Scientia Magna

Vol. 3 (2007), No. 2, 41-43

On a conjecture involving the function $S L^{*}(n)$

Yanrong Xue
Department of Mathematics, Northwest University
Xi'an, Shaanxi, P.R.China
Received February 4, 2007

Abstract

In this paper, we define a new arithmetical function $S L^{*}(n)$, which is related with the famous F.Smarandache LCM function $S L(n)$. Then we studied the properties of $S L^{*}(n)$, and solved a conjecture involving function $S L^{*}(n)$.

Keywords F.Smarandache LCM function, $S L^{*}(n)$ function, conjecture.

§1. Introduction and result

For any positive integer n, the famous F.Smarandache LCM function $S L(n)$ is defined as the smallest positive integer k such that $n \mid[1,2, \cdots, k]$, where $[1,2, \cdots, k]$ denotes the least common multiple of all positive integers from 1 to k. For example, the first few values of $S L(n)$ are $S L(1)=1, S L(2)=2, S L(3)=3, S L(4)=4, S L(5)=5, S L(6)=3, S L(7)=7$, $S L(8)=8, S L(9)=9, S L(10)=5, S L(11)=11, S L(12)=4, S L(13)=13, S L(14)=7$, $S L(15)=5, S L(16)=16, \cdots \cdots$. From the definition of $S L(n)$ we can easily deduce that if $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ be the factorization of n into primes powers, then

$$
S L(n)=\max \left\{p_{1}^{\alpha_{1}}, p_{2}^{\alpha_{2}}, \cdots, p_{r}^{\alpha_{r}}\right\}
$$

About the elementary properties of $S L(n)$, many people had studied it, and obtained some interesting results, see references [2], [4] and [5]. For example, Murthy [2] porved that if n be a prime, then $S L(n)=S(n)$, where $S(n)$ be the F.Smarandache function. That is, $S(n)=$ $\min \{m: n \mid m!, m \in N\}$. Simultaneously, Murthy [2] also proposed the following problem:

$$
\begin{equation*}
S L(n)=S(n), \quad S(n) \neq n ? \tag{1}
\end{equation*}
$$

Le Maohua [4] solved this problem completely, and proved the following conclusion:
Every positive integer n satisfying (1) can be expressed as

$$
n=12 \text { or } n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}} p
$$

where $p_{1}, p_{2}, \cdots, p_{r}, p$ are distinct primes and $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}$ are positive integers satisfying $p>p_{i}^{\alpha_{i}}, i=1,2, \cdots, r$.

Zhongtian Lv [5] proved that for any real number $x>1$ and fixed positive integer k, we have the asymptotic formula

$$
\sum_{n \leq x} S L(n)=\frac{\pi^{2}}{12} \cdot \frac{x^{2}}{\ln x}+\sum_{i=2}^{k} \frac{c_{i} \cdot x^{2}}{\ln ^{i} x}+O\left(\frac{x^{2}}{\ln ^{k+1} x}\right)
$$

where $c_{i}(i=2,3, \cdots, k)$ are computable constants.
Now, we define another function $S L^{*}(n)$ as follows: $S L^{*}(1)=1$, and if $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ be the factorization of n into primes powers, then

$$
S L^{*}(n)=\min \left\{p_{1}^{\alpha_{1}}, p_{2}^{\alpha_{2}}, \cdots, p_{r}^{\alpha_{r}}\right\}
$$

where $p_{1}<p_{2}<\cdots<p_{r}$ are primes.
About the elementary properties of function $S L^{*}(n)$, it seems that none has studied it yet, at least we have not seen such a paper before. It is clear that function $S L^{*}(n)$ is the dual function of $S L(n)$. So it has close relations with $S L(n)$. In this paper, we use the elementary method to study the following problem: For any positive integer n, whether the summation

$$
\begin{equation*}
\sum_{d \mid n} \frac{1}{S L^{*}(n)} \tag{2}
\end{equation*}
$$

is a positive integer? where $\sum_{d \mid n}$ denotes the summation over all positive divisors of n.
We conjecture that there is no any positive integer $n>1$ such that (2) is an integer. In this paper, we solved this conjecture, and proved the following:

Theorem. There is no any positive integer $n>1$ such that (2) is an positive integer.

§2. Proof of the theorem

In this section, we shall complete the proof of the theorem directly. For any positive integer $n>1$, let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ be the factorization of n into primes powers, from the definition of $S L^{*}(n)$ we know that

$$
\begin{equation*}
S L^{*}(n)=\min \left\{p_{1}^{\alpha_{1}}, p_{2}^{\alpha_{2}}, \cdots, p_{r}^{\alpha_{r}}\right\} \tag{3}
\end{equation*}
$$

Now if $S L(n)=p_{k}^{\alpha_{k}}($ where $1 \leq k \leq r)$ and n satisfy

$$
\sum_{d \mid n} \frac{1}{S L^{*}(d)}=N, \quad \text { a positive integer }
$$

then let $n=m \cdot p_{k}^{\alpha_{k}}$ with $\left(m, p_{k}\right)=1$, note that for any $d \mid m$ with $d>1, S L^{*}\left(p_{k}^{i} \cdot d\right) \mid m \cdot p_{k}^{\alpha_{k}-1}$, where $i=0,1,2, \cdots, \alpha_{k}$. We have

$$
\begin{aligned}
N & =\sum_{d \mid n} \frac{1}{S L^{*}(d)}=\sum_{i=0}^{\alpha_{k}} \sum_{d \mid m} \frac{1}{S L^{*}\left(d \cdot p_{k}^{i}\right)}=\sum_{i=0}^{\alpha_{k}} \frac{1}{S L^{*}\left(p_{k}^{i}\right)}+\sum_{i=0}^{\alpha_{k}} \sum_{\substack{d \mid m \\
d>1}} \frac{1}{S L^{*}\left(d \cdot p_{k}^{i}\right)} \\
& =1+\frac{1}{p_{k}}+\cdots+\frac{1}{p_{k}^{\alpha_{k}}}+\sum_{\substack{i=0}}^{\alpha_{k}} \sum_{\substack{d \mid m \\
d>1}} \frac{1}{S L^{*}\left(d \cdot p_{k}^{i}\right)},
\end{aligned}
$$

or

$$
\begin{equation*}
m \cdot p_{k}^{\alpha_{k}-1} \cdot N=\sum_{i=0}^{\alpha_{k}} \sum_{\substack{d \mid m \\ d>1}} \frac{m \cdot p_{k}^{\alpha_{k}-1}}{S L^{*}\left(d \cdot p_{k}^{i}\right)}+m \cdot p_{k}^{\alpha_{k}-1} \cdot\left(1+\frac{1}{p_{k}}+\cdots+\frac{1}{p_{k}^{\alpha_{k}-1}}\right)+\frac{m}{p_{k}} \tag{4}
\end{equation*}
$$

It is clear that for any $d \mid m$ with $d>1$,

$$
\sum_{i=0}^{\alpha_{k}} \sum_{\substack{d \mid m \\ d>1}} \frac{m \cdot p_{k}^{\alpha_{k}-1}}{S L^{*}\left(d \cdot p_{k}^{i}\right)} \text { and } m \cdot p_{k}^{\alpha_{k}-1} \cdot\left(1+\frac{1}{p_{k}}+\cdots+\frac{1}{p_{k}^{\alpha_{k}-1}}\right)
$$

are integers, but $\frac{m}{p_{k}}$ is not an integer. This contradicts with (4). So the theorem is true. This completes the proof of the theorem.

Open problem. If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ be the factorization of n into primes powers, whether there exists an integer $n \geq 2$ such that $\sum_{d \mid n} \frac{1}{S L(n)}$ is an integer?

References

[1] Pan Chengdong and Pan Chengbiao, The elementary proof of the prime theorem, Shanghai Science and Technology Press, Shanghai, 1988.
[2] A. Murthy, Some notions on least common multiples, Smarandache Notions Journal, 12(2001), 307-309.
[3] I. Balacenoiu and V. Seleacu, History of the Smarandache function, Smarandache Notions Journal, 10(1999), 192-201.
[4] Le Maohua, An equation concerning the Smarandache LCM function, Smarandache Notions Journal, 14(2004),186-188.
[5] Zhongtian Lv, On the F. Smarandache LCM function and its mean value, Scientia Magna, 3(2007), No. 1, 22-25.
[6] Tom M. Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1976.
[7] F. Smarandache, Only Problems, Not Solutions, Chicago, Xiquan Publishing House, 1993.

