ON THE SMARANDCHE FUNCTION AND ITS HYBRID MEAN VALUE

Yao Weili
Research Center for Basic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R.China

Abstract

For any positive integer n, let $S(n)$ denotes the Smarandache function, then $S(n)$ is defined as the smallest $m \in N^{+}$with $n \mid m!$. In this paper, we study the asymptotic property of a hybrid mean value of the Smarandache function and the Mangoldt function, and give an interesting hybrid mean value formula for it.

Keywords: the Smarandche function; the Mangoldt function; Mean value.

§1. Introduction

For any positive integer n, let $S(n)$ denotes the Smarandache function, then $S(n)$ is defined as the smallest $m \in N^{+}$with $n \mid m!$. From the definition of $S(n)$, one can easily deduce that if $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ is the prime power factorization of n, then

$$
S(n)=\max _{1 \leq i \leq k} S\left(p_{i}^{\alpha_{i}}\right) .
$$

About the arithmetical properties of $S(n)$, many people had studied it before (see reference [2]). In this paper, we study the asymptotic property of a hybrid mean value of the Smarandache function and the Mangoldt function, and give an interesting hybrid mean value formula for it. That is, we shall prove the following:

Theorem. For any real number $x \geq 1$, we have the asymptotic formula

$$
\sum_{n \leq x} \wedge(n) S(n)=\frac{x^{2}}{4}+O\left(\frac{x^{2} \log \log x}{\log x}\right),
$$

where $\wedge(n)$ is the Mangoldt function defined by

$$
\wedge(n)=\left\{\begin{array}{cl}
\log p, & \text { if } n=p^{\alpha}(\alpha \geq 1) ; \\
0, & \text { otherwise }
\end{array}\right.
$$

§2. Proof of the theorem

In this section, we shall complete the proof of the theorem. Firstly, we need following:

Lemma. For any prime p and any positive integer α, we have

$$
S\left(p^{\alpha}\right)=(p-1) \alpha+O\left(\frac{p \log \alpha}{\log p}\right)
$$

Proof. From Theorem 1.4 of reference [3], we can obtain the estimate.
Now we use the above Lemma to complete the proof of the theorem. From the definition of $\wedge(n)$, we have

$$
\begin{aligned}
& \sum_{n \leq x} \wedge(n) S(n) \\
= & \sum_{p^{\alpha} \leq x} S\left(p^{\alpha}\right) \log p \\
= & \sum_{p \leq x} \sum_{\alpha \leq \log x}^{\log p} \log p\left((p-1) \alpha+O\left(\frac{p \log \alpha}{\log p}\right)\right) \\
= & \sum_{p \leq x}(p-1) \log p \sum_{\alpha \leq \frac{\log x}{\log p}} \alpha+O\left(\sum_{p \leq x} p \sum_{\alpha \leq \frac{\log x}{\log p}} \log \alpha\right) .
\end{aligned}
$$

Applying Euler's summation formula, we can get

$$
\sum_{\alpha \leq \frac{\log x}{\log p}} \alpha=\frac{1}{2} \frac{\log ^{2} x}{\log ^{2} p}+O\left(\frac{\log x}{\log p}\right)
$$

and

$$
\sum_{\alpha \leq \log x}^{\log p} \log \alpha=\frac{\log x}{\log p} \log \frac{\log x}{\log p}-\frac{\log x}{\log p}+O\left(\log \frac{\log x}{\log p}\right)
$$

Therefore we have

$$
\begin{equation*}
\sum_{n \leq x} \wedge(n) S(n)=\frac{1}{2} \log ^{2} x \sum_{p \leq x} \frac{p}{\log p}+O\left(\log x \log \log x \sum_{p \leq x} \frac{p}{\log p}\right) \tag{1}
\end{equation*}
$$

If $x>0$ let $\pi(x)$ denote the number of primes not exceeding x, and let

$$
a(n)= \begin{cases}1, & \text { if } n \text { is a prime } \\ 0, & \text { otherwise }\end{cases}
$$

then $\pi(x)=\sum_{p \leq x} a(n)$. Note the asymptotic formula

$$
\pi(x)=\frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right)
$$

and from Abel's identity, we have

$$
\begin{align*}
& \sum_{p \leq x} \frac{p}{\log p} \\
= & \sum_{n \leq x} a(n) \frac{n}{\log n} \\
= & \pi(x) \frac{x}{\log x}-\pi(2) \frac{2}{\log 2}-\int_{2}^{x} \pi(t) d\left(\frac{t}{\log t}\right) \\
= & \frac{x}{\log x}\left(\frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right)\right)-\int_{2}^{x}\left(\frac{t}{\log t}+O\left(\frac{t}{\log ^{2} t}\right)\right) d\left(\frac{t}{\log t}\right) \\
= & \frac{1}{2} \frac{x^{2}}{\log ^{2} x}+O\left(\frac{x^{2}}{\log ^{3} x}\right) . \tag{2}
\end{align*}
$$

Combining (1) and (2), we have

$$
\begin{aligned}
& \sum_{n \leq x} \wedge(n) S(n) \\
= & \frac{1}{4} x^{2}+O\left(\frac{x^{2}}{\log x}\right)+O\left(\log x \log \log x \frac{x^{2}}{\log ^{2} x}\right) \\
= & \frac{1}{4} x^{2}+O\left(\frac{x^{2} \log \log x}{\log x}\right)
\end{aligned}
$$

This completes the proof of the theorem.

References

[1] F. Smarandache, Only Problems, Not Solutions, Xiquan Publishing House, Chicago, 1993.
[2] Jozef Sandor, On an generalization of the Smarandache function, Notes Numb. Th. Discr. Math. 5 (1999), 41-51.
[3] Mark Farris and Patrick Mitchell, Bounding the Smarandache Function, Smarandache Notions Journal 13 (2003), 37-42.
[4] T. M. Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1976.

