THE SMARANDACHE FRIENDLY NATURAL NUMBER PAIRS

Maohua Le

Abstract. In this paper we completely determinate all the Smarandache friendly natural number pairs.

Key words: Smarandache friendly natural number pair, Pell equation, positive integer solution

Let \mathbf{Z}, \mathbf{N} be the sets of all integers and positive integers respectively. Let a, b be two positive integers with $a<b$. Then the pair (a, b) is called a Smarandache friendly natural number pair if

$$
\begin{equation*}
a+(a+1)+\cdots \cdots+b=a b \tag{1}
\end{equation*}
$$

For example, $(1,1),(3,6),(15,35),(85,204)$ are Smarandache friendly natural number pairs. In [2], Murthy showed that there exist infinitely many such pairs. In this paper we shall completely determinate all Smarandache friendly natural number pairs.

Let

$$
\begin{equation*}
\alpha=1+\sqrt{2}, \quad \beta=1-\sqrt{2} . \tag{2}
\end{equation*}
$$

For any positive integer n, let

$$
\begin{equation*}
P(n)=\frac{1}{2}\left(\alpha^{n}+\beta^{n}\right), Q(n)=\frac{1}{2 \sqrt{2}}\left(\alpha^{n}-\beta^{n}\right) . \tag{3}
\end{equation*}
$$

Notice that $1+\sqrt{2}$ and $(1+\sqrt{2})^{2}=3+2 \sqrt{2}$ are the fundamental solutions of Pell equations

$$
\begin{equation*}
x^{2}-2 y^{2}=-1, x, y \in \mathrm{~N}, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{2}-2 y^{2}=1, x, y \in \mathbf{N}, \tag{5}
\end{equation*}
$$

respectively. By [1, Chapter 8], we obtain the following two lemmas immediately.

Lemma 1. All solutions (x, y) of (4) are given by

$$
\begin{equation*}
x=P(2 m+1), y=Q(2 m+1), \quad m \in \mathbf{Z}, m \geqslant 0 \tag{6}
\end{equation*}
$$

Lemma 2. All solutions (x, y) of (5) are given by

$$
\begin{equation*}
x=P(2 m), y=Q(2 m), m \in \mathbf{N} . \tag{7}
\end{equation*}
$$

We now prove a general result as follows.
Theorem. If (a, b) is a Smarandache friendly natural number pair, then either
(8) $\quad a=(P(2 m+1)+2 Q(2 m+1)) Q(2 m+1)$,

$$
b=(P(2 m+1)+2 Q(2 m+1))(P(2 m+1)+Q(2 m+1)), m \in \mathrm{Z}, m \geq 0
$$

or
(9) $a=(P(2 m)+Q(2 m)) P(2 m)$,
$b=(P(2 m)+Q(2 m))(P(2 m)+2 Q(2 m)), m \in \mathrm{~N}$.
Proof. Let (a, b) be a Smarandache friendly natural number pair.
Since

$$
\begin{aligned}
& \text { (10) } a+(a+1)+\ldots+b=(1+2+\ldots+b)-(1+2+\ldots+(a-1)) \\
& \quad=\frac{1}{2} b(b+1)-\frac{1}{2} a(a-1)=\frac{1}{2}(b+a)(b-a+1)
\end{aligned}
$$

we get from (1) that

$$
\begin{equation*}
(b+a)(b-a+1)=2 a b . \tag{1}
\end{equation*}
$$

Let $d=\operatorname{gcd}(a, b)$. Then we have

$$
\begin{equation*}
a=d a_{1}, \quad b=d b_{1}, \tag{12}
\end{equation*}
$$

where a_{1}, b_{1} are positive integers satisfying

$$
a_{1}<b_{1}, \operatorname{gcd}\left(a_{1}, b_{1}\right)=1
$$

Substitute (12) into (11), we get

$$
\begin{equation*}
\left(b_{1}+a_{1}\right)\left(d\left(b_{1}-a_{1}\right)+1\right)=2 d a_{1} b_{1} . \tag{14}
\end{equation*}
$$

Since gcd $\left(a_{1}, b_{1}\right)=1$ by (13), we get $\operatorname{gcd}\left(a_{1} b_{1}, a_{1}+b_{1}\right)=1$.
Similarly, we have $\operatorname{gcd}\left(d, d\left(b_{1}-a_{1}\right)+1\right)=1$. Hence, we get from (14) that

$$
\begin{equation*}
d\left|b_{1}+a_{1}, a_{1} b_{1}\right| d\left(b_{1}-a_{1}\right)+1 . \tag{15}
\end{equation*}
$$

Therefore, by (14) and (15), we obtain either

$$
\begin{equation*}
b_{1}+a_{1}=d, \quad d\left(b_{1}-a_{1}\right)+1=2 a_{1} b_{1} \tag{16}
\end{equation*}
$$

or

$$
\begin{equation*}
b_{1}+a_{1}=2 d, \quad d\left(b_{1}-a_{1}\right)+1=a_{1} b_{1} \tag{17}
\end{equation*}
$$

If (16) holds, then we have

$$
\begin{equation*}
d\left(b_{1}-a_{1}\right)+1=\left(b_{1}+a_{1}\right)\left(b_{1}-a_{1}\right)+1=b_{1}^{2}-a_{1}^{2}+1=2 a_{1} b_{1} . \tag{18}
\end{equation*}
$$

whence we get

$$
\begin{equation*}
\left(b_{1}-a_{1}\right)^{2}-2 a_{1}^{2}=-1 . \tag{19}
\end{equation*}
$$

It implies that $(x, y)=\left(b_{1}-a_{1}, a_{1}\right)$ is a solution of (4). Thus, by Lemma 1 , we get (8) by (16).

If (17) holds, then we have

$$
\begin{equation*}
d\left(b_{1}-a_{1}\right)+1=\frac{1}{2}\left(b_{1}+a_{1}\right)\left(b_{1}-a_{1}\right)+1=\frac{1}{2}\left(b_{1}^{2}-a_{1}^{2}\right)+1=a_{1} b_{1} . \tag{20}
\end{equation*}
$$

Since gcd $\left(a_{1}, b_{1}\right)=1$ by (13), we see from (17) that both a_{1} and b_{1} are odd. If implies that $\left(b_{1}-a_{1}\right) / 2$ is a positive integer. By (20), we get

$$
\begin{equation*}
a_{1}^{2}-2\left(\frac{b_{1}-a_{1}}{2}\right)^{2}=1 . \tag{21}
\end{equation*}
$$

We find from (21) that $(x, y)=\left(a_{1},\left(b_{1}-a_{1}\right) / 2\right)$ is a solution of (5). Thus, by Lemma 2, we obtain (9) by (17). The theorem is proved.

References

[1] Mordell, L. J., Diophantine equations, London: Academic Press, 1968.
[2] Murthy, A., Smarandache friendly numbers and a few more sequences, Smarandache Notions J., 2001, 12: 264-267.

Department of Mathematics
Zhanjiang Normal College
Zhanjing, Guangdong
P. R. CHINA

