U_{i} by adding three new vertices η_{i}, f_{i}, g_{i} and the edges $\beta_{i} \eta_{i}, \eta_{i} f_{i}, f_{i} g_{i}, g_{i} \delta_{i}, \eta_{i} \gamma_{i}, f_{i} \gamma_{i}, g_{i} \gamma_{i}(1 \leq$ $i \leq a)$. The graph T_{a} given in Figure 2.1 is obtained from V_{i} 's by identifying γ_{i-1} of V_{i-1} and α_{i} of $V_{i}(2 \leq i \leq a)$.

Figure 2.1

Let $P_{i}: k_{i}, l_{i}, m_{i}, n_{i}, k_{i}(1 \leq i \leq b)$ be a copy of cycle C_{4}. Let Q_{i} be the graph obtained from P_{i} by adding three new vertices h_{i}, p_{i} and q_{i} and the edges $l_{i} h_{i}, h_{i} p_{i}, p_{i} q_{i}$, and $q_{i} m_{i}(1 \leq i \leq b)$. The graph W_{b} given in Figure 2.2 is obtained from Q_{i} 's by identifying m_{i-1} of Q_{i-1} and k_{i} of $Q_{i}(2 \leq i \leq b)$.

Figure 2.2
The graph Z_{b} given in Figure 2.3 is obtained from W_{b} by joining the edge $l_{i} n_{i}(1 \leq i \leq b)$.

Figure 2.3
Let $F_{i}: s_{i}, t_{i}, x_{i}, w_{i}, s_{i}(1 \leq i \leq c)$ be a copy of cycle C_{4}. Let R_{i} be the graph obtained from F_{i} by adding two new vertices u_{i}, v_{i} and joining the edges $t_{i} u_{i}, u_{i} w_{i}, t_{i} w_{i}, u_{i} v_{i}$ and $v_{i} x_{i}(1 \leq i \leq$ c). The graph H_{c} given in Figure 2.4 is obtained from R_{i} 's by identifying the vertices x_{i-1} of R_{i-1} and s_{i} of $R_{i}(1 \leq i \leq c)$.

Figure 2.4
Every monophonic set of G is also a monophonic hull set of G and so $m h(G) \leq h(G)$, where $h(G)$ and $m h(G)$ are hull number and monophonic hull number of a connected graph G. However, there is no relationship between $f_{h}(G)$ and $f_{m h}(G)$, where $f_{h}(G)$ is the forcing hull number of a connected graph G. We give a series of realization results for various possibilities of these four parameters.

§3. Some Realization Results

Theorem 3.1 For every pair a, b of integers with $2 \leq a \leq b$, there exists a connected graph G such that $f_{m h}(G)=f_{h}(G)=0, m h(G)=a$ and $h(G)=b$.

Proof If $a=b$, let $G=K_{a}$. Then by Theorems1.3(b) and 1.1(b), $m h(G)=h(G)=a$ and by Theorems 1.5 and $1.2(\mathrm{a}), f_{m h}(G)=f_{h}(G)=0$. For $a<b$, let G be the graph obtained from T_{b-a} by adding new vertices $x, z_{1}, z_{2}, \cdots, z_{a-1}$ and joining the edges $x \alpha_{1}, \gamma_{b-a} z_{1}, \gamma_{b-a} z_{2}, \cdots$, $\gamma_{b-a} z_{a-1}$. Let $Z=\left\{x, z_{1}, z_{2}, \cdots, z_{a-1}\right\}$ be the set of end-vertices of G. Then it is clear that Z is a monophonic hull set of G and so by Theorem $1.3(\mathrm{a}), Z$ is the unique $m h$-set of G so that $m h(G)=a$ and hence by Theorem 1.4(a), $f_{m h}(G)=0$. Since $I_{h}(Z) \neq V, Z$ is not a hull set of G. Now it is easily seen that $W=Z \cup\left\{f_{1}, f_{2}, \cdots, f_{b-a}\right\}$ is the unique h-set of G and hence by Theorem 1.1(a) and Theorem 1.2(a), $h(G)=b$ and $f_{h}(G)=0$.

Theorem 3.2 For every integers a, b and c with $0 \leq a<b<c$ and $c>a+b$, there exists a connected graph G such that $f_{m h}(G)=0, f_{h}(G)=a, m h(G)=b$ and $h(G)=c$.

Proof We consider two cases.
Case 1. $a=0$. Then the graph T_{b} constructed in Theorem 3.1 satisfies the requirements of the theorem.

Case 2. $a \geq 1$. Let G be the graph obtained from W_{a} and $T_{c-(a+b)}$ by identifying the vertex m_{a} of W_{a} and α_{1} of $T_{c-(a+b)}$ and then adding new vertices $x, z_{1}, z_{2}, \cdots, z_{b-1}$ and joining the edges $x k_{1}, \gamma_{c-b-a} z_{1}, \gamma_{c-b-a} z_{2}, \cdots, \gamma_{c-b-a} z_{b-1}$. Let $Z=\left\{x, z_{1}, z_{2}, \cdots, z_{b-1}\right\}$. Since $J_{h}(Z)=V$, Z is a monophonic hull set G and so by Theorem 1.3(a), Z is the unique $m h$ - set of G so that $m h(G)=b$ and hence by Theorem 1.4(a), $f_{m h}(G)=0$. Next we show that $h(G)=c$. Let S be any hull set of G. Then by Theorem $1.1(\mathrm{a}), Z \subseteq S$. It is clear that Z is not a hull set of G. For $1 \leq i \leq a$, let $H_{i}=\left\{p_{i}, q_{i}\right\}$. We observe that every h-set of G must contain at least one vertex from each $H_{i}(1 \leq i \leq a)$ and each $f_{i}(1 \leq i \leq c-b-a)$ so that $h(G) \geq b+a+c-a-b=c$. Now, $M=Z \cup\left\{q_{1}, q_{2}, \cdots, q_{a}\right\} \cup\left\{f_{1}, f_{2}, \cdots, f_{c-b-a}\right\}$ is a hull set of G so that $h(G) \leq b+a+c-b-a=c$. Thus $h(G)=c$. Since every h-set contains $S_{1}=Z \cup\left\{f_{1}, f_{2}, \cdots, f_{c-b-a}\right\}$, it follows from Theorem 1.2(b) that $f_{h}(G)=h(G)-\left|S_{1}\right|=c-(c-a)=a$. Now, since $h(G)=c$ and every h set of G contains S_{1}, it is easily seen that every h-set S is of the form $S_{1} \cup\left\{d_{1}, d_{2}, \cdots, d_{a}\right\}$, where $d_{i} \in H_{i}(1 \leq i \leq a)$. Let T be any proper subset of S with $|T|<a$. Then it is clear that there exists some j such that $T \cap H_{j}=\phi$, which shows that $f_{h}(G)=a$.

Theorem 3.3 For every integers a, b and c with $0 \leq a<b \leq c$ and $b>a+1$, there exists a connected graph G such that $f_{h}(G)=0, f_{m h}(G)=a, m h(G)=b$ and $h(G)=c$.

Proof We consider two cases.
Case 1. $a=0$. Then the graph G constructed in Theorem 3.1 satisfies the requirements of the theorem.

Case 2. $\quad a \geq 1$.

Subcase 2a. $b=c$. Let G be the graph obtained from Z_{a} by adding new vertices x, z_{1}, z_{2}, \cdots, z_{b-a-1} and joining the edges $x k_{1}, m_{a} z_{1}, m_{a} z_{2}, \cdots, m_{a} z_{b-a-1}$. Let $Z=\left\{x, z_{1}, z_{2}, \cdots, z_{b-a-1}\right\}$ be the set of end-vertices of G. Let S be any hull set of G. Then by Theorem 1.1(a), $Z \subseteq S$. It is clear that Z is not a hull set of G. For $1 \leq i \leq a$, let $H_{i}=\left\{h_{i}, p_{i}, q_{i}\right\}$. We observe that every h-set of G must contain only the vertex p_{i} from each H_{i} so that $h(G) \leq b-a+a=b$. Now $S=Z \cup\left\{p_{1}, p_{2}, p_{3}, \cdots, p_{a}\right\}$ is a hull set of G so that $h(G) \geq b-a+a=b$. Thus $h(G)=b$. Also it is easily seen that S is the unique h-set of G and so by Theorem 1.2(a), $f_{h}(G)=0$.Next we show that $m h(G)=b$. Since $J_{h}(Z) \neq V, Z$ is not a monophonic hull set of G. We observe that every $m h$-set of G must contain at least one vertex from each H_{i} so that $m h(G) \geq b-a+a=b$. Now $M_{1}=Z \cup\left\{q_{1}, q_{2}, q_{3}, \cdots, q_{a}\right\}$ is a monophonic hull set of G so that $m h(G) \leq b-a+a=b$. Thus $m h(G)=b$. Next we show that $f_{m h}(G)=a$. Since every $m h$-set contains Z, it follows from Theorem 1.4(b) that $f_{m h}(G) \leq m h(G)-|Z|=b-(b-a)=a$. Now, since $m h(G)=b$ and every $m h$-set of G contains Z, it is easily seen that every $m h$-set M is of the form $Z \cup\left\{d_{1}, d_{2}, d_{3}, \cdots, d_{a}\right\}$, where $d_{i} \in H_{i}(1 \leq i \leq a)$. Let T be any proper subset of M with $|T|<a$. Then it is clear that there exists some j such that $T \cap H_{j}=\phi$, which shows that $f_{m h}(G)=a$.

Subcase 2b. $b<c$. Let G be the graph obtained from Z_{a} and T_{c-b} by identifying the vertex m_{a} of Z_{a} and α_{1} of T_{c-b} and then adding the new vertices $x, z_{1}, z_{2}, \cdots, z_{b-a-1}$ and joining the edges $x \alpha_{1}, \gamma_{c-b} z_{1}, \gamma_{c-b} z_{2}, \cdots, \gamma_{c-b} z_{b-a-1}$. Let $Z=\left\{x, z_{1}, z_{2}, \cdots, z_{b-a-1}\right\}$ be the set of end vertices of G. Let S be any hull set of G. Then by Theorem 1.1(a), $Z \subseteq S$. Since $I_{h}(Z) \neq V, Z$ is not a hull set of G. For $1 \leq i \leq a$, let $H_{i}=\left\{h_{i}, p_{i}, q_{i}\right\}$. We observe that every h-set of G must contain only the vertex p_{i} from each H_{i} and each $f_{i}(1 \leq i \leq c-b)$ so that $h(G) \geq b-a+a+c-b=c$. Now $S=Z \cup\left\{p_{1}, p_{2}, p_{3}, \cdots, p_{a}\right\} \cup\left\{f_{1}, f_{2}, f_{3}, \cdots, f_{c-b}\right\}$ is a hull set of G so that $h(G) \leq b-a+a+c-b=c$. Thus $h(G)=c$. Also it is easily seen that S is the unique h-set of G and so by Theorem 1.2(a), $f_{h}(G)=0$. Since $J_{h}(Z) \neq V, Z$ is not a monophonic hull set of G. We observe that every $m h$-set of G must contain at least one vertex from each $H_{i}(1 \leq i \leq a)$ so that $m h(G) \geq b-a+a=b$. Now, $M_{1}=Z \cup\left\{h_{1}, h_{2}, h_{3}, \cdots, h_{a}\right\}$ is a monophonic hull set of G so that $m h(G) \leq b-a+a=b$. Thus $m h(G)=b$. Next we show that $f_{m h}(G)=a$. Since every $m h$-set contains Z, it follows from Theorem 1.4(b) that $f_{m h}(G) \leq m h(G)-|Z|=b-(b-a)=a$. Now, since $m h(G)=b$ and every $m h$-set of G contains Z, it is easily seen that every $m h$-set S is of the form $Z \cup\left\{d_{1}, d_{2}, d_{3}, \cdots, d_{a}\right\}$, where $d_{i} \in H_{i}(1 \leq i \leq a)$. Let T be any proper subset of S with $|T|<a$. Then it is clear that there exists some j such that $T \cap H_{j}=\phi$, which shows that $f_{m h}(G)=a$.

Theorem 3.4 For every integers a, b and c with $0 \leq a<b \leq c$ and $b>a+1$, there exists a connected graph G such that $f_{m h}(G)=f_{h}(G)=a, m h(G)=b$ and $h(G)=c$.

Proof We consider two cases.
Case 1. $a=0$, then the graph G constructed in Theorem 3.1 satisfies the requirements of the theorem.

Case 2. $a \geq 1$.

Subcase 2a. $b=c$. Let G be the graph obtained from H_{a} by adding new vertices x, z_{1}, z_{2}, \cdots, z_{b-a-1} and joining the edges $x s_{1}, x_{a} z_{1}, x_{a} z_{2}, \cdots, x_{a} z_{b-a-1}$. Let $Z=\left\{x, z_{1}, z_{2}, \cdots, z_{b-a-1}\right\}$ be the set of end-vertices of G. Let M be any monophonic hull set of G. Then by Theorem 1.3(a), $Z \subseteq M$. First we show that $m h(G)=b$. Since $J_{h}(Z) \neq V, Z$ is not a monophonic hull set of G. Let $F_{i}=\left\{u_{i}, v_{i}\right\}(1 \leq i \leq a)$. We observe that every $m h$-set of G must contain at least one vertex from each $F_{i}(1 \leq i \leq a)$. Thus $m h(G) \geq b-a+a=b$. On the other hand since the set $M=Z \cup\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{a}\right\}$ is a monophonic hull set of G, it follows that $m h(G) \leq|M|=b$. Hence $m h(G)=b$. Next we show that $f_{m h}(G)=a$. By Theorem 1.3(a), every monophonic hull set of G contains Z and so it follows from Theorem 1.4(b) that $f_{m h}(G) \leq m h(G)-|Z|=a$. Now, since $m h(G)=b$ and every $m h$-set of G contains Z, it is easily seen that every $m h$-set M is of the form $Z \cup\left\{c_{1}, c_{2}, c_{3}, \cdots, c_{a}\right\}$, where $c_{i} \in F_{i}(1 \leq i \leq a)$. Let T be any proper subset of S with $|T|<a$. Then it is clear that there exists some j such that $T \cap F_{j}=\phi$, which shows that $f_{m h}(G)=a$. By similar way we can prove $h(G)=b$ and $f_{h}(G)=a$.

Subcase 2b. $b<c$. Let G be the graph obtained from H_{a} and T_{c-b} by identifying the vertex x_{a} of H_{a} and the vertex α_{1} of T_{c-b} and then adding the new vertices $x, z_{1}, z_{2}, \cdots, z_{b-a-1}$ and joining the edges $x s_{1}, \gamma_{c-b} z_{1}, \gamma_{c-b} z_{2}, \cdots, \gamma_{c-b} z_{b-a-1}$. First we show that $m h(G)=b$. Since $J_{h}(Z) \neq V, Z$ is not a monophonic hull set of G. Let $F_{i}=\left\{u_{i}, v_{i}\right\}(1 \leq i \leq a)$. We observe that every $m h$-set of G must contain at least one vertex from each $F_{i}(1 \leq i \leq a)$. Thus $m h(G) \geq$ $b-a+a=b$. On the other hand since the set $M=Z \cup\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{a}\right\}$ is a monophonic hull set of G, it follows that $m h(G) \geq|M|=b$. Hence $m h(G)=b$. Next, we show that $f_{m h}(G)=a$. By Theorem 1.3(a), every monophonic hull set of G contains Z and so it follows from Theorem 1.4(b) that $f_{m h}(G) \leq m h(G)-|Z|=a$. Now, since $m h(G)=b$ and every $m h$-set of G contains Z, it is easily seen that every $m h$-set is of the form $M=Z \cup\left\{c_{1}, c_{2}, c_{3}, \cdots, c_{a}\right\}$, where $c_{i} \in F_{i}(1 \leq i \leq a)$. Let T be any proper subset of M with $|T|<a$. Then it is clear that there exists some j such that $T \cup F_{j}=\phi$, which shows that $f_{m h}(G)=a$. Next we show that $h(G)=c$. Since $I_{h}(Z) \neq V, Z$ is not a hull set of G. We observe that every h-set of G must contain at least one vertex from each $F_{i}(1 \leq i \leq a)$ and each $f_{i}(1 \leq i \leq c-b)$ so that $h(G) \geq b-a+a+c-b=c$. On the other hand, since the set $S_{1}=Z \cup\left\{u_{1}, u_{2}, u_{3}, \cdots, u_{a}\right\} \cup\left\{f_{1}, f_{2}, f_{3}, \cdots, f_{c-b}\right\}$ is a hull set of G, so that $h(G) \leq\left|S_{1}\right|=c$. Hence $h(G)=c$. Next we show that $f_{h}(G)=a$. By Theorem 1.1(a), every hull set of G contains $S_{2}=Z \cup\left\{f_{1}, f_{2}, f_{3}, \cdots, f_{c-b}\right\}$ and so it follows from Theorem 1.2(b) that $f_{h}(G) \leq h(G)-\left|S_{2}\right|=a$. Now, since $h(G)=c$ and every h-set of G contains S_{2}, it is easily seen that every h-set S is of the form $S=S_{2} \cup\left\{c_{1}, c_{2}, c_{3}, \cdots, c_{a}\right\}$, where $c_{i} \in F_{i}(1 \leq i \leq a)$. Let T be any proper subset of S with $|T|<a$. Then it is clear that there exists some j such that $T \cap F_{j}=\phi$, which shows that $f_{h}(G)=a$.

Theorem 3.5 For every integers a, b, c and d with $0 \leq a \leq b<c<d, c>a+1, d>c-a+b$, there exists a connected graph G such that $f_{m h}(G)=a, f_{h}(G)=b, m h(G)=c$ and $h(G)=d$.

Proof We consider four cases.
Case 1. $a=b=0$. Then the graph G constructed in Theorem 3.1 satisfies the requirements of this theorem.

Case 2. $a=0, b \geq 1$. Then the graph G constructed in Theorem 3.2 satisfies the requirements
of this theorem.
Case 3. $1 \leq a=b$. Then the graph G constructed in Theorem 3.4 satisfies the requirements of this theorem.

Case 4. $1 \leq a<b$. Let G_{1} be the graph obtained from H_{a} and W_{b-a} by identifying the vertex x_{a} of H_{a} and the vertex k_{1} of W_{b-a}. Now let G be the graph obtained from G_{1} and $T_{d-(c-a+b)}$ by identifying the vertex m_{b-a} of G_{1} and the vertex α_{1} of $T_{d-(c-a+b)}$ and adding new vertices $x, z_{1}, z_{2}, \cdots, z_{c-a-1}$ and joining the edges $x s_{1}, \gamma_{d-(c-a+b)} z_{1}, \gamma_{d-(c-a+b)} z_{2}, \cdots, \gamma_{d-(c-a+b)} z_{c-a-1}$. Let $Z=\left\{x, z_{1}, z_{2}, \cdots, z_{c-a-1}\right\}$ be the set of end vertices of G. Let $F_{i}=\left\{u_{i}, v_{i}\right\}(1 \leq i \leq a)$. It is clear that any $m h$-set S is of the form $S=Z \cup\left\{c_{1}, c_{2}, c_{3}, \cdots, c_{a}\right\}$, where $c_{i} \in F_{i}(1 \leq$ $i \leq a)$. Then as in earlier theorems it can be seen that $f_{m h}(G)=a$ and $m h(G)=c$. Let $Q_{i}=\left\{p_{i}, q_{i}\right\}$. It is clear that any h-set W is of the form $W=Z \cup\left\{f_{1}, f_{2}, f_{3}, \cdots, f_{d-(c-a+b)}\right\} \cup$ $\left\{c_{1}, c_{2}, c_{3}, \cdots, c_{a}\right\} \cup\left\{d_{1}, d_{2}, d_{3}, \cdots, d_{b-a}\right\}$, where $c_{i} \in F_{i}(1 \leq i \leq a)$ and $d_{j} \in Q_{j}(1 \leq j \leq b-a)$. Then as in earlier theorems it can be seen that $f_{h}(G)=b$ and $h(G)=d$.

Theorem 3.6 For every integers a, b, c and d with $a \leq b<c \leq d$ and $c>b+1$ there exists a connected graph G such that $f_{h}(G)=a, f_{m h}(G)=b, m h(G)=c$ and $h(G)=d$.

Proof We consider four cases.
Case 1. $a=b=0$. Then the graph G constructed in Theorem 3.1 satisfies the requirements of this theorem.

Case 2. $a=0, b \geq 1$. Then the graph G constructed in Theorem 3.2 satisfies the requirements of this theorem.

Case 3. $1 \leq a=b$. Then the graph G constructed in Theorem 3.4 satisfies the requirements of this theorem.

Case 4. $1 \leq a<b$.
Subcase 4a. $c=d$. Let G be the graph obtained from H_{a} and Z_{b-a} by identifying the vertex x_{a} of H_{a} and the vertex k_{1} of Z_{b-a} and then adding the new vertices $x, z_{1}, z_{2}, \ldots, z_{c-b-1}$ and joining the edges $x s_{1}, m_{b-a} z_{1}, m_{b-a} z_{2}, \ldots, m_{b-a} z_{c-b-1}$. First we show that $m h(G)=c$. Let $Z=\left\{x, z_{1}, z_{2}, \ldots, z_{c-b-1}\right\}$ be the set of end vertices of G. Let $F_{i}=\left\{u_{i}, v_{i}\right\}(1 \leq i \leq a)$ and $H_{i}=\left\{h_{i}, p_{i}, q_{i}\right\}(1 \leq i \leq b-a)$. It is clear that any $m h$-set of G is of the form $S=$ $Z \cup\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{a}\right\} \cup\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{b-a}\right\}$, where $c_{i} \in F_{i}(1 \leq i \leq a)$ and $d_{j} \in H_{j}(1 \leq j \leq b-a)$. Then as in earlier theorems it can be seen that $f_{m h}(G)=b$ and $m h(G)=c$. It is clear that any h-set W is of the form $W=Z \cup\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{b-a}\right\} \cup\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{a}\right\}$, where $c_{i} \in F_{i}(1 \leq i \leq a)$. Then as in earlier theorems it can be seen that $f_{h}(G)=a$ and $h(G)=c$.

Subcase 4b. $c<d$. Let G_{1} be the graph obtained from H_{a} and Z_{b-a} by identifying the vertex x_{a} of H_{a} and the vertex k_{1} of Z_{b-a}. Now let G be the graph obtained from G_{1} and T_{d-c} by identifying the vertex m_{b-a} of G_{1} and the vertex α_{1} of T_{d-c} and then adding new vertices $x, z_{1}, z_{2}, \cdots, z_{c-b-1}$ and joining the edges $x s_{1}, \gamma_{d-c} z_{1}, \gamma_{d-c} z_{2}, \cdots, \gamma_{d-c} z_{c-b-1}$. Let $Z=\left\{x, z_{1}, z_{2}, \cdots, z_{c-b-1}\right\}$ be the set of end vertices of G. Let $F_{i}=\left\{u_{i}, v_{i}\right\}(1 \leq i \leq a)$ and $H_{i}=\left\{h_{i}, p_{i}, q_{i}\right\}(1 \leq i \leq b-a)$. It is clear that any $m h$-set of G is of the form $S=Z \cup$
$\left\{c_{1}, c_{2}, c_{3}, \cdots, c_{a}\right\} \cup\left\{d_{1}, d_{2}, d_{3}, \cdots, d_{b-a}\right\}$, where $c_{i} \in F_{i}(1 \leq i \leq a)$ and $d_{j} \in H_{j}(1 \leq j \leq b-a)$. Then as in earlier theorems it can be seen that $f_{m h}(G)=b$ and $m h(G)=c$. It is clear that any h set W is of the form $W=Z \cup\left\{p_{1}, p_{2}, p_{3}, \cdots, p_{b-a}\right\} \cup\left\{f_{1}, f_{2}, f_{3}, \cdots, f_{d-c}\right\} \cup\left\{c_{1}, c_{2}, c_{3}, \cdots, c_{a}\right\}$, where $c_{i} \in F_{i}(1 \leq i \leq a)$. Then as in earlier theorems it can be seen that $f_{h}(G)=a$ and $h(G)=d$.

References

[1] F.Buckley and F.Harary, Distance in Graphs, Addition- Wesley, Redwood City, CA, 1990.
[2] G.Chartrand and P.Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory, 19 (1999), 45-58.
[3] G.Chartrand and P.Zhang, The forcing hull number of a graph, J. Combin Math. Comput., 36(2001), 81-94.
[4] G.Chartrand, F.Harary and P.Zhang, On the geodetic number of a graph, Networks,39(2002) 1-6.
[5] Carmen Hernando, Tao Jiang, Merce Mora, Ignacio. M. Pelayo and Carlos Seara, On the Steiner, geodetic and hull number of graphs, Discrete Mathematics, 293 (2005) 139-154.
[6] M. G. Evertt, S. B. Seidman, The hull number of a graph, Discrete Mathematics, 57 (1985) 217-223.
[7] Esamel M. Paluga, Sergio R. Canoy Jr, Monophonic numbers of the join and Composition of connected graphs, Discrete Mathematics 307(2007) 1146-1154.
[8] M.Faber, R.E. Jamison, Convexity in graphs and hypergraphs, SIAM Journal Algebraic Discrete Methods, 7(1986) 433-444.
[9] F.Harary, Graph Theory, Addison-Wesley, 1969.
[10] F.Harary, E.Loukakis and C.Tsouros, The geodetic number of a graph, Math.Comput Modeling $17(11)(1993)$ 89-95.
[11] J.John and S.Panchali, The upper monophonic number of a graph, International J.Math. Combin, 4(2010),46-52.
[12] J.John and V.Mary Gleeta, The Forcing Monophonic Hull Number of a Graph, International Journal of Mathematics Trends and Technology, 3(2012),43-46.
[13] J.John and V.Mary Gleeta, Monophonic hull sets in graphs, submitted.
[14] Li-Da Tong, The forcing hull and forcing geodetic numbers of graphs, Discrete Applied Math., 157(2009), 1159-1163.
[15] Mitre C.Dourado, Fabio protti and Jayme L.Szwarcfiter, Algorithmic Aspects of Monophonic Convexity, Electronic Notes in Discrete Mathematics 30(2008) 177-182.

[^0]: ${ }^{1}$ Received March 14, 2012. Accepted August 26, 2012.

