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§1. Introduction

A Pseudo-Euclidean space is a particular Smarandache space defined on a Euclidean space Rn

such that a straight line passing through a point p may turn an angle θp ≥ 0. If θp > 0 , then p

is called a non-Euclidean point. Otherwise, a Euclidean point. In this paper, normed spaces are

considered to be Euclidean, i.e., every point is Euclidean. In [7], S. Gähler introduced n-norms

on a linear space. A detailed theory of n-normed linear space can be found in [9,12,14,15].

In [9], H. Gunawan and M. Mashadi gave a simple way to derive an (n − 1)- norm from the

n-norm in such a way that the convergence and completeness in the n-norm is related to those

in the derived (n − 1)-norm. A detailed theory of fuzzy normed linear space can be found

in [1,2,4,5,6,11,13,18]. In [16], A. Narayanan and S. Vijayabalaji have extended the n-normed

linear space to fuzzy n-normed linear space and in [20] the authors have studied the completeness

of fuzzy n-normed spaces.

The main purpose of this paper is to study the results concerning infinite series (see,

[3,17,19,21]) in fuzzy n-normed spaces. In section 2, we quote some basic definitions of fuzzy

n-normed spaces. In section 3, we consider the absolutely convergent series in fuzzy n- normed

spaces and obtain some results on it. In section 4, we study the property of finite convergence

sequences in fuzzy n-normed spaces. In the last section we introduce and study the concept of
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function preserving convergence of series in fuzzy n-norm spaces and obtain some results.

§2. Preliminaries

Let n be a positive integer, and let X be a real vector space of dimension at least n. We recall

the definitions of an n-seminorm and a fuzzy n-norm [16].

Definition 2.1 A function (x1, x2, . . . , xn) 7→ ‖x1, . . . , xn‖ from Xn to [0,∞) is called an

n-seminorm on X if it has the following four properties:

(S1) ‖x1, x2, . . . , xn‖ = 0 if x1, x2, . . . , xn are linearly dependent;

(S2) ‖x1, x2, . . . , xn‖ is invariant under any permutation of x1, x2, . . . , xn;

(S3) ‖x1, . . . , xn−1, cxn‖ = |c|‖x1, , . . . , xn−1, xn‖ for any real c;

(S4) ‖x1, . . . , xn−1, y + z‖ 6 ‖x1, . . . , xn−1, y‖ + ‖x1, . . . , xn−1, z‖.

An n-seminorm is called a n-norm if ‖x1, x2, . . . , xn‖ > 0 whenever x1, x2, . . . , xn are

linearly independent.

Definition 2.2 A fuzzy subset N of Xn × R is called a fuzzy n-norm on X if and only if:

(F1) For all t 6 0, N(x1, x2, . . . , xn, t) = 0;

(F2) For all t > 0, N(x1, x2, . . . , xn, t) = 1 if and only if x1, x2, . . . , xn are linearly dependent;

(F3) N(x1, x2, . . . , xn, t) is invariant under any permutation of x1, x2, . . . , xn;

(F4) For all t > 0 and c ∈ R, c 6= 0,

N(x1, x2, . . . , cxn, t) = N(x1, x2, . . . , xn,
t

|c|);

(F5) For all s, t ∈ R,

N(x1, . . . , xn−1, y + z, s+ t) ≥ min {N(x1, . . . , xn−1, y, s), N(x1, . . . , xn−1, z, t)} .

(F6) N(x1, x2, . . . , xn, t) is a non-decreasing function of t ∈ R and

lim
t→∞

N(x1, x2, . . . , xn, t) = 1.

The pair (X,N) will be called a fuzzy n−normed space.

Theorem 2.1 Let A be the family of all finite and nonempty subsets of fuzzy n-normed space

(X,N) and A ∈ A. Then the system of neighborhoods

B = {B(t, r, A) : t > 0, 0 < r < 1, A ∈ A}
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where B(t, r, A) = {x ∈ X : N(a1, · · · , an−1, x, t) > 1 − r, a1, · · · , an−1 ∈ A} is a base of the

null vector θ, for a linear topology on X, named N -topology generated by the fuzzy n-norm N .

Proof We omit the proof since it is similar to the proof of Theorem 3.6 in [8]. �

Definition 2.3 A sequence {xk} in a fuzzy n− normed space (X,N) is said to converge

to x if given r > 0, t > 0, 0 < r < 1, there exists an integer n0 ∈ N such that

N(x1, x2, . . . , xn−1, xk − x, t) > 1 − r for all k ≥ n0.

Definition 2.4 A sequence {xk} in a fuzzy n− normed space (X,N) is said to be Cauchy

sequence if given ǫ > 0, t > 0, 0 < ǫ < 1, there exists an integer n0 ∈ N such that

N(x1, x2, . . . , xn−1, xm − xk, t) > 1 − ǫ for all m, k ≥ n0.

Theorem 2.1([13]) Let N be a fuzzy n− norm on X. Define for x1, x2, . . . , xn ∈ X and

α ∈ (0, 1)

‖x1, x2, . . . , xn‖α = inf {t : N(x1, x2, . . . , xn, t) ≥ α } .

Then the following statements hold.

(A1) for every α ∈ (0, 1), ‖•, •, . . . , •‖α is an n− seminorm on X ;

(A2) If 0 < α < β < 1 and x1, x2, . . . , xn ∈ X then

‖x1, x2, . . . , xn‖α ≤ ‖x1, x2, . . . , xn‖β .

Example 2.3[10, Example 2.3] Let ‖•, •, . . . , •‖ be a n-norm onX . Then defineN(x1, x2, . . . , xn, t) =

0 if t ≤ 0 and, for t > 0,

N(x1, x2, . . . , xn, t) =
t

t+ ‖x1, x2, . . . , xn‖
.

Then the seminorms (2.1) are given by

‖x1, x2, . . . , xn‖α =
α

1 − α
‖x1, x2, . . . , xn‖.

§3. Absolutely Convergent Series in Fuzzy n−Normed Spaces

In this section we introduce the notion of the absolutely convergent series in a fuzzy n-normed

space (X,N) and give some results on it.

Definition 3.1 The series
∞∑

k=1

xk is called absolutely convergent in (X,N) if

∞∑

k=1

‖a1, ..., an−1, xk‖α <∞

for all a1, ..., an−1 ∈ X and all α ∈ (0, 1).
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Using the definition of ‖...‖α the following lemma shows that we can express this condition

directly in terms of N.

Lemma 3.1 The series
∞∑

k=1

xk is absolutely convergent in (X,N) if, for every a1, ..., an−1 ∈ X

and every α ∈ (0, 1) there are tk ≥ 0 such that
∞∑

k=1

tk < ∞ and N(a1, . . . , an−1, xk, tk) ≥ α

for all k.

proof Let
∞∑

k=1

xk be absolutely convergent in (X,N). Then

∞∑

k=1

‖a1, ..., an−1, xk‖α <∞

for every a1, ..., an−1 ∈ X and every α ∈ (0, 1). Let a1, ..., an−1 ∈ X and α ∈ (0, 1). For every

k there is tk ≥ 0 such that N(a1, . . . , an−1, xk, tk) ≥ α and

tk < ‖a1, ..., an−1, xk‖α +
1

2k
.

Then

∞∑

k=1

tk <

∞∑

k=1

‖a1, ..., an−1, xk‖α +

∞∑

k=1

1

2k
<∞.

The other direction is even easier to show. �

Definition 3.2 A fuzzy n−normed space (X,N) is said to be sequentially complete if every

Cauchy sequence in it is convergent.

Lemma 3.2 Let (X,N) be sequentially complete, then every absolutely convergent series
∞∑

k=1

xk

converges and

∥∥∥∥∥a1, ..., an−1,

∞∑

k=1

xk

∥∥∥∥∥
α

≤
∞∑

k=1

‖a1, ..., an−1, xk‖α

for every a1, ..., an−1 ∈ X and every α ∈ (0, 1).

Proof Let
∞∑

k=1

xk be an infinite series such that
∞∑

k=1

‖a1, ..., an−1, xk‖α < ∞ for every

a1, ..., an−1 ∈ X and every α ∈ (0, 1). Let yn =
n∑

k=1

xk be a partial sum of the series. Let

a1, ..., an−1 ∈ X , α ∈ (0, 1) and ǫ > 0. There is N such that
∞∑

k=N+1

‖a1, ..., an−1, xk‖α < ǫ.
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Then, for n > m ≥ N,

|‖a1, ..., an−1, yn‖α − ‖a1, ..., an−1, ym‖α| ≤ ‖a1, ..., an−1, yn − ym‖α

≤
n∑

k=m+1

‖a1, ..., an−1, xk‖α

≤
∞∑

k=N+1

‖a1, ..., an−1, xk‖α

< ǫ.

This is shows that {yn} is a Cauchy sequence in (X,N) . But since (X,N) is sequentially

complete, the sequence {yn} converges and so the series
∞∑

k=1

xk converges. �

Definition 3.3 Let I be any denumerable set . We say that the family (xα)α∈I of elements in

a complete fuzzy n−normed space (X,N) is absolutely summable, if for a bijection Ψ of N(the

set of all natural numbers) onto I the series
∞∑

n=1
xΨ(n) is absolutely convergent.

The following result may not be surprising but the proof requires some care.

Theorem 3.1 Let (xα)α∈I be an absolutely summable family of elements in a sequentially

complete fuzzy n− normed space (X,N). Let (Bn) be an infinite sequence of a non-empty subset

of A, such that A = ∪
n
Bn, Bi ∩ Bj = ∅ for i 6= j, then if zn =

∑
α∈Bn

xα, the series
∞∑

n=0
zn is

absolutely convergent and
∞∑

n=0
zn =

∑
α∈I

xα.

Proof It is easy to see that this is true for finite disjoint unions I =
N∪

n=1
Bn. Now consider

the disjoint unions I =
∞∪

n=1
Bn. By Lemma 3.2

∞∑

n=1

‖a1, ..., an−1, zn‖α ≤
∞∑

n=1

∑

i∈Bn

‖a1, ..., an−1, xi‖α

=
∑

i∈I

‖a1, ..., an−1, xi‖α <∞

for every a1, ..., an−1 ∈ X, and every α ∈ (0, 1). Therefore,
∞∑

n=0
zn is absolutely convergent.

Let y =
∑
i∈I

xi, z =
∞∑

n=1
zn. Let ǫ > 0, a1, ..., an−1 ∈ X and α ∈ (0, 1). There is a finite set

J ⊂ I such that

∑

i/∈J

‖a1, ..., an−1, xi‖α <
ǫ

2
.

Choose N large enough such that B =
N∪

n=1
Bn ⊃ J and

∥∥∥∥∥a1, ..., an−1, z −
N∑

n=1

zn

∥∥∥∥∥
α

<
ǫ

2
.
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Then ∥∥∥∥∥a1, ..., an−1, y −
∑

i∈B

xi

∥∥∥∥∥
α

<
ǫ

2
.

By the first part of the proof
N∑

n=1

zn =
∑

i∈B

x.

Therefore, ‖a1, ..., an−1, y − z‖α < ǫ. This is true for all ǫ so ‖a1, ..., an−1, y − z‖α = 0. This

is true for all a1, ..., an−1 ∈ X , α ∈ (0, 1) and (X, N) is Hausdorff see [8, Theorem 3.1].

Hence y = z. �

Definition 3.4 Let (X∗, N) be the dual of fuzzy n-normed space (X,N). A linear functional

f : X∗ → K where K is a scalar field of X is said to be bounded linear operator if there exists

a λ > 0 such that

‖a1, · · · , an−1, f(xk)‖α ≤ λ‖a1, · · · , an−1, xk‖α,

for all a1, · · · , an−1 ∈ X and all α ∈ (0, 1).

Definition 3.5 The series
∑∞

k=1 xk is said to be weakly absolutely convergent in (X,N) if

∞∑

k=1

‖a1, · · · , an−1, f(xk)‖α <∞

for all f ∈ X∗, all a1, · · · , an−1 ∈ X and all α ∈ (0, 1).

Theorem 3.2 Let the series
∑∞

k=1 xk be weakly absolutely convergence in (X,N). Then there

exists a constant λ > 0 such that

∞∑

k=1

‖a1, · · · , an−1, f(xk)‖α ≤ λ‖a1, · · · , an−1, f(xk)‖α

Proof Let {er}∞r=1 be a standard basis of the space (X,N). Define continuous operators

Sr : X∗ → X where r ∈ Z by the formula Sr(f) =
∑r

k=1 f(xk)ek, we have

‖a1, · · · , an−1, Sr(f)‖α =

r∑

k=1

‖a1, · · · , an−1, f(xk)ek‖α.

Since for any fixed f ∈ X∗, the numbers ‖a1, · · · , an−1, Sr(f)‖α are bounded by
∑∞

k=1 ‖a1, · · · , an−1, f(xk)‖α,

by Banach-Steinhaus theorem, we have

sup
r

‖a1, · · · , an−1, Sr(f)‖α = λ <∞.

Therefore,

∞∑

k=1

‖a1, · · · , an−1, f(xk)‖α = sup
r

‖a1, · · · , an−1, Sr(f)‖α

≤ λ‖a1, · · · , an−1, f(xk)‖α.
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§4. Finite Convergent Sequences in Fuzzy n−Normed Spaces

In this section our principal goal is to show that every sequence having finite convergent property

is Cauchy and every Cauchy sequence has a subsequence which has finite convergent property

in every metrizable fuzzy n−normed space (X,N).

Definition 4.1 A sequence {xk} in a fuzzy n−normed space (X,N) is said to have finite

convergent property if
∞∑

j=1

‖a1, ..., an−1, xj − xj−1‖α <∞

for all a1, ..., an−1 ∈ X and all α ∈ (0, 1).

Definition 4.2 A fuzzy n− normed space (X,N) is said to be metrizable, if there is a metric

d which generates the topology of the space.

Theorem 4.1 Let (X,N) be a metrizable fuzzy n−normed space, then every sequence having

finite convergent propperty is Cauchy and every Cauchy sequence has a subsequence which has

finite convergent property.

proof SinceX is metrizable, there is a sequence
{
‖a1,r, ..., an−1,r, x‖αr

}
for all a1,r, ..., an−1,r ∈

X and all αr ∈ (0, 1) generating the topology of X . We choose an increasing sequence {mk,1}
such that

∞∑

k=1

∥∥a1,1, ..., an−1,1, xmk+1,1
− xmk,1

∥∥
α1
<∞

where a1,1, ..., an−1,1 ∈ X and α1 ∈ (0, 1) . Then we choose a subsequence mk,2 of mk,1 such

that
∞∑

k=1

∥∥a1,2, ..., an−1,2, xmk+1,2
− xmk,2

∥∥
α2
<∞

where a1,2, ..., an−1,2 ∈ X and α2 ∈ (0, 1) . Continuing in this way we construct recursively

sequences mk,r such that mk,r+1 is a subsequence of mk,r and such that

∞∑

k=1

∥∥a1,r, ..., an−1,r, xmk+1,r
− xmk,r

∥∥
αr
<∞

for all a1,r, ..., an−1,r ∈ X and all αr ∈ (0, 1) . Now consider the diagonal sequence mk = mk,k.

Let r ∈ N. The sequence {mk}∞k=r is a subsequence of {mk,r}∞k=r . Let k ≥ r. There are pairs of

integers (u, v) , u < v such that mk = mu,r and mk+1 = mv,r. Then by the triangle inequality

∥∥a1,r, ..., an−1,r, xmk+1
− xmk

∥∥
αr

≤
v−1∑

i=u

∥∥a1,r, ..., an−1,r, xmi+1,r
− xmi,r

∥∥
αr

and therefore,

∞∑

k=r

∥∥a1, ..., an−1, xmk+1
− xmk

∥∥
α
≤

∞∑

j=r

∥∥a1, ..., an−1, xmj+1,r
− xmj,r

∥∥
α
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for all a1, ..., an−1 ∈ X and all α ∈ (0, 1) . The statement of the theorem follows. �

The above theorem shows that many Cauchy sequence has a subsequence which has finite

convergent. Therefore, it is natural to ask for an example of Cauchy sequence has a subsequence

which has not finite convergent property.

Example 4.2 We consider the set S consisting of all convergent real sequences. Let X be the

space of all functions f : S → R equipped with the topology of pointwise convergence. This

topology is generated by

‖f1,s, ..., fn−1,s, f‖αs
= |f (s)| ,

for all f1,s, ..., fn−1,s, f ∈ X and all αs ∈ (0, 1) , where s ∈ S. Then consider the sequence

fn ∈ X defined by fn (s) = sn where s = (sn) ∈ S. The sequence fn is a Cauchy sequence in X

but there is no subsequence fnk
such that

∞∑

k=1

∥∥f1,s, ..., fn−1,s, fnk+1
− fnk

∥∥
αs
<∞

for all s ∈ S. We see this as follows. If n1 < n2 < n3 < ... is a sequence then define sn = (−1)
k 1

k

for nk ≤ n < nk+1. Then s = (sn) ∈ S but

∞∑

k=1

∥∥f1,s, ..., fn−1,s, fnk+1
− fnk

∥∥
αs

=

∞∑

k=1

∣∣snk+1
− snk

∣∣ ≥
∞∑

k=1

1

k
= ∞.

§5. Functions Preserving Convergence of Series in Fuzzy n−Normed Spaces

In this section we shall introduce the functions f : X → X that preserve convergence of series

in fuzzy n−normed spaces. Our work is an extension of functions f : R → R that preserve

convergence of series studied in [19] and [3].

We read in Cauchy’s condition in (X,N) as follows: the series
∑∞

k=1 xk converges if and

only if for every ǫ > 0 there is an N so that for all n ≥ m ≥ N ,

‖a1 · · · , an−1,

n∑

k=m

xk‖ < ǫ,

where a1 · · · , an−1 ∈ X .

Definition 5.1 A function f : X × X → X is said to be additive in fuzzy n-normed space

(X,N) if

‖a1, · · · , an−1, f(x, y)‖α = ‖a1, · · · , an−1, f(x)‖α + ‖a1, · · · , an−1, f(y)‖α,

for each x, y ∈ X, a1, · · · , an−1 ∈ X and for all α ∈ (0, 1).

Definition 5.2 A function f : X → X is convergence preserving (abbreviated CP) in (X,N) if

for every convergent series
∑∞

k=1 xk, the series
∑∞

k=1 f(xk) is also convergent, i.e., for every

a1, · · · , an−1 ∈ X,
∞∑

k=1

‖a1, · · · , an−1, f(xk)‖α <∞
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whenever
∑∞

k=1 ‖a1, · · · , an−1, xk‖α <∞.

Theorem 5.1 Let (X,N) be a fuzzy n-normed space and f : X → X be an additive and

continuous function in the neighborhood B(t, r, A). Then the function f is CP of infinite series

in (X,N).

Proof Assume that f is additive and continuous inB(α, δ, A) = {x ∈ X : ‖a1, · · · , an−1, x‖α <

δ}, where a1, · · · , an−1 ∈ A and δ > 0. From additivity of f in B(α, δ, A) implies that f(0) = 0.

Let
∑∞

k=1 xk be a absolute convergent series and xk ∈ X (k = 1, 2, 3, · · · ). We show that∑∞
k=1 f(xk) is also absolute convergent.

By Cauchy condition for convergence of series, there exists a k ∈ N such that for every

p ∈ N

‖a1, · · · , an−1,

k+p∑

j=k+1

xj‖α <
δ

2
.

From this we have

‖a1, · · · , an−1,

∞∑

j=k+1

xj‖α <
δ

2
.

By the additivity of f in B(α, δ, A), we get

‖a1, · · · , an−1, f(

k+p∑

j=k+1

xj)‖α = ‖a1, · · · , an−1,

k+p∑

j=k+1

f(xj)‖α <
δ

2
.

Now, let yp =
∑k+p

j=k+1 xj for p = 1, 2, 3, · · · and y =
∑∞

j=k+1 xj belong to the neighborhood

B(α, δ, A). The function f is continuous in B(α, δ, A), i.e., f(yp) → f(y) because yp → y for

p→ ∞. Hence

lim
p→∞

‖a1, · · · , an−1, f(

k+p∑

j=k+1

xj)‖α = ‖a1, · · · , an−1, f(

∞∑

j=k+1

xj)‖α.

This implies

lim
p→∞

‖a1, · · · , an−1,

k+p∑

j=k+1

f(xj)‖α = ‖a1, · · · , an−1,

∞∑

j=k+1

f(xj)‖α

and this guarantee the convergence of the series
∑∞

j=k+1 f(xj) and therefore the series
∑∞

j=1 f(xj)

must also be convergent in X , i.e., the function f is CP infinite series in (X,N). �
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