Scientia Magna

Vol. 3 (2007), No. 4, 45-47

Four problems related to the Pseudo-Smarandache-Squarefree function

Wenji Guan ${ }^{\dagger} \ddagger$
${ }^{\dagger}$ Department of Mathematics, Northwest University, Xi'an, Shaanxi, P.R.China
\ddagger Department of Mathematics, Weinan Teachers University, Weinan, Shaanxi, P.R.China

Abstract

For any positive integer n, the Pseudo-Smarandache-Squarefree function $Z w(n)$ is defined as the smallest positive integer m such that m^{n} is divisible by n. That is, $Z w(n)=\min \left\{m: m \in N, n \mid m^{n}\right\}$. In reference [2], Felice Russo proposed many problems and conjectures related to the Pseudo-Smarandache-Squarefree function $Z w(n)$. The main purpose of this paper is using the elementary methods to study several problems in [2], and four of them are solved.

Keywords Pseudo-Smarandache-Squarefree function, equation, positive integer solution.

§1. Introduction and results

For any positive integer n, the famous Pseudo-Smarandache-Squarefree function $Z w(n)$ is defined as the smallest positive integer m such that m^{n} is divisible by n. That is,

$$
Z w(n)=\min \left\{m: m \in N, n \mid m^{n}\right\}
$$

It is easy to see that if $n>1$, then

$$
Z w(n)=\prod_{p \mid n} p
$$

where $\prod_{p \mid n}$ denotes the product over all different prime divisors of n (see reference [1]). From this formula, we can easily get the value of $Z w(n)$. For example, $Z w(1)=1, Z w(2)=2, Z w(3)=$ $3, Z w(4)=2, Z w(5)=5, Z w(6)=6, Z w(7)=7, Z w(8)=2, Z w(9)=3, Z w(10)=10, \cdots$. In fact if n is a square-free number, then $Z w(n)=n$. In reference [2], Felice Russo studied the properties of $Z w(n)$, and proposed the following four problems:

Problem 1. Find all the values of n such that $Z w(n)=Z w(n+1) \cdot Z w(n+2)$.
Problem 2. Solve the equation $Z w(n) \cdot Z w(n+1)=Z w(n+2)$.
Problem 3. Solve the equation $Z w(n) \cdot Z w(n+1)=Z w(n+2) \cdot Z w(n+3)$.
Problem 4. Find all the values of n such that $S(n)=Z w(n)$, where $S(n)$ is the Smarandache function.

The main purpose of this paper is using the elementary methods to study these four problems, and solved them completely. That is, we shall prove the following conclusions:

Theorem 1. The following three equations have no positive integer solution.

$$
\begin{align*}
& Z w(n)=Z w(n+1) \cdot Z w(n+2) \tag{1}\\
& Z w(n) \cdot Z w(n+1)=Z w(n+2) \tag{2}\\
& Z w(n) \cdot Z w(n+1)=Z w(n+2) \cdot Z w(n+3) \tag{3}
\end{align*}
$$

Theorem 2. There exist infinite positive integers n such that the equation $S(n)=Z w(n)$, where $S(n)$ is the Smarandache function defined by $S(n)=\min \{k: k \in N, n \mid k!\}$.

§2. Proof of the theorems

In this section, we shall complete the proof of our theorems. First we prove that the equation $Z w(n)=Z w(n+1) \cdot Z w(n+2)$ has no positive integer solution. It is clear that $n=1$ is not a solution of this equation. In fact if $n=1$, then

$$
1=Z w(1) \neq 2 \cdot 3=Z w(2) \cdot Z w(3)
$$

If $n>1$, suppose that the equation (1) has one positive integer solution $n=n_{0}$, then

$$
Z w\left(n_{0}\right)=Z w\left(n_{0}+1\right) \cdot Z w\left(n_{0}+2\right) .
$$

For any prime divisor p of $n=n_{0}$, it is clear that $p \mid Z w\left(n_{0}\right)$.

From
we deduce that
That is,

$$
Z w\left(n_{0}\right)=Z w\left(n_{0}+1\right) \cdot Z w\left(n_{0}+2\right)
$$

$$
p \mid Z w\left(n_{0}+1\right) \cdot Z w\left(n_{0}+2\right)
$$

$$
p \mid Z w\left(n_{0}+1\right) \text { or } p \mid Z w\left(n_{0}+2\right)
$$

(a) If $p \mid Z w\left(n_{0}+1\right)$, then $p \mid\left(n_{0}+1\right)$, combining $p \mid n_{0}$ and $p \mid\left(n_{0}+1\right)$ we get $p \mid n_{0}+1-n_{0}=1$, this is a contradiction.
(b) If $p \mid Z w\left(n_{0}+2\right)$, then $p \mid\left(n_{0}+2\right)$, combining $p \mid n_{0}$ and $p \mid\left(n_{0}+2\right)$ we deduce that $p \mid n_{0}+2-n_{0}=2$, then we get $n_{0}=p=2$.

From equation (1) we have

$$
2=Z w(2) \neq 3 \cdot 2=Z w(3) \cdot Z w(4)
$$

It is not possible. So the equation (1) has no positive integer solution.
Using the similar method as in proving problem 1, we find that the equation (2) and equation (3) also have no positive integer solution. This completes the proof of Theorem 1.

In order to prove Theorem 2, we need some important properties of the Smarandache function $S(n)$, which we mentioned as the following:

Lemma 1. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ is the prime powers factorization of n, then

$$
S(n)=\max _{1 \leq i \leq k}\left\{S\left(p_{i}^{\alpha_{i}}\right)\right\}
$$

Proof. See reference [3].
Lemma 2. If p be a prime, then $S\left(p^{k}\right) \leq k p$; If $k<p$, then $S\left(p^{k}\right)=k p$, where k is any positive integer.

Proof. See reference [4].
Now we use these two simple lemmas to prove our Theorem 2. It's clear that all prime p are the solutions of the equation $S(n)=Z w(n)$. So there are infinite positive integers n satisfying the equation $S(n)=Z w(n)$.

Now we construct infinite composite numbers n satisfying the equation $S(n)=Z w(n)$, let $n=p_{1} \cdot p_{2} \cdots p_{k-1} \cdot p_{k}^{\alpha_{k}}$, where p_{i} are the different primes, and $p_{k}>\alpha_{k}=p_{1} p_{2} \cdots p_{k-1}$. This time, from the definition of $S(n)$ and $Z w(n)$ we have $S(n)=p_{1} \cdot p_{2} \cdots p_{k-1} \cdot p_{k}$ and $Z w(n)=p_{1} \cdot p_{2} \cdots p_{k-1} \cdot p_{k}$. So all composite numbers $n=p_{1} \cdot p_{2} \cdots p_{k-1} \cdot p_{k}^{\alpha_{k}}$ (where p_{i} are the different primes, and $\left.p_{k}>\alpha_{k}=p_{1} p_{2} \cdots p_{k-1}\right)$ satisfying the equation $S(n)=Z w(n)$.

Note that k be any positive integer and there are infinite primes, so there are infinite composite numbers n satisfying the equation $S(n)=Z w(n)$.

This complete the proof of Theorem 2.

References

[1] Maohua Le, On the Pseudo-Smarandache-Squarefree function, Smarandache Notions Journal, 13(2002), 229-236.
[2] Felice Russo, A set of new Smarandache function, sequences and conjectures in number theory, Lupton USA, 2000.
[3] BALACENOIUI, SELEACU V., History of the Smarandache function, Smarandache Notions Journal, 1999, No. 10, 199-201.
[4] F. Mark, M. Patrick, Bounding the Smarandache function, Smarandache Journal, 13 (2002).
[5] Ribenboim, P., The book of prime number records, New York, Springer-Verleg, 1989.
[6] Birkhoff, G. D. and Vandiver, H. S., On the integral divisor of $a^{n}-b^{n}$, Ann.of Math., 2(1904).
[7] F.Smarandache, Only Problems, Not Solutions, Chicago, Xiquan Publishing House, 1993.
[8] Pan Chengdong and Pan Chengbiao, Elementary Number Theory, Beijing University Press, Beijing, 1992.
[9] Yi Yuan and Kang Xiaoyu, Research On Smarandache Problems, High American Press, 2006.

