Scientia Magna

Vol. 1 (2005), No. 2, 109-110

The function equation $S(n)=Z(n)^{1}$

Maohua Le
Department of Mathematics, Zhanjiang Normal College
29 Cunjin Road, Chikan Zhanjiang, Guangdong, P. R. China

Abstract

For any positive integer n, let $S(n)$ and $Z(n)$ denote the Smarandache function and the pseudo Smarandache function respectively. In this paper we prove that the equation $S(n)=Z(n)$ has infinitely many positive integer solutions n. Keywords Smarandache function; Pseudo Smarandache function; Diophantine equation.

For any positive integers n, let $S(n)$ and $Z(n)$ denote the Smarandache function and pseudo Smarandache function respectively. In [1], Ashbacher proposed two problems concerning the equation

$$
\begin{equation*}
S(n)=Z(n) \tag{1}
\end{equation*}
$$

as follows.
Problem 1. Prove that if n is an even perfect number, then n satisfies (1).
Problem 2. Prove that (1) has infinitely many positive integer solutions n.
In this paper we completely solve these problems as follows.
Theorem 1. If n is an even perfect number, then (1) holds.
Theorem 2. (1) has infinitely many positive integer solutions n.
Proof of Theorem 1. By [2, Theorem 277], if n is an even perfect number, then

$$
\begin{equation*}
n=2^{p-1}\left(2^{p}-1\right) \tag{2}
\end{equation*}
$$

where p is a prime. By [3] and [4], we have

$$
\begin{equation*}
S(n)=2^{p}-1 \tag{3}
\end{equation*}
$$

On the other hand, since

$$
\begin{equation*}
\frac{1}{2}\left(2^{p}-1\right)\left(\left(2^{p}-1\right)+1\right)=n \tag{4}
\end{equation*}
$$

by (2), we get

$$
\begin{equation*}
Z(n)=2^{p}-1 \tag{5}
\end{equation*}
$$

immediately. The combination of (3) and (5) yields (1). Thus, the theorem is proved.

[^0]Proof of Theorem 2. Let p be an odd prime with $p \equiv 3(\bmod 4)$. Since $S(2)=2$ and $S(p)=p$, we have

$$
\begin{equation*}
S(2 p)=\max (S(2), S(p))=\max (2, p)=p \tag{6}
\end{equation*}
$$

Let $t=Z(2 p)$, By the define of $Z(n)$, we have

$$
\begin{equation*}
\frac{1}{2} t(t+1) \equiv 0(\bmod 2 p) . \tag{7}
\end{equation*}
$$

It implies that either $t \equiv 0(\bmod p)$ or $t+1 \equiv 0(\bmod p)$. Hence, we get $t \geq p-1$. If $t=p-1$, then from (7) we obtain

$$
\begin{equation*}
\frac{1}{2}(p-1) p \equiv 0(\bmod 2 p) . \tag{8}
\end{equation*}
$$

whence we get

$$
\begin{equation*}
\frac{1}{2}(p-1) p \equiv 0(\bmod 2) . \tag{9}
\end{equation*}
$$

But, since $p \equiv 3(\bmod 4),(9)$ is impossible. So we have

$$
\begin{equation*}
t \geq p \tag{10}
\end{equation*}
$$

Since $p+1 \equiv 0(\bmod 4)$, we get

$$
\begin{equation*}
\frac{1}{2} p(p+1) \equiv 0(\bmod 2 p) \tag{11}
\end{equation*}
$$

and $t=p$ by (10). Therefore, by (6), $n=2 p$ is a solution of (1). Notice that there exist infinitely many primes p with $p \equiv 3(\bmod 4)$. It implies that (1) has infinitely many positive integer solutions n. The theorem is proved.

References

[1] C.Ashbacher, Problems, Smrandache Notions J. 9(1998), 141-151.
[2] G.H.Hardy and E.M.Wright, An introduction to the theory of numbers, Oxford University Press, Oxford, 1938.

[^0]: This work is supported by N.S.F. of P. R. China(10271104), the Guangdong Provincial Natural Science
 ${ }^{1}$ Foundation(011781) and the Natural Science Foundation of the Education Department of Guangdong Province(0161).

