The Forcing Weak Edge Detour Number of a Graph

A.P.Santhakumaran and S.Athisayanathan

(Research Department of Mathematics of St. Xavier's College (Autonomous), Palayamkottai - 627 002, India)
Email: apskumar1953@yahoo.co.in, athisayanathan@yahoo.co.in

Abstract

For two vertices u and v in a graph $G=(V, E)$, the distance $d(u, v)$ and detour distance $D(u, v)$ are the length of a shortest or longest $u-v$ path in G, respectively, and the Smarandache distance $d_{S}^{i}(u, v)$ is the length $d(u, v)+i(u, v)$ of a $u-v$ path in G, where $0 \leq i(u, v) \leq D(u, v)-d(u, v)$. A $u-v$ path of length $d_{S}^{i}(u, v)$, if it exists, is called a Smarandachely $u-v i$-detour. A set $S \subseteq V$ is called a Smarandachely i-detour set if every edge in G has both its ends in S or it lies on a Smarandachely i-detour joining a pair of vertices in S. In particular, if $i(u, v)=0$, then $d_{S}^{i}(u, v)=d(u, v)$; and if $i(u, v)=D(u, v)-d(u, v)$, then $d_{S}^{i}(u, v)=D(u, v)$. For $i(u, v)=D(u, v)-d(u, v)$, such a Smarandachely i-detour set is called a weak edge detour set in G. The weak edge detour number $d n_{w}(G)$ of G is the minimum order of its weak edge detour sets and any weak edge detour set of order $d n_{w}(G)$ is a weak edge detour basis of G. For any weak edge detour basis S of G, a subset $T \subseteq S$ is called a forcing subset for S if S is the unique weak edge detour basis containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing weak edge detour number of S, denoted by $f d n_{w}(S)$, is the cardinality of a minimum forcing subset for S. The forcing weak edge detour number of G, denoted by $f d n_{w}(G)$, is $f d n_{w}(G)=\min \left\{f d n_{w}(S)\right\}$, where the minimum is taken over all weak edge detour bases S in G. The forcing weak edge detour numbers of certain classes of graphs are determined. It is proved that for each pair a, b of integers with $0 \leq a \leq b$ and $b \geq 2$, there is a connected graph G with $f d n_{w}(G)=a$ and $d n_{w}(G)=b$.

Key Words: Smarandache distance, Smarandachely i-detour set, weak edge detour set, weak edge detour number, forcing weak edge detour number.

AMS(2000): 05C12

§1. Introduction

For vertices u and v in a connected graph G, the distance $d(u, v)$ is the length of a shortest $u-v$ path in G. A $u-v$ path of length $d(u, v)$ is called a $u-v$ geodesic. For a vertex v of G, the eccentricity $e(v)$ is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is the radius, $\operatorname{rad} G$ and the maximum eccentricity among the vertices of G is its diameter, $\operatorname{diam} G$ of G. Two vertices u and v of G are antipodal if $d(u, v)$

[^0]$=\operatorname{diam} G$. For vertices u and v in a connected graph G, the detour distance $D(u, v)$ is the length of a longest $u-v$ path in G. A $u-v$ path of length $D(u, v)$ is called a $u-v$ detour. It is known that the distance and the detour distance are metrics on the vertex set $V(G)$. The detour eccentricity $e_{D}(v)$ of a vertex v in G is the maximum detour distance from v to a vertex of G. The detour radius, $\operatorname{rad}_{D} G$ of G is the minimum detour eccentricity among the vertices of G, while the detour diameter, $\operatorname{diam}_{D} G$ of G is the maximum detour eccentricity among the vertices of G. These concepts were studied by Chartrand et al. [2].

A vertex x is said to lie on a $u-v$ detour P if x is a vertex of P including the vertices u and v. A set $S \subseteq V$ is called a detour set if every vertex v in G lies on a detour joining a pair of vertices of S. The detour number $d n(G)$ of G is the minimum order of a detour set and any detour set of order $d n(G)$ is called a detour basis of G. A vertex v that belongs to every detour basis of G is a detour vertex in G. If G has a unique detour basis S, then every vertex in S is a detour vertex in G. These concepts were studied by Chartrand et al. [3].

In general, there are graphs G for which there exist edges which do not lie on a detour joining any pair of vertices of V. For the graph G given in Figure 1.1, the edge $v_{1} v_{2}$ does not lie on a detour joining any pair of vertices of V. This motivated us to introduce the concept of weak edge detour set of a graph [5].

Figure 1: G

The Smarandache distance $d_{S}^{i}(u, v)$ is the length $d(u, v)+i(u, v)$ of a $u-v$ path in G, where $0 \leq i(u, v) \leq D(u, v)-d(u, v)$. A $u-v$ path of length $d_{S}^{i}(u, v)$, if it exists, is called a Smarandachely $u-v i$-detour. A set $S \subseteq V$ is called a Smarandachely i-detour set if every edge in G has both its ends in S or it lies on a Smarandachely i-detour joining a pair of vertices in S. In particular, if $i(u, v)=0$, then $d_{S}^{i}(u, v)=d(u, v)$ and if $i(u, v)=D(u, v)-d(u, v)$, then $d_{S}^{i}(u, v)=D(u, v)$. For $i(u, v)=D(u, v)-d(u, v)$, such a Smarandachely i-detour set is called a weak edge detour set in G. The weak edge detour number $d n_{w}(G)$ of G is the minimum order of its weak edge detour sets and any weak edge detour set of order $d n_{w}(G)$ is called a weak edge detour basis of G. A vertex v in a graph G is a weak edge detour vertex if v belongs to every weak edge detour basis of G. If G has a unique weak edge detour basis S, then every vertex in S is a weak edge detour vertex of G. These concepts were studied by A. P. Santhakumaran and S. Athisayanathan [5].

To illustrate these concepts, we consider the graph G given in Figure 1.2. The sets $S_{1}=$ $\{u, x\}, S_{2}=\{u, y\}$ and $S_{3}=\{u, z\}$ are the detour bases of G so that $d n(G)=2$ and the sets $S_{4}=\{u, v, y\}$ and $S_{5}=\{u, x, z\}$ are the weak edge detour bases of G so that $d n_{w}(G)=3$. The vertex u is a detour vertex and also a weak edge detour vertex of G.

Figure 2: G

The following theorems are used in the sequel.

Theorem 1.1([5]) For any graph G of order $p \geq 2,2 \leq d n_{w}(G) \leq p$.
Theorem 1.2([5]) Every end-vertex of a non-trivial connected graph G belongs to every weak edge detour set of G. Also if the set S of all end-vertices of G is a weak edge detour set, then S is the unique weak edge detour basis for G.

Theorem 1.3([5]) If T is a tree with k end-vertices, then $d n_{w}(T)=k$.
Theorem 1.4([5]) Let G be a connected graph with cut-vertices and S a weak edge detour set of G. Then for any cut-vertex v of G, every component of $G-v$ contains an element of S.

Throughout this paper G denotes a connected graph with at least two vertices.

§2. Forcing Weak Edge Detour Number of a Graph

First we determine the weak edge detour numbers of some standard classes of graphs so that their forcing weak edge detour numbers will be determined.

Theorem 2.1 Let G be the complete graph $K_{p}(p \geq 3)$ or the complete bipartite graph $K_{m, n}(2 \leq$ $m \leq n)$. Then a set $S \subseteq V$ is a weak edge detour basis of G if and only if S consists of any two vertices of G.

Proof Let G be the complete graph $K_{p}(p \geq 3)$ and $S=\{u, v\}$ be any set of two vertices of G. It is clear that $D(u, v)=p-1$. Let $x y \in E$. If $x y=u v$, then both its ends are in S. Let $x y \neq u v$. If $x \neq u$ and $y \neq v$, then the edge $x y$ lies on the $u-v$ detour $P: u, x, y, \ldots, v$ of length $p-1$. If $x=u$ and $y \neq v$, then the edge $x y$ lies on the $u-v$ detour $P: u=x, y, \ldots, v$ of length $p-1$. Hence S is a weak edge detour set of G. Since $|S|=2, S$ is a weak edge detour basis of G.

Now, let S be a weak edge detour basis of G. Let S^{\prime} be any set consisting of two vertices of G. Then as in the first part of this theorem S^{\prime} is a weak edge detour basis of G. Hence $|S|=\left|S^{\prime}\right|=2$ and it follows that S consists of any two vertices of G.

Let G be the complete bipartite graph $K_{m, n}(2 \leq m \leq n)$. Let X and Y be the bipartite sets of G with $|X|=m$ and $|Y|=n$. Let $S=\{u, v\}$ be any set of two vertices of G.

Case 1 Let $u \in X$ and $v \in Y$. It is clear that $D(u, v)=2 m-1$. Let $x y \in E$. If $x y=u v$, then
both of its ends are in S. Let $x y \neq u v$ be such that $x \in X$ and $y \in Y$. If $x \neq u$ and $y \neq v$, then the edge $x y$ lies on the $u-v$ detour $P: u, y, x, \ldots, v$ of length $2 m-1$. If $x=u$ and $y \neq v$, then the edge $x y$ lies on the $u-v$ detour $P: u=x, y, \ldots, v$ of length $2 m-1$. Hence S is a weak edge detour set of G.

Case 2 Let $u, v \in X$. It is clear that $D(u, v)=2 m-2$. Let $x y \in E$ be such that $x \in X$ and $y \in Y$. If $x \neq u$, then the edge $x y$ lies on the $u-v$ detour $P: u, y, x, \ldots, v$ of length $2 m-2$. If $x=u$, then the edge $x y$ lies on the $u-v$ detour $P: u=x, y, \ldots, v$ of length $2 m-2$. Hence S is a weak edge detour set of G.

Case 3 Let $u, v \in Y$. It is clear that $D(u, v)=2 m$. Then, as in Case $2, S$ is a weak edge detour set of G. Since $|S|=2$, it follows that S is a weak edge detour basis of G.

Now, let S be a weak edge detour basis of G. Let S^{\prime} be any set consisting of two vertices of G. Then as in the first part of the proof of $K_{m, n}, S^{\prime}$ is a weak edge detour basis of G. Hence $|S|=\left|S^{\prime}\right|=2$ and it follows that S consists of any two vertices adjacent or not.

Theorem 2.2 Let G be an odd cycle of order $p \geq 3$. Then a set $S \subseteq V$ is a weak edge detour basis of G if and only if S consists of any two adjacent vertices of G.

Proof Let $S=\{u, v\}$ be any set of two adjacent vertices of G. It is clear that $D(u, v)=p-1$. Then every edge $e \neq u v$ of G lies on the $u-v$ detour and both the ends of the edge $u v$ belong to S so that S is a weak edge detour set of G. Since $|S|=2, S$ is a weak edge detour basis of G.

Now, assume that S is a weak edge detour basis of G. Let S^{\prime} be any set of two adjacent vertices of G. Then as in the first part of this theorem S^{\prime} is a weak edge detour basis of G. Hence $|S|=\left|S^{\prime}\right|=2$. Let $S=\{u, v\}$. If u and v are not adjacent, then since G is an odd cycle, the edges of $u-v$ geodesic do not lie on the $u-v$ detour in G so that S is not a weak edge detour set of G, which is a contradiction. Thus S consists of any two adjacent vertices of G.

Theorem 2.3 Let G be an even cycle of order $p \geq 4$. Then a set $S \subseteq V$ is a weak edge detour basis of G if and only if S consists of any two adjacent vertices or two antipodal vertices of G.

Proof Let $S=\{u, v\}$ be any set of two vertices of G. If u and v are adjacent, then $D(u, v)=p-1$ and every edge $e \neq u v$ of G lies on the $u-v$ detour and both the ends of the edge $u v$ belong to S. If u and v are antipodal, then $D(u, v)=p / 2$ and every edge e of G lies on a $u-v$ detour in G. Thus S is a weak edge detour set of G. Since $|S|=2, S$ is a weak edge detour basis of G.

Now, assume that S is a weak edge detour basis of G. Let S^{\prime} be any set of two adjacent vertices or two antipodal vertices of G. Then as in the first part of this theorem S^{\prime} is a weak edge detour basis of G. Hence $|S|=\left|S^{\prime}\right|=2$. Let $S=\{u, v\}$. If u and v are not adjacent and u and v are not antipodal, then the edges of the $u-v$ geodesic do not lie on the $u-v$ detour in G so that S is not a weak edge detour set of G, which is a contradiction. Thus S consists of any two adjacent vertices or two antipodal vertices of G.

Corollary 2.4 If G is the complete graph $K_{p}(p \geq 3)$ or the complete bipartite graph $K_{m, n}(2 \leq$ $m \leq n)$ or the cycle $C_{p}(p \geq 3)$, then $d n_{w}(G)=2$.

Proof This follows from Theorems 2.1, 2.2 and 2.3.
Every connected graph contains a weak edge detour basis and some connected graphs may contain several weak edge detour bases. For each weak edge detour basis S in a connected graph G, there is always some subset T of S that uniquely determines S as the weak edge detour basis containing T. We call such subsets "forcing subsets" and we discuss their properties in this section.

Definition 2.5 Let G be a connected graph and S a weak edge detour basis of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique weak edge detour basis containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing weak edge detour number of S, denoted by $f d n_{w}(S)$, is the cardinality of a minimum forcing subset for S. The forcing weak edge detour number of G, denoted by $f d n_{w}(G)$, is $f d n_{w}(G)=$ $\min \left\{f d n_{w}(S)\right\}$, where the minimum is taken over all weak edge detour bases S in G.

Example 2.6 For the graph G given in Figure 2.1(a), $S=\{u, v, w\}$ is the unique weak edge detour basis so that $f d n_{w}(G)=0$. For the graph G given in Figure 2.1(b), $S_{1}=\{u, v, x\}$, $S_{2}=\{u, v, y\}$ and $S_{3}=\{u, v, w\}$ are the only weak edge detour bases so that $f d n_{w}(G)=1$. For the graph G given in Figure 2.1(c), $S_{4}=\{u, w, x\}, S_{5}=\{u, w, y\}, S_{6}=\{v, w, x\}$ and $S_{7}=\{v, w, y\}$ are the four weak edge detour bases so that $f d n_{w}(G)=2$.

Figure 3: G
The following theorem is clear from the definitions of weak edge detour number and forcing weak edge detour number of a connected graph G.

Theorem 2.7 For every connected graph $G, 0 \leqslant f d n_{w}(G) \leqslant d n_{w}(G)$.
Remark 2.8 The bounds in Theorem 2.7 are sharp. For the graph G given in Figure 2.1(a), $f d n_{w}(G)=0$. For the cycle $C_{3}, f d n_{w}\left(C_{3}\right)=d n_{w}\left(C_{3}\right)=2$. Also, all the inequalities in Theorem 2.7 can be strict. For the graph G given in Figure 2.1(b), $f d n_{w}(G)=1$ and $d n_{w}(G)=3$ so that $0<f d n_{w}(G)<d n_{w}(G)$.

The following two theorems are easy consequences of the definitions of the weak edge detour number and the forcing weak edge detour number of a connected graph.

Theorem 2.9 Let G be a connected graph. Then
a) $f d n_{w}(G)=0$ if and only if G has a unique weak edge detour basis,
b) $f d n_{w}(G)=1$ if and only if G has at least two weak edge detour bases, one of which is a unique weak edge detour basis containing one of its elements, and
c) $f d n_{w}(G)=d n_{w}(G)$ if and only if no weak edge detour basis of G is the unique weak edge detour basis containing any of its proper subsets.

Theorem 2.10 Let G be a connected graph and let \mathscr{F} be the set of relative complements of the minimum forcing subsets in their respective weak edge detour bases in G. Then $\bigcap_{F \in \mathscr{F}} F$ is the set of weak edge detour vertices of G. In particular, if S is a weak edge detour basis of G, then no weak edge detour vertex of G belongs to any minimum forcing subset of S.

Theorem 2.11 Let G be a connected graph and W be the set of all weak edge detour vertices of G. Then $f d n_{w}(G) \leqslant d n_{w}(G)-|W|$.

Proof Let S be any weak edge detour basis S of G. Then $d n_{w}(G)=|S|, W \subseteq S$ and S is the unique weak edge detour basis containing $S-W$. Thus $f d n_{w}(S) \leqslant|S-W|=|S|-|W|=$ $d n_{w}(G)-|W|$.

Remark 2.12 The bound in Theorem 2.11 is sharp. For the graph G given in Figure 2.1(c), $d n_{w}(G)=3,|W|=1$ and $f d n_{w}(G)=2$ as in Example 2.6. Also, the inequality in Theorem 2.11 can be strict. For the graph G given in Figure 2.2, the sets $S_{1}=\left\{v_{1}, v_{4}\right\}$ and $S_{2}=\left\{v_{2}, v_{3}\right\}$ are the two weak edge detour bases for G and $W=\emptyset$ so that $d n_{w}(G)=2,|W|=0$ and $f d n_{w}(G)=1$. Thus $f d n_{w}(G)<d n_{w}(G)-|W|$.

Figure 4: G
In the following we determine $f d n_{w}(G)$ for certain graphs G.
Theorem 2.13 a) If G is the complete graph $K_{p}(p \geq 3)$ or the complete bipartite graph $K_{m, n}(2 \leq m \leq n)$, then $d n_{w}(G)=f d n_{w}(G)=2$.
b) If G is the cycle $C_{p}(p \geq 4)$, then $d n_{w}(G)=f d n_{w}(G)=2$.
c) If G is a tree of order $p \geq 2$ with k end-vertices, then $d n_{w}(G)=k, f d n_{w}(G)=0$.

Proof a) By Theorem 2.1, a set S of vertices is a weak edge detour basis if and only if S consists of any two vertices of G. For each vertex v in G there are two or more vertices adjacent with v. Thus the vertex v belongs to more than one weak edge detour basis of G. Hence it follows that no set consisting of a single vertex is a forcing subset for any weak edge detour basis of G. Thus the result follows.
b) By Theorems 2.2 and 2.3 , a set S of two adjacent vertices of G is a weak edge detour basis of G. For each vertex v in G there are two vertices adjacent with v. Thus the vertex v
belongs to more than one weak edge detour basis of G. Hence it follows that no set consisting of a single vertex is a forcing subset for any weak edge detour basis of G. Thus the result follows.
c) By Theorem $1.3, d n_{w}(G)=k$. Since the set of all end-vertices of a tree is the unique weak edge detour basis, the result follows from Theorem 2.9(a).

The following theorem gives a realization result.
Theorem 2.14 For each pair a, b of integers with $0 \leqslant a \leqslant b$ and $b \geqslant 2$, there is a connected graph G with $f d n_{w}(G)=a$ and $d n_{w}(G)=b$.

Proof The proof is divided into two cases following.
Case 1: $a=0$. For each $b \geqslant 2$, let G be a tree with b end-vertices. Then $f d n_{w}(G)=0$ and $d n_{w}(G)=b$ by Theorem 2.13(c).
Case 2: $a \geqslant 1$. For each $i(1 \leqslant i \leqslant a)$, let $F_{i}: u_{i}, v_{i}, w_{i}, x_{i}, u_{i}$ be the cycle of order 4 and let $H=K_{1, b-a}$ be the star at v whose set of end-vertices is $\left\{z_{1}, z_{2}, \ldots, z_{b-a}\right\}$. Let G be the graph obtained by joining the central vertex v of H to both vertices u_{i}, w_{i} of each $F_{i}(1 \leqslant i \leqslant a)$. Clearly the graph G is connected and is shown in Figure 2.3.

Let $W=\left\{z_{1}, z_{2}, \ldots, z_{b-a}\right\}$ be the set of all $(b-a)$ end-vertices of G. First, we show that $d n_{w}(G)=b$. By Theorems 1.2 and 1.4, every weak edge detour basis contains W and at least one vertex from each $F_{i}(1 \leqslant i \leqslant a)$. Thus $d n_{w}(G) \geqslant(b-a)+a=b$. On the other hand, since the set $S_{1}=W \cup\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$ is a weak edge detour set of G, it follows that $d n_{w}(G) \leqslant\left|S_{1}\right|=b$. Therefore $d n_{w}(G)=b$.

Next we show that $f d n_{w}(G)=a$. It is clear that W is the set of all weak edge detour vertices of G. Hence it follows from Theorem 2.11 that $f d n_{w}(G) \leqslant d n_{w}(G)-|W|=b-(b-a)=$ a. Now, since $d n_{w}(G)=b$, it is easily seen that a set S is a weak edge detour basis of G if and only if S is of the form $S=W \cup\left\{y_{1}, y_{2}, \ldots, y_{a}\right\}$, where $y_{i} \in\left\{v_{i}, x_{i}\right\} \subseteq V\left(F_{i}\right)(1 \leqslant i \leqslant a)$. Let T be a subset of S with $|T|<a$. Then there is a vertex $y_{j}(1 \leqslant j \leqslant a)$ such that $y_{j} \notin T$. Let $s_{j} \in\left\{v_{j}, x_{j}\right\} \subseteq V\left(F_{j}\right)$ distinct from y_{j}. Then $S^{\prime}=\left(S-\left\{y_{j}\right\}\right) \cup\left\{s_{j}\right\}$ is a weak edge detour basis that contains T. Thus S is not the unique weak edge detour basis containing T. Thus $f d n_{w}(S) \geqslant a$. Since this is true for all weak edge detour basis of G, it follows that $f d n_{w}(G) \geqslant a$ and so $f d n_{w}(G)=a$.

Figure 5: G

References

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Reading MA, 1990.
[2] G. Chartrand, H. Escuadro and P. Zhang, Detour Distance in Graphs, J. Combin. Math. Combin. Comput. 53 (2005), 75-94.
[3] G. Chartrand, G. L. Johns and P. Zhang, Detour Number of a Graph, Util.Math. 64 (2003), 97-113.
[4] G. Chartrand and P. Zhang, Introduction to Graph Theory, Tata McGraw-Hill, 2006.
[5] A. P. Santhakumaran and S. Athisayanathan, Weak Edge Detour Number of a Graph, Ars Combin. (To appear)

[^0]: ${ }^{1}$ Received March 30, 2010. Accepted June 8, 2010.

