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Abstract: For a connected graph G = (V, E), let a set M be a minimum monophonic hull

set of G. A subset T ⊆ M is called a forcing subset for M if M is the unique minimum

monophonic hull set containing T . A forcing subset for M of minimum cardinality is a

minimum forcing subset of M . The forcing monophonic hull number of M , denoted by

fmh(M), is the cardinality of a minimum forcing subset of M . The forcing monophonic

hull number of G, denoted by fmh(G), is fmh(G) = min {fmh(M)}, where the minimum is

taken over all minimum monophonic hull sets in G. Some general properties satisfied by this

concept are studied. Every monophonic set of G is also a monophonic hull set of G and so

mh(G) ≤ h(G), where h(G) and mh(G) are hull number and monophonic hull number of

a connected graph G. However, there is no relationship between fh(G) and fmh(G), where

fh(G) is the forcing hull number of a connected graph G. We give a series of realization

results for various possibilities of these four parameters.
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§1. Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple

edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic

terminology, we refer to Harary [1,9]. A convexity on a finite set V is a family C of subsets of

V , convex sets which is closed under intersection and which contains both V and the empty set.

The pair(V, E) is called a convexity space. A finite graph convexity space is a pair (V, E), formed

by a finite connected graph G = (V, E) and a convexity C on V such that (V, E) is a convexity

space satisfying that every member of C induces a connected subgraph of G. Thus, classical

convexity can be extended to graphs in a natural way. We know that a set X of Rn is convex if
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every segment joining two points of X is entirely contained in it. Similarly a vertex set W of a

finite connected graph is said to be convex set of G if it contains all the vertices lying in a certain

kind of path connecting vertices of W [2,8]. The distance d(u, v) between two vertices u and v in

a connected graph G is the length of a shortest u− v path in G. An u− v path of length d(u, v)

is called an u − v geodesic. A vertex x is said to lie on a u − v geodesic P if x is a vertex of P

including the vertices u and v. For two vertices u and v, let I[u, v] denotes the set of all vertices

which lie on u−v geodesic. For a set S of vertices, let I[S] =
⋃

(u,v)∈S I[u, v]. The set S is convex

if I[S] = S. Clearly if S = {v}or S = V , then S is convex. The convexity number, denoted

by C(G), is the cardinality of a maximum proper convex subset of V . The smallest convex set

containing S is denoted by Ih(S) and called the convex hull of S. Since the intersection of two

convex sets is convex, the convex hull is well defined. Note that S ⊆ I[S] ⊆ Ih[S] ⊆ V . For an

integer k ≥ 0, a subset S ⊆ V is called a Smarandachely geodetic k-set if I[S
⋃

S+] = V and a

Smarandachely hull k-set if Ih(S
⋃

S+) = V for a subset S+ ⊂ V with |S+| ≤ k. Particularly, if

k = 0, such Smarandachely geodetic 0-set and Smarandachely hull 0-set are called the geodetic

set and hull set, respectively. The geodetic number g(G) of G is the minimum order of its

geodetic sets and any geodetic set of order g(G) is a minimum geodetic set or simply a g- set

of G. Similarly, the hull number h(G) of G is the minimum order of its hull sets and any hull

set of order h(G) is a minimum hull set or simply a h- set of G. The geodetic number of a

graph is studied in [1,4,10] and the hull number of a graph is studied in [1,6].A subset T ⊆ S is

called a forcing subset for S if S is the unique minimum hull set containing T . A forcing subset

for S of minimum cardinality is a minimum forcing subset of M . The forcing hull number of

S, denoted by fh(S), is the cardinality of a minimum forcing subset of S. The forcing hull

number of G, denoted by fh(G),is fh(G) = min {fh(S)}, where the minimum is taken over all

minimum hull sets S in G. The forcing hull number of a graph is studied in[3,14]. A chord of

a path uo, u1, u2, ..., un is an edge uiuj with j ≥ i + 2(0 ≤ i, j ≤ n). A u − v path P is called

a monophonic path if it is a chordless path. A vertex x is said to lie on a u − v monophonic

path P if x is a vertex of P including the vertices u and v. For two vertices u and v, let J [u, v]

denotes the set of all vertices which lie on u − v monophonic path. For a set M of vertices, let

J [M ] = ∪u,v∈MJ [u, v]. The set M is monophonic convex or m-convex if J [M ] = M . Clearly if

M = {v} or M = V , then M is m-convex. The m-convexity number, denoted by Cm(G), is the

cardinality of a maximum proper m-convex subset of V . The smallest m-convex set containing

M is denoted by Jh(M) and called the monophonic convex hull or m-convex hull of M . Since

the intersection of two m-convex set is m-convex, the m-convex hull is well defined. Note that

M ⊆ J [M ] ⊆ Jh(M) ⊆ V . A subset M ⊆ V is called a monophonic set if J [M ] = V and

a m-hull set if Jh(M) = V . The monophonic number m(G) of G is the minimum order of

its monophonic sets and any monophonic set of order m(G) is a minimum monophonic set or

simply a m- set of G. Similarly, the monophonic hull number mh(G) of G is the minimum

order of its m-hull sets and any m-hull set of order mh(G) is a minimum monophonic set or

simply a mh- set of G. The monophonic number of a graph is studied in [5,7,11,15] and the

monophonic hull number of a graph is studied in [12]. A vertex v is an extreme vertex of a

graph G if the subgraph induced by its neighbors is complete.Let G be a connected graph and

M a minimum monophonic hull set of G. A subset T ⊆ M is called a forcing subset for M
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if M is the unique minimum monophonic hull set containing T . A forcing subset for M of

minimum cardinality is a minimum forcing subset of M . The forcing monophonic hull number

of M , denoted by fmh(M), is the cardinality of a minimum forcing subset of M . The forcing

monophonic hull number of G, denoted by fmh(G), is fmh(G) = min {fmh(M)}, where the

minimum is taken over all minimum monophonic hull sets M in G.For the graph G given in

Figure 1.1, M = {v1, v8} is the unique minimum monophonic hull set of G so that mh(G) = 2

and fmh(G) = 0. Also S1 = {v1, v5, v8} and S2 = {v1, v6, v8} are the only two h-sets of G

such that fh(S1) = 1, fh(S2) = 1 so that fh(G) = 1 . For the graph G given in Figure 1.2,

M1 = {v1, v4} , M2 = {v1, v6} , M3 = {v1, v7} and M4 = {v1, v8} are the only four mh-sets of

G such that fmh(M1) = 1, fmh(M2) = 1, fmh(M3) = 1 and fmh(M4) = 1 so that fmh(G) = 1.

Also, S = {v1, v7} is the unique minimum hull set of G so that h(G) = 2 and fh(G) = 0.

Throughout the following G denotes a connected graph with at least two vertices.

v1 v2
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v9

v7

v4
v5 v6

G

Figure 1.1
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Figure 1.2

v8

The following theorems are used in the sequel

Theorem 1.1 ([6]) Let G be a connected graph. Then

a) Each extreme vertex of G belongs to every hull set of G;
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(b) h(G) = p if and only if G = Kp.

Theorem 1.2 ([3]) Let G be a connected graph. Then

(a) fh(G) = 0 if and only if G has a unique minimum hull set;

(b) fh(G) ≤ h(G) − |W |, where W is the set of all hull vertices of G.

Theorem 1.3 ([13]) Let G be a connected graph. Then

(a) Each extreme vertex of G belongs to every monophonic hull set of G;

(b) mh(G) = p if and only if G = Kp.

Theorem 1.4 ([12]) Let G be a connected graph. Then

(a) fmh(G) = 0 if and only if G has a unique mh-set;

(b) fmh(G) ≤ mh(G) − |S|, where S is the set of all monophonic hull vertices of G.

Theorem 1.5 ([12]) For any complete Graph G = Kp(p ≥ 2), fmh(G) = 0.

§2. Special Graphs

In this section, we present some graphs from which various graphs arising in theorem are

generated using identification.

Let Ui : αi, βi, γi, δi, αi(1 ≤ i ≤ a) be a copy of cycle C4. Let Vi be the graph obtained from

Ui by adding three new vertices ηi, fi, gi and the edges βiηi, ηifi, figi, giδi, ηiγi, fiγi, giγi(1 ≤
i ≤ a). The graph Ta given in Figure 2.1 is obtained from Vi’s by identifying γi−1 of Vi−1 and

αi of Vi(2 ≤ i ≤ a).
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fa

ga

Ta

Figure 2.1
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Let Pi : ki, li, mi, ni, ki(1 ≤ i ≤ b) be a copy of cycle C4. Let Qi be the graph obtained from

Pi by adding three new vertices hi, pi and qi and the edges lihi, hipi, piqi, and qimi(1 ≤ i ≤ b).

The graph Wb given in Figure 2.2 is obtained from Qi’s by identifying mi−1 of Qi−1 and ki of

Qi(2 ≤ i ≤ b).
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The graph Zb given in Figure 2.3 is obtained from Wb by joining the edge lini(1 ≤ i ≤ b).
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Figure 2.3

Let Fi : si, ti, xi, wi, si(1 ≤ i ≤ c) be a copy of cycle C4. Let Ri be the graph obtained from

Fi by adding two new vertices ui, vi and joining the edges tiui, uiwi, tiwi, uivi and vixi(1 ≤ i ≤
c). The graph Hc given in Figure 2.4 is obtained from Ri’s by identifying the vertices xi−1 of

Ri−1 and si of Ri(1 ≤ i ≤ c).
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Every monophonic set of G is also a monophonic hull set of G and so mh(G) ≤ h(G),

where h(G) and mh(G) are hull number and monophonic hull number of a connected graph G.

However, there is no relationship between fh(G) and fmh(G), where fh(G) is the forcing hull

number of a connected graph G. We give a series of realization results for various possibilities

of these four parameters.
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§3. Some Realization Results

Theorem 3.1 For every pair a, b of integers with 2 ≤ a ≤ b, there exists a connected graph G

such that fmh(G) = fh(G) = 0, mh(G) = a and h(G) = b.

Proof If a = b, let G = Ka. Then by Theorems1.3(b) and 1.1(b), mh(G) = h(G) = a and

by Theorems 1.5 and 1.2(a), fmh(G) = fh(G) = 0. For a < b, let G be the graph obtained from

Tb−a by adding new vertices x, z1, z2, · · · , za−1 and joining the edges xα1, γb−az1, γb−az2, · · · ,

γb−aza−1. Let Z = {x, z1, z2, · · · , za−1} be the set of end-vertices of G. Then it is clear that Z

is a monophonic hull set of G and so by Theorem 1.3(a), Z is the unique mh-set of G so that

mh(G) = a and hence by Theorem 1.4(a), fmh(G) = 0. Since Ih(Z) 6= V, Z is not a hull set of

G. Now it is easily seen that W = Z ∪ {f1, f2, · · · , fb−a} is the unique h-set of G and hence by

Theorem 1.1(a) and Theorem 1.2(a), h(G) = b and fh(G) = 0. �

Theorem 3.2 For every integers a, b and c with 0 ≤ a < b < c and c > a + b, there exists a

connected graph G such that fmh(G) = 0, fh(G) = a, mh(G) = b and h(G) = c.

Proof We consider two cases.

Case 1. a = 0. Then the graph Tb constructed in Theorem 3.1 satisfies the requirements of

the theorem.

Case 2. a ≥ 1. Let G be the graph obtained from Wa and Tc−(a+b) by identifying the vertex

ma of Wa and α1 of Tc−(a+b) and then adding new vertices x, z1, z2, · · · , zb−1 and joining the

edges xk1, γc−b−az1, γc−b−az2, · · · , γc−b−azb−1. Let Z = {x, z1, z2, · · · , zb−1}. Since Jh(Z) = V ,

Z is a monophonic hull set G and so by Theorem 1.3(a), Z is the unique mh- set of G so that

mh(G) = b and hence by Theorem 1.4(a), fmh(G) = 0. Next we show that h(G) = c. Let S be

any hull set of G. Then by Theorem 1.1(a), Z ⊆ S. It is clear that Z is not a hull set of G. For

1 ≤ i ≤ a, let Hi = {pi, qi}. We observe that every h-set of G must contain at least one vertex

from each Hi(1 ≤ i ≤ a) and each fi(1 ≤ i ≤ c−b−a) so that h(G) ≥ b+a+c−a−b = c. Now,

M = Z∪{q1, q2, · · · , qa}∪{f1, f2, · · · , fc−b−a} is a hull set of G so that h(G) ≤ b+a+c−b−a = c.

Thus h(G) = c. Since every h-set contains S1 = Z ∪ {f1, f2, · · · , fc−b−a}, it follows from

Theorem 1.2(b) that fh(G) = h(G) − |S1| = c− (c− a) = a. Now, since h(G) = c and every h-

set of G contains S1, it is easily seen that every h-set S is of the form S1∪{d1, d2, · · · , da},where

di ∈ Hi(1 ≤ i ≤ a). Let T be any proper subset of S with |T | < a. Then it is clear that there

exists some j such that T ∩ Hj = φ, which shows that fh(G) = a. �

Theorem 3.3 For every integers a, b and c with 0 ≤ a < b ≤ c and b > a + 1, there exists a

connected graph G such that fh(G) = 0, fmh(G) = a, mh(G) = b and h(G) = c.

Proof We consider two cases.

Case 1. a = 0. Then the graph G constructed in Theorem 3.1 satisfies the requirements of

the theorem.

Case 2. a ≥ 1.
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Subcase 2a. b = c. Let G be the graph obtained from Za by adding new vertices x, z1, z2, · · · ,

zb−a−1 and joining the edges xk1, maz1, maz2, · · · , mazb−a−1. Let Z = {x, z1, z2, · · · , zb−a−1}
be the set of end-vertices of G. Let S be any hull set of G. Then by Theorem 1.1(a), Z ⊆ S.

It is clear that Z is not a hull set of G. For 1 ≤ i ≤ a, let Hi = {hi, pi, qi}. We observe that

every h-set of G must contain only the vertex pi from each Hi so that h(G) ≤ b − a + a = b.

Now S = Z ∪ {p1, p2, p3, · · · , pa} is a hull set of G so that h(G) ≥ b − a + a = b. Thus

h(G) = b. Also it is easily seen that S is the unique h-set of G and so by Theorem 1.2(a),

fh(G) = 0.Next we show that mh(G) = b. Since Jh(Z) 6= V, Z is not a monophonic hull set of

G. We observe that every mh-set of G must contain at least one vertex from each Hi so that

mh(G) ≥ b−a+a = b. Now M1 = Z ∪{q1, q2, q3, · · · , qa} is a monophonic hull set of G so that

mh(G) ≤ b− a + a = b. Thus mh(G) = b. Next we show that fmh(G) = a. Since every mh-set

contains Z, it follows from Theorem 1.4(b) that fmh(G) ≤ mh(G)−|Z| = b− (b−a) = a. Now,

since mh(G) = b and every mh-set of G contains Z, it is easily seen that every mh-set M is of

the form Z ∪ {d1, d2, d3, · · · , da}, where di ∈ Hi(1 ≤ i ≤ a). Let T be any proper subset of M

with |T | < a. Then it is clear that there exists some j such that T ∩Hj = φ, which shows that

fmh(G) = a.

Subcase 2b. b < c. Let G be the graph obtained from Za and Tc−b by identifying the

vertex ma of Za and α1 of Tc−b and then adding the new vertices x, z1, z2, · · · , zb−a−1 and

joining the edges xα1, γc−bz1, γc−bz2, · · · , γc−bzb−a−1. Let Z = {x, z1, z2, · · · , zb−a−1} be the

set of end vertices of G. Let S be any hull set of G. Then by Theorem 1.1(a), Z ⊆ S. Since

Ih(Z) 6= V, Z is not a hull set of G. For 1 ≤ i ≤ a, let Hi = {hi, pi, qi}. We observe that every

h-set of G must contain only the vertex pi from each Hi and each fi(1 ≤ i ≤ c − b) so that

h(G) ≥ b − a + a + c − b = c. Now S = Z ∪ {p1, p2, p3, · · · , pa} ∪ {f1, f2, f3, · · · , fc−b}is a hull

set of G so that h(G) ≤ b − a + a + c − b = c. Thus h(G) = c. Also it is easily seen that S

is the unique h-set of G and so by Theorem 1.2(a), fh(G) = 0. Since Jh(Z) 6= V , Z is not a

monophonic hull set of G. We observe that every mh-set of G must contain at least one vertex

from each Hi(1 ≤ i ≤ a) so that mh(G) ≥ b − a + a = b. Now, M1 = Z ∪ {h1, h2, h3, · · · , ha}
is a monophonic hull set of G so that mh(G) ≤ b − a + a = b. Thus mh(G) = b. Next we

show that fmh(G) = a. Since every mh-set contains Z, it follows from Theorem 1.4(b) that

fmh(G) ≤ mh(G) − |Z| = b − (b − a) = a. Now, since mh(G) = b and every mh-set of G

contains Z, it is easily seen that every mh-set S is of the form Z ∪ {d1, d2, d3, · · · , da}, where

di ∈ Hi(1 ≤ i ≤ a). Let T be any proper subset of S with |T | < a. Then it is clear that there

exists some j such that T ∩ Hj = φ, which shows that fmh(G) = a. �

Theorem 3.4 For every integers a, b and c with 0 ≤ a < b ≤ c and b > a + 1 , there exists a

connected graph G such that fmh(G) = fh(G) = a, mh(G) = b and h(G) = c.

Proof We consider two cases.

Case 1. a = 0, then the graph G constructed in Theorem 3.1 satisfies the requirements of the

theorem.

Case 2. a ≥ 1.
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Subcase 2a. b = c. Let G be the graph obtained from Ha by adding new vertices x, z1, z2, · · · ,

zb−a−1 and joining the edges xs1, xaz1, xaz2, · · · , xazb−a−1. Let Z = {x, z1, z2, · · · , zb−a−1} be

the set of end-vertices of G. Let M be any monophonic hull set of G. Then by Theorem 1.3(a),

Z ⊆ M . First we show that mh(G) = b. Since Jh(Z) 6= V, Z is not a monophonic hull set of

G. Let Fi = {ui, vi} (1 ≤ i ≤ a). We observe that every mh-set of G must contain at least one

vertex from each Fi(1 ≤ i ≤ a). Thus mh(G) ≥ b − a + a = b. On the other hand since the set

M = Z ∪ {v1, v2, v3, · · · , va} is a monophonic hull set of G, it follows that mh(G) ≤ |M | = b.

Hence mh(G) = b. Next we show that fmh(G) = a. By Theorem 1.3(a), every monophonic hull

set of G contains Z and so it follows from Theorem 1.4(b) that fmh(G) ≤ mh(G) − |Z| = a.

Now, since mh(G) = b and every mh-set of G contains Z, it is easily seen that every mh-set

M is of the form Z ∪ {c1, c2, c3, · · · , ca}, where ci ∈ Fi(1 ≤ i ≤ a). Let T be any proper subset

of S with |T | < a. Then it is clear that there exists some j such that T ∩ Fj = φ, which shows

that fmh(G) = a. By similar way we can prove h(G) = b and fh(G) = a.

Subcase 2b. b < c. Let G be the graph obtained from Ha and Tc−b by identifying the vertex

xa of Ha and the vertex α1 of Tc−b and then adding the new vertices x, z1, z2, · · · , zb−a−1 and

joining the edges xs1, γc−bz1, γc−bz2, · · · , γc−bzb−a−1. First we show that mh(G) = b. Since

Jh(Z) 6= V, Z is not a monophonic hull set of G. Let Fi = {ui, vi} (1 ≤ i ≤ a) .We observe that

every mh-set of G must contain at least one vertex from each Fi(1 ≤ i ≤ a). Thus mh(G) ≥
b−a+a = b. On the other hand since the set M = Z∪{v1, v2, v3, · · · , va} is a monophonic hull

set of G, it follows that mh(G) ≥ |M | = b. Hence mh(G) = b. Next, we show that fmh(G) = a.

By Theorem 1.3(a), every monophonic hull set of G contains Z and so it follows from Theorem

1.4(b) that fmh(G) ≤ mh(G) − |Z| = a. Now, since mh(G) = b and every mh-set of G

contains Z, it is easily seen that every mh-set is of the form M = Z ∪{c1, c2, c3, · · · , ca}, where

ci ∈ Fi(1 ≤ i ≤ a). Let T be any proper subset of M with |T | < a. Then it is clear that there

exists some j such that T ∪Fj = φ, which shows that fmh(G) = a. Next we show that h(G) = c.

Since Ih(Z) 6= V, Z is not a hull set of G. We observe that every h-set of G must contain at least

one vertex from each Fi(1 ≤ i ≤ a) and each fi(1 ≤ i ≤ c−b) so that h(G) ≥ b−a+a+c−b = c.

On the other hand, since the set S1 = Z ∪ {u1, u2, u3, · · · , ua} ∪ {f1, f2, f3, · · · , fc−b} is a hull

set of G, so that h(G) ≤ |S1| = c. Hence h(G) = c. Next we show that fh(G) = a. By

Theorem 1.1(a), every hull set of G contains S2 = Z ∪ {f1, f2, f3, · · · , fc−b} and so it follows

from Theorem 1.2(b) that fh(G) ≤ h(G) − |S2| = a. Now, since h(G) = c and every h-set of

G contains S2, it is easily seen that every h-set S is of the form S = S2 ∪ {c1, c2, c3, · · · , ca},
where ci ∈ Fi(1 ≤ i ≤ a). Let T be any proper subset of S with |T | < a. Then it is clear that

there exists some j such that T ∩ Fj = φ, which shows that fh(G) = a. �

Theorem 3.5 For every integers a, b, c and d with 0 ≤ a ≤ b < c < d, c > a + 1, d > c− a + b,

there exists a connected graph G such that fmh(G) = a, fh(G) = b, mh(G) = c and h(G) = d.

Proof We consider four cases.

Case 1. a = b = 0. Then the graph G constructed in Theorem 3.1 satisfies the requirements

of this theorem.

Case 2. a = 0, b ≥ 1. Then the graph G constructed in Theorem 3.2 satisfies the requirements
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of this theorem.

Case 3. 1 ≤ a = b. Then the graph G constructed in Theorem 3.4 satisfies the requirements

of this theorem.

Case 4. 1 ≤ a < b. Let G1 be the graph obtained from Ha and Wb−a by identifying the vertex

xa of Ha and the vertex k1 of Wb−a. Now let G be the graph obtained from G1 and Td−(c−a+b)

by identifying the vertex mb−a of G1 and the vertex α1 of Td−(c−a+b) and adding new vertices

x, z1, z2, · · · , zc−a−1 and joining the edges xs1, γd−(c−a+b)z1, γd−(c−a+b)z2, · · · , γd−(c−a+b)zc−a−1.

Let Z = {x, z1, z2, · · · , zc−a−1} be the set of end vertices of G. Let Fi = {ui, vi} (1 ≤ i ≤ a).

It is clear that any mh-set S is of the form S = Z ∪ {c1, c2, c3, · · · , ca}, where ci ∈ Fi(1 ≤
i ≤ a). Then as in earlier theorems it can be seen that fmh(G) = a and mh(G) = c. Let

Qi = {pi, qi}. It is clear that any h-set W is of the form W = Z ∪
{

f1, f2, f3, · · · , fd−(c−a+b)

}

∪
{c1, c2, c3, · · · , ca}∪{d1, d2, d3, · · · , db−a}, where ci ∈ Fi(1 ≤ i ≤ a) and dj ∈ Qj(1 ≤ j ≤ b−a).

Then as in earlier theorems it can be seen that fh(G) = b and h(G) = d. �

Theorem 3.6 For every integers a, b, c and d with a ≤ b < c ≤ d and c > b + 1 there exists a

connected graph G such that fh(G) = a, fmh(G) = b, mh(G) = c and h(G) = d.

Proof We consider four cases.

Case 1. a = b = 0. Then the graph G constructed in Theorem 3.1 satisfies the requirements

of this theorem.

Case 2. a = 0, b ≥ 1. Then the graph G constructed in Theorem 3.2 satisfies the requirements

of this theorem.

Case 3. 1 ≤ a = b. Then the graph G constructed in Theorem 3.4 satisfies the requirements

of this theorem.

Case 4. 1 ≤ a < b.

Subcase 4a. c = d. Let G be the graph obtained from Ha and Zb−a by identifying the

vertex xa of Ha and the vertex k1 of Zb−a and then adding the new vertices x, z1, z2, ..., zc−b−1

and joining the edges xs1, mb−az1, mb−az2, ..., mb−azc−b−1. First we show that mh(G) = c.

Let Z = {x, z1, z2, ..., zc−b−1} be the set of end vertices of G. Let Fi = {ui, vi} (1 ≤ i ≤ a)

and Hi = {hi, pi, qi} (1 ≤ i ≤ b − a). It is clear that any mh-set of G is of the form S =

Z∪{c1, c2, c3, ..., ca}∪{d1, d2, d3, ..., db−a}, where ci ∈ Fi(1 ≤ i ≤ a) and dj ∈ Hj(1 ≤ j ≤ b−a).

Then as in earlier theorems it can be seen that fmh(G) = b and mh(G) = c. It is clear that any

h-set W is of the form W = Z∪{p1, p2, p3, ..., pb−a}∪{c1, c2, c3, ..., ca}, where ci ∈ Fi(1 ≤ i ≤ a).

Then as in earlier theorems it can be seen that fh(G) = a and h(G) = c.

Subcase 4b. c < d. Let G1 be the graph obtained from Ha and Zb−a by identifying

the vertex xa of Ha and the vertex k1 of Zb−a. Now let G be the graph obtained from G1

and Td−c by identifying the vertex mb−a of G1 and the vertex α1 of Td−c and then adding

new vertices x, z1, z2, · · · , zc−b−1 and joining the edges xs1, γd−cz1, γd−cz2, · · · , γd−czc−b−1. Let

Z = {x, z1, z2, · · · , zc−b−1} be the set of end vertices of G. Let Fi = {ui, vi} (1 ≤ i ≤ a) and

Hi = {hi, pi, qi} (1 ≤ i ≤ b − a). It is clear that any mh-set of G is of the form S = Z ∪
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{c1, c2, c3, · · · , ca}∪{d1, d2, d3, · · · , db−a}, where ci ∈ Fi(1 ≤ i ≤ a) and dj ∈ Hj(1 ≤ j ≤ b−a).

Then as in earlier theorems it can be seen that fmh(G) = b and mh(G) = c. It is clear that any h-

set W is of the form W = Z ∪{p1, p2, p3, · · · , pb−a}∪{f1, f2, f3, · · · , fd−c}∪{c1, c2, c3, · · · , ca},
where ci ∈ Fi(1 ≤ i ≤ a). Then as in earlier theorems it can be seen that fh(G) = a and

h(G) = d. �
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