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Abstract: For two vertices u and v in a graph G = (V, E), the distance d(u, v) and detour

distance D(u, v) are the length of a shortest or longest u − v path in G, respectively, and

the Smarandache distance di
S(u, v) is the length d(u, v) + i(u, v) of a u− v path in G, where

0 ≤ i(u, v) ≤ D(u, v) − d(u, v). A u − v path of length di
S(u, v), if it exists, is called a

Smarandachely u − v i-detour. A set S ⊆ V is called a Smarandachely i-detour set if every

edge in G has both its ends in S or it lies on a Smarandachely i-detour joining a pair of vertices

in S. In particular, if i(u, v) = 0, then di
S(u, v) = d(u, v); and if i(u, v) = D(u, v) − d(u, v),

then di
S(u, v) = D(u, v). For i(u, v) = D(u, v) − d(u, v), such a Smarandachely i-detour

set is called a weak edge detour set in G. The weak edge detour number dnw(G) of G is

the minimum order of its weak edge detour sets and any weak edge detour set of order

dnw(G) is a weak edge detour basis of G. For any weak edge detour basis S of G, a subset

T ⊆ S is called a forcing subset for S if S is the unique weak edge detour basis containing

T . A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The

forcing weak edge detour number of S, denoted by fdnw(S), is the cardinality of a minimum

forcing subset for S. The forcing weak edge detour number of G, denoted by fdnw(G), is

fdnw(G) = min{fdnw(S)}, where the minimum is taken over all weak edge detour bases S

in G. The forcing weak edge detour numbers of certain classes of graphs are determined. It

is proved that for each pair a, b of integers with 0 ≤ a ≤ b and b ≥ 2, there is a connected

graph G with fdnw(G) = a and dnw(G) = b.
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§1. Introduction

For vertices u and v in a connected graph G, the distance d(u, v) is the length of a shortest

u–v path in G. A u–v path of length d(u, v) is called a u–v geodesic. For a vertex v of G,

the eccentricity e(v) is the distance between v and a vertex farthest from v. The minimum

eccentricity among the vertices of G is the radius, radG and the maximum eccentricity among

the vertices of G is its diameter, diamG of G. Two vertices u and v of G are antipodal if d(u, v)
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= diamG. For vertices u and v in a connected graph G, the detour distance D(u, v) is the

length of a longest u–v path in G. A u–v path of length D(u, v) is called a u–v detour. It

is known that the distance and the detour distance are metrics on the vertex set V (G). The

detour eccentricity eD(v) of a vertex v in G is the maximum detour distance from v to a vertex

of G. The detour radius, radDG of G is the minimum detour eccentricity among the vertices

of G, while the detour diameter, diamDG of G is the maximum detour eccentricity among the

vertices of G. These concepts were studied by Chartrand et al. [2].

A vertex x is said to lie on a u–v detour P if x is a vertex of P including the vertices u

and v. A set S ⊆ V is called a detour set if every vertex v in G lies on a detour joining a pair

of vertices of S. The detour number dn(G) of G is the minimum order of a detour set and any

detour set of order dn(G) is called a detour basis of G. A vertex v that belongs to every detour

basis of G is a detour vertex in G. If G has a unique detour basis S, then every vertex in S is

a detour vertex in G. These concepts were studied by Chartrand et al. [3].

In general, there are graphs G for which there exist edges which do not lie on a detour

joining any pair of vertices of V . For the graph G given in Figure 1.1, the edge v1v2 does not

lie on a detour joining any pair of vertices of V . This motivated us to introduce the concept of

weak edge detour set of a graph [5].
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Figure 1: G

The Smarandache distance diS(u, v) is the length d(u, v) + i(u, v) of a u − v path in G,

where 0 ≤ i(u, v) ≤ D(u, v) − d(u, v). A u − v path of length diS(u, v), if it exists, is called a

Smarandachely u−v i-detour. A set S ⊆ V is called a Smarandachely i-detour set if every edge

in G has both its ends in S or it lies on a Smarandachely i-detour joining a pair of vertices in

S. In particular, if i(u, v) = 0, then diS(u, v) = d(u, v) and if i(u, v) = D(u, v) − d(u, v), then

diS(u, v) = D(u, v). For i(u, v) = D(u, v) − d(u, v), such a Smarandachely i-detour set is called

a weak edge detour set in G. The weak edge detour number dnw(G) of G is the minimum order

of its weak edge detour sets and any weak edge detour set of order dnw(G) is called a weak edge

detour basis of G. A vertex v in a graph G is a weak edge detour vertex if v belongs to every

weak edge detour basis of G. If G has a unique weak edge detour basis S, then every vertex

in S is a weak edge detour vertex of G. These concepts were studied by A. P. Santhakumaran

and S. Athisayanathan [5].

To illustrate these concepts, we consider the graph G given in Figure 1.2. The sets S1 =

{u, x}, S2 = {u, y} and S3 = {u, z} are the detour bases of G so that dn(G) = 2 and the sets

S4 = {u, v, y} and S5 = {u, x, z} are the weak edge detour bases of G so that dnw(G) = 3. The

vertex u is a detour vertex and also a weak edge detour vertex of G.
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Figure 2: G

The following theorems are used in the sequel.

Theorem 1.1([5]) For any graph G of order p ≥ 2, 2 ≤ dnw(G) ≤ p.

Theorem 1.2([5]) Every end-vertex of a non-trivial connected graph G belongs to every weak

edge detour set of G. Also if the set S of all end-vertices of G is a weak edge detour set, then

S is the unique weak edge detour basis for G.

Theorem 1.3([5]) If T is a tree with k end-vertices, then dnw(T ) = k.

Theorem 1.4([5]) Let G be a connected graph with cut-vertices and S a weak edge detour set

of G. Then for any cut-vertex v of G, every component of G− v contains an element of S.

Throughout this paper G denotes a connected graph with at least two vertices.

§2. Forcing Weak Edge Detour Number of a Graph

First we determine the weak edge detour numbers of some standard classes of graphs so that

their forcing weak edge detour numbers will be determined.

Theorem 2.1 Let G be the complete graph Kp (p ≥ 3) or the complete bipartite graph Km,n (2 ≤
m ≤ n). Then a set S ⊆ V is a weak edge detour basis of G if and only if S consists of any

two vertices of G.

Proof Let G be the complete graph Kp(p ≥ 3) and S = {u, v} be any set of two vertices

of G. It is clear that D(u, v) = p − 1. Let xy ∈ E. If xy = uv, then both its ends are in S.

Let xy 6= uv. If x 6= u and y 6= v, then the edge xy lies on the u– v detour P : u, x, y, . . . , v of

length p− 1. If x = u and y 6= v, then the edge xy lies on the u– v detour P : u = x, y, . . . , v of

length p − 1. Hence S is a weak edge detour set of G. Since |S| = 2, S is a weak edge detour

basis of G.

Now, let S be a weak edge detour basis of G. Let S ′ be any set consisting of two vertices

of G. Then as in the first part of this theorem S ′ is a weak edge detour basis of G. Hence

|S| = |S ′| = 2 and it follows that S consists of any two vertices of G.

Let G be the complete bipartite graph Km,n (2 ≤ m ≤ n). Let X and Y be the bipartite

sets of G with |X | = m and |Y | = n. Let S = {u, v} be any set of two vertices of G.

Case 1 Let u ∈ X and v ∈ Y . It is clear that D(u, v) = 2m− 1. Let xy ∈ E. If xy = uv, then
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both of its ends are in S. Let xy 6= uv be such that x ∈ X and y ∈ Y . If x 6= u and y 6= v, then

the edge xy lies on the u– v detour P : u, y, x, . . . , v of length 2m− 1. If x = u and y 6= v, then

the edge xy lies on the u– v detour P : u = x, y, . . . , v of length 2m− 1. Hence S is a weak edge

detour set of G.

Case 2 Let u, v ∈ X . It is clear that D(u, v) = 2m− 2. Let xy ∈ E be such that x ∈ X and

y ∈ Y . If x 6= u, then the edge xy lies on the u– v detour P : u, y, x, . . . , v of length 2m− 2. If

x = u, then the edge xy lies on the u– v detour P : u = x, y, . . . , v of length 2m− 2. Hence S

is a weak edge detour set of G.

Case 3 Let u, v ∈ Y . It is clear that D(u, v) = 2m. Then, as in Case 2, S is a weak edge

detour set of G. Since |S| = 2, it follows that S is a weak edge detour basis of G.

Now, let S be a weak edge detour basis of G. Let S ′ be any set consisting of two vertices

of G. Then as in the first part of the proof of Km,n, S
′ is a weak edge detour basis of G. Hence

|S| = |S ′| = 2 and it follows that S consists of any two vertices adjacent or not. �

Theorem 2.2 Let G be an odd cycle of order p ≥ 3. Then a set S ⊆ V is a weak edge detour

basis of G if and only if S consists of any two adjacent vertices of G.

Proof Let S = {u, v} be any set of two adjacent vertices ofG. It is clear thatD(u, v) = p−1.

Then every edge e 6= uv of G lies on the u–v detour and both the ends of the edge uv belong to

S so that S is a weak edge detour set of G. Since |S| = 2, S is a weak edge detour basis of G.

Now, assume that S is a weak edge detour basis of G. Let S ′ be any set of two adjacent

vertices of G. Then as in the first part of this theorem S ′ is a weak edge detour basis of G.

Hence |S| = |S ′| = 2. Let S = {u, v}. If u and v are not adjacent, then since G is an odd

cycle, the edges of u– v geodesic do not lie on the u– v detour in G so that S is not a weak edge

detour set of G, which is a contradiction. Thus S consists of any two adjacent vertices of G. �

Theorem 2.3 Let G be an even cycle of order p ≥ 4. Then a set S ⊆ V is a weak edge detour

basis of G if and only if S consists of any two adjacent vertices or two antipodal vertices of G.

Proof Let S = {u, v} be any set of two vertices of G. If u and v are adjacent, then

D(u, v) = p − 1 and every edge e 6= uv of G lies on the u– v detour and both the ends of the

edge uv belong to S. If u and v are antipodal, then D(u, v) = p/2 and every edge e of G lies

on a u– v detour in G. Thus S is a weak edge detour set of G. Since |S| = 2, S is a weak edge

detour basis of G.

Now, assume that S is a weak edge detour basis of G. Let S ′ be any set of two adjacent

vertices or two antipodal vertices of G. Then as in the first part of this theorem S ′ is a weak

edge detour basis of G. Hence |S| = |S ′| = 2. Let S = {u, v}. If u and v are not adjacent and

u and v are not antipodal, then the edges of the u– v geodesic do not lie on the u– v detour in

G so that S is not a weak edge detour set of G, which is a contradiction. Thus S consists of

any two adjacent vertices or two antipodal vertices of G. �

Corollary 2.4 If G is the complete graph Kp (p ≥ 3) or the complete bipartite graph Km,n (2 ≤
m ≤ n) or the cycle Cp (p ≥ 3), then dnw(G) = 2.
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Proof This follows from Theorems 2.1, 2.2 and 2.3. �

Every connected graph contains a weak edge detour basis and some connected graphs may

contain several weak edge detour bases. For each weak edge detour basis S in a connected graph

G, there is always some subset T of S that uniquely determines S as the weak edge detour basis

containing T . We call such subsets ”forcing subsets” and we discuss their properties in this

section.

Definition 2.5 Let G be a connected graph and S a weak edge detour basis of G. A subset

T ⊆ S is called a forcing subset for S if S is the unique weak edge detour basis containing T .

A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing

weak edge detour number of S, denoted by fdnw(S), is the cardinality of a minimum forcing

subset for S. The forcing weak edge detour number of G, denoted by fdnw(G), is fdnw(G) =

min {fdnw(S)}, where the minimum is taken over all weak edge detour bases S in G.

Example 2.6 For the graph G given in Figure 2.1(a), S = {u, v, w} is the unique weak edge

detour basis so that fdnw(G) = 0. For the graph G given in Figure 2.1(b), S1 = {u, v, x},
S2 = {u, v, y} and S3 = {u, v, w} are the only weak edge detour bases so that fdnw(G) = 1.

For the graph G given in Figure 2.1(c), S4 = {u,w, x}, S5 = {u,w, y}, S6 = {v, w, x} and

S7 = {v, w, y} are the four weak edge detour bases so that fdnw(G) = 2.
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Figure 3: G

The following theorem is clear from the definitions of weak edge detour number and forcing

weak edge detour number of a connected graph G.

Theorem 2.7 For every connected graph G, 0 6 fdnw(G) 6 dnw(G).

Remark 2.8 The bounds in Theorem 2.7 are sharp. For the graph G given in Figure 2.1(a),

fdnw(G) = 0. For the cycle C3, fdnw(C3) = dnw(C3) = 2. Also, all the inequalities in Theorem

2.7 can be strict. For the graph G given in Figure 2.1(b), fdnw(G) = 1 and dnw(G) = 3 so

that 0 < fdnw(G) < dnw(G).

The following two theorems are easy consequences of the definitions of the weak edge detour

number and the forcing weak edge detour number of a connected graph.

Theorem 2.9 Let G be a connected graph. Then

a) fdnw(G) = 0 if and only if G has a unique weak edge detour basis,
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b) fdnw(G) = 1 if and only if G has at least two weak edge detour bases, one of which is

a unique weak edge detour basis containing one of its elements, and

c) fdnw(G) = dnw(G) if and only if no weak edge detour basis of G is the unique weak

edge detour basis containing any of its proper subsets.

Theorem 2.10 Let G be a connected graph and let F be the set of relative complements of the

minimum forcing subsets in their respective weak edge detour bases in G. Then
⋂

F∈F
F is the

set of weak edge detour vertices of G. In particular, if S is a weak edge detour basis of G, then

no weak edge detour vertex of G belongs to any minimum forcing subset of S.

Theorem 2.11 Let G be a connected graph and W be the set of all weak edge detour vertices

of G. Then fdnw(G) 6 dnw(G) − |W |.

Proof Let S be any weak edge detour basis S of G. Then dnw(G) = |S|, W ⊆ S and S is

the unique weak edge detour basis containing S −W . Thus fdnw(S) 6 |S −W | = |S| − |W | =

dnw(G) − |W |. �

Remark 2.12 The bound in Theorem 2.11 is sharp. For the graph G given in Figure 2.1(c),

dnw(G) = 3, |W | = 1 and fdnw(G) = 2 as in Example 2.6. Also, the inequality in Theorem

2.11 can be strict. For the graph G given in Figure 2.2, the sets S1 = {v1, v4} and S2 = {v2, v3}
are the two weak edge detour bases for G and W = ∅ so that dnw(G) = 2, |W | = 0 and

fdnw(G) = 1. Thus fdnw(G) < dnw(G) − |W |.
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Figure 4: G

In the following we determine fdnw(G) for certain graphs G.

Theorem 2.13 a) If G is the complete graph Kp (p ≥ 3) or the complete bipartite graph

Km,n (2 ≤ m ≤ n), then dnw(G) = fdnw(G) = 2.

b) If G is the cycle Cp (p ≥ 4), then dnw(G) = fdnw(G) = 2.

c) If G is a tree of order p ≥ 2 with k end-vertices, then dnw(G) = k, fdnw(G) = 0.

Proof a) By Theorem 2.1, a set S of vertices is a weak edge detour basis if and only if S

consists of any two vertices of G. For each vertex v in G there are two or more vertices adjacent

with v. Thus the vertex v belongs to more than one weak edge detour basis of G. Hence it

follows that no set consisting of a single vertex is a forcing subset for any weak edge detour

basis of G. Thus the result follows.

b) By Theorems 2.2 and 2.3, a set S of two adjacent vertices of G is a weak edge detour

basis of G. For each vertex v in G there are two vertices adjacent with v. Thus the vertex v
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belongs to more than one weak edge detour basis of G. Hence it follows that no set consisting of

a single vertex is a forcing subset for any weak edge detour basis of G. Thus the result follows.

c) By Theorem 1.3, dnw(G) = k. Since the set of all end-vertices of a tree is the unique

weak edge detour basis, the result follows from Theorem 2.9(a). �

The following theorem gives a realization result.

Theorem 2.14 For each pair a, b of integers with 0 6 a 6 b and b > 2, there is a connected

graph G with fdnw(G) = a and dnw(G) = b.

Proof The proof is divided into two cases following.

Case 1: a = 0. For each b > 2, let G be a tree with b end-vertices. Then fdnw(G) = 0 and

dnw(G) = b by Theorem 2.13(c).

Case 2: a > 1. For each i (1 6 i 6 a), let Fi : ui, vi, wi, xi, ui be the cycle of order 4 and let

H = K1,b−a be the star at v whose set of end-vertices is {z1, z2, . . . , zb−a}. Let G be the graph

obtained by joining the central vertex v of H to both vertices ui, wi of each Fi (1 6 i 6 a).

Clearly the graph G is connected and is shown in Figure 2.3.

Let W = {z1, z2, . . . , zb−a} be the set of all (b − a) end-vertices of G. First, we show

that dnw(G) = b. By Theorems 1.2 and 1.4, every weak edge detour basis contains W and

at least one vertex from each Fi (1 6 i 6 a). Thus dnw(G) > (b − a) + a = b. On the other

hand, since the set S1 = W ∪ {v1, v2, . . . , va} is a weak edge detour set of G, it follows that

dnw(G) 6 |S1| = b. Therefore dnw(G) = b.

Next we show that fdnw(G) = a. It is clear that W is the set of all weak edge detour

vertices of G. Hence it follows from Theorem 2.11 that fdnw(G) 6 dnw(G)−|W | = b−(b−a) =

a. Now, since dnw(G) = b, it is easily seen that a set S is a weak edge detour basis of G if and

only if S is of the form S = W ∪ {y1, y2, . . . , ya}, where yi ∈ {vi, xi} ⊆ V (Fi) (1 6 i 6 a). Let

T be a subset of S with |T | < a. Then there is a vertex yj (1 6 j 6 a) such that yj /∈ T . Let

sj ∈ {vj , xj} ⊆ V (Fj) distinct from yj . Then S ′ = (S − {yj}) ∪ {sj} is a weak edge detour

basis that contains T . Thus S is not the unique weak edge detour basis containing T . Thus

fdnw(S) > a. Since this is true for all weak edge detour basis of G, it follows that fdnw(G) > a

and so fdnw(G) = a. �
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