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����������
�������

Citation: Stanimirović, P.S.;
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Abstract: The influence of neutrosophy in the previous period is constantly growing in many
areas of science and technology. Moreover, various applications of the neutrosophic approach have
become more common in recent years. Our goal in this research is to utilize the neutrosophy to
improve the performance of the Dai-Liao conjugate gradient (CG) method. Specifically, in this
research, we propose and investigate a new neutrosophic logic system to calculate the key parameter
t involved in the Dai–Liao CG iterations. Theoretical analysis and numerical experience indicate that
the efficiency and robustness of the new rule for determining t. Combining the neutrosophy and
the Dai-Liao conjugate gradient method, we propose and explore a new Dai-Liao CG iterations for
solving large-scale unconstrained optimization models. The global convergence is established under
common assumptions and the backtracking line search. Finally, by conducting numerical experiments,
computational evidence demonstrates that the new fuzzy neutrosophic Dai-Liao conjugate gradient
method is computationally effective and robust.

Keywords: Neutrosophic logic systems; Dai-Liao conjugate gradient method; Backtracking line
search; Convergence; Unconstrained optimization.

MSC: 90C70; 90C30; 65K05

1. Introduction and background results

Numerous iterative methods have been developed to solve the large-scale uncon-
strained optimization problem

minimize f (x), x ∈ Rn, (1)

in which f : Rn → R is a continuously differentiable function and bounded below. Contin-
uing well established notation, gk = g(xk) = ∇ f (xk) stands for the gradient vector of f at
the actual iterative point xk, and further yk−1 = gk − gk−1 and sk−1 = xk − xk−1. Utilizing
the extended conjugacy condition

dT
k yk−1 = −tgT

k sk−1, t > 0, (2)

Dai and Liao in [1] suggested the conjugate gradient (CG) iterations

xk+1 = xk + αkdk, (3)
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where the xk is the last calculated iteration, xk+1 is a new iterative point, αk is a positive
step size parameter defined as the output of an inexact line search, and dk is a descent
direction. The search directions {dk, k ≥ 0} are created by the recurrent regulation

dk =

{
−g0, k = 0,
−gk + βDL

k dk−1, k ≥ 1,
(4)

where βDL
k is the CG coefficient which describes the type of CG method by the general rule

βDL
k =

gT
k yk−1

dT
k−1yk−1

− t
gT

k sk−1

dT
k−1yk−1

, (5)

wherein t > 0 is an appropriate scalar. The Dai–Liao (DL) method guarantees global
convergence for uniformly convex objective functions. These results have attracted a lot of
attention, leading to the creation of several methods based on various patterns for defining
βk. Most of these methods were developed by modifying the conjugate gradient parameter
βDL

k [2–9]. For more details, see the survey on the DL family of nonlinear CG methods in
[10]. One of rules for defining βk is denoted as βMHSDL

k and defined in [7] by

βMHSDL
k =

gT
k ŷk−1

dT
k−1yk−1

− t
gT

k sk−1

dT
k−1yk−1

, (6)

such that ŷk−1=gk −
‖gk‖
‖gk−1‖

gk−1 and t > 0 is as in (5).

Due to the large influence of the size t on numerical results generated by the DL class
of CG methods [11], one of the most common issues is the determination of an appropriate
value t. We can distinguish two research directions based on the previous results in
determining proper values t in the DL established CG iterations. The first direction of
research consists of a group of DL methods that aim to find a suitable constant value for t
[1,2,6–8] during iterations, while the second direction consists of a group of DL methods
that propose a suitable control in recalculating t in each iteration. In this research, we
prioritize the second research stream: find values t that changes appropriately accros
iterations. The quantity t determined in kth iterative step will be denoted by t(i)k , where i is
a variant of the algorithm for defining t.

Some of the most important adaptive choices for the DL parameter tk will be presented
in the rest of this section. Hager and Zhang in [12,13] suggested the CG-DESCENT method,
which is classified into the group of the DL CG methods (5) defined by t ≡ t(1)k and

t(1)k = 2
‖yk−1‖2

yT
k−1sk−1

. (7)

Dai and Kou suggested DK method in [14] where the CG coefficient βDK
k is of the form

βDK
k =

gT
k yk−1

yT
k−1dk−1

−
(

τk +
‖yk−1‖2

yT
k−1sk−1

−
yT

k−1sk−1

‖sk−1‖2

)
gT

k sk−1

dT
k−1yk−1

. (8)

In the equality (8), the parameter τk is defined utilizing the self-scaling memoryless BFGS
method. It is also obvious from (8) that the DK method is involved into the DL CG class of
methods where t ≡ t(2)k is defined by

t(2)k = τk +
‖yk−1‖2

yT
k−1sk−1

−
yT

k−1sk−1

‖sk−1‖2 . (9)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 April 2023                   doi:10.20944/preprints202304.0858.v1

https://doi.org/10.20944/preprints202304.0858.v1


3 of 16

Babaie-Kafaki and Ghanbari in [15] proposed the subsequent two rules for calculating t in
(5):

t(3)k =
sT

k−1yk−1

‖sk−1‖2 +
‖yk−1‖
‖sk−1‖

(10)

and

t(4)k =
‖yk−1‖
‖sk−1‖

. (11)

Andrei in [16] originated a new DL class, denoted DLE, where t ≡ t(5)k is defined by

t(5)k =
sT

k−1yk−1

‖sk−1‖2 . (12)

A special place in the DL iterations is occupied by the DL method with

t(6)k = υ
‖yk−1‖2

sT
k−1yk−1

, (13)

where υ > 1
4 is a constant, has been defined according to the sufficient descent condition

gT
k dk≤−c ‖gk‖2, ∀ k ≥ 0, (14)

such that c > 0 is a constant independent of the cost function convexity and the line search
rules (for more details see [17]).

Lotfi and Hosseini in [18] suggested the subsequent rule

t(7)k = max
{

t(7
∗)

k , t(6)k

}
, (15)

where

t(7
∗)

k =

(
1− h̄k‖gk−1‖r

)
sT

k−1gk +
gT

k yk−1

yT
k−1sk−1

h̄k‖gk−1‖r‖sk−1‖2

gT
k sk−1 +

gT
k sk−1

sT
k−1yk−1

h̄k‖gk−1‖r‖sk−1‖2
, (16)

h̄k = C + max

{
−

sT
k−1yk−1

‖sk−1‖2 , 0

}
‖gk−1‖−r, (17)

and C, r are positive constants.
Ivanov et al. in [19] proposed a variant of the Dai-Liao CG method (6), known as the

Effective Dai-Liao (EDL) CG method, where t ≡ t(8)k is determined as

t(8)k =
‖gk‖2

max
{

1, dT
k−1gk

}
+

(
max

{
0,

dT
k−1gk
‖gk‖2

}
+ 1
)
‖gk‖2

. (18)

The experiments performed in [19] verify that the EDL iterations outperform many existing
CG variants.

The basics of neutrosophy. Neutrosophic logic was applied in [20] in regulating
proper step sizes for a class of accelerated gradient-descent optimization methods. The
approach in [20] assumes an additional fuzzy parameter which stabilizes the behavior of
an important class of gradient-descent family. Motivated by that approach, in this research
we apply neutrosophy in order to enhance performances of DL methods. Based on the
review and analysis of the class of DL methods, we propose a new method for determining
tk. The proposed method defines tk as the output produced by an appropriate neutrosophic
logic controller (NLC). Our idea is to replace the classical parameter tk by an adaptive
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neutrosophic logic parameter νk, determined as the output of the NLC. Since 0 ≤ tk ≤ 1
our decision is to define tk as the value of νk, without additional parameters.

A fuzzy set theory utilizes a membership function (MF) TΨ(λ) ∈ [0, 1], λ ∈ Λ in the
universe Λ that defines the degree of membership of λ in Ψ ⊂ Λ [21]. The intuitionistic
fuzzy set (IFS) Ψ is established using both degrees of membership and non-membership
function TΨ(λ), FΨ(λ) ∈ [0, 1], λ ∈ Λ [22], which are mutually corelated by TΨ(λ), FΨ(λ) :
Λ → [0, 1] and 0 ≤ TΨ(λ) + FΨ(λ) ≤ 1. The IFS theory was originally generalized
in [23,24] by the the neutrosophic theory. The background of the neutrosophic logic is the
utilization of the indeterminacy I(λ). In that direction, entries of a neutrosophic set are
determined by three independent MFs [23,24]: the truth-MF T(λ), the indeterminacy-MF
I(λ), and the falsity-MF F(λ). Due to the indeterminacy-MF, the neutrosophic logic is
based on the symmetry involved in the ordered triple of MFs (T, I, F) and the inequality
0 ≤ T + I + F ≤ 3 if all three MFs are independent. Clearly, T is the symmetric pole to
its opposite pole F with respect to I, which represents an axis of the symmetry between
T and F [25]. The same observation is valid for refined neutrosophic set that assumes
the refined indeterminacies I1 and I2 between T and F [26]. The MFs of a neutrosophic
set Ψ satisfy TΨ(λ), IΨ(λ), FΨ(λ) : Λ→ [0, 1], which which based on their independence
implies 0 ≤ TΨ(λ) + IΨ(λ) + FΨ(λ) ≤ 3, and enables a symmetry between them. In [27],
the authors originated a neutrosophic-based multiple criteria decision-making procedure
based on previously introduced symmetry measure.

The benefits of the NL approach over the FL and IFL are discussed in [20].

Motivation and highlights of main results. Our task in this paper is to improve the
behavior of DL class for solving unconstrained nonlinear optimization problems with the
support of an appropriate neutrosophic logic system. The principal results obtained in this
paper are presented as follows.

(1) We examine the application of NL in determining the parameter t in the Dai-Liao
CG method (5).

(2) A theoretical analysis is accomplished to confirm the global convergence of the
proposed method.

(3) A numerical comparison is given between the proposed FDL algorithm and other
known DL algorithms.

The sections of the paper are arranged as follows. Introduction, motivation and a
brief review of obtained results are presented in Section 1. A neutrosophic-based control
for defining appropriate changeable values tk is proposed in Section 2. Moreover, we
present details of the FDL method. The global convergence behavior of the FDL method
is examined in Section 3. Numerical comparison of the FDL method with main standard
DL methods is presented in Section 4, and a comparison with some known variations of
the DL class of methods, is also given. Final conclusions are presented in the concluding
section.

2. Fuzzy neutrosophic Dai-Liao conjugate gradient method

The fuzzy neutrosophic Dai-Liao CG method is defined as a modification of the Dai-
Liao CG method (3), where the search directions {dk} are calculated by the recurrence
rule

dk =

{
−g0, k=0,
−gk + βFDL

k dk−1, k ≥ 1,
(19)

where the CG coefficient βFDL
k is defined by

βFDL
k =

gT
k yk−1

dT
k−1yk−1

− νk
gT

k sk−1

dT
k−1yk−1

, (20)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 April 2023                   doi:10.20944/preprints202304.0858.v1

https://doi.org/10.20944/preprints202304.0858.v1


5 of 16

such that νk := νk is a proper fuzzy neutrosophic parameter. Our intention is to define νk
as a function of ∆k := f (xk)− f (xk+1) i.e., νk := νk(∆k). More precisely, νk(∆k) is defined
subject to the following constraint

0 ≤ νk(∆k) ≤ 1. (21)

It is know that νk(∆k) = 0 reduces (2) into

dT
k yk−1 = 0. (22)

Hence, the equation (22) can be considered as a reflection of the conjugacy condition, which
in conjuction with (4) determines the HS parameter [28]

βHS
k =

gT
k yk−1

dT
k−1yk−1

. (23)

Alternatively, for νk(∆k) = 1, the equation (2) is considered as a conjugacy condition that
implicitly satisfies the quasi-Newton characteristics. For more details on these cases, see
[1,10].

The idea for defining a new parameter tk in the Dai-Liao CG method (5) comes from
the neutrosophic logic. According to this decision, our intention is to define tk = νk(∆k)
inside the interval [0, 1] according to neutrosophic principles.

The generic layout of the fuzzy neutrosophic Dai-Liao CG method is given in the
diagram in Figure 1.

Figure 1. The global structure of the fuzzy neutrosophic Dai-Liao CG method.

The input of the NLC presented in Figure 1 is ∆k := f (xk)− f (xk+1) and the output
is the desired step size νk. This means that our basic idea is to define νk based on two
consecutive values of the objective function f . On the other hand, the backtracking line
search is reponsible for appropriate step lengths αk in (3) and then the descent direction dk
by (19). Using νk it is possible to compute βFDL

k in (20). Finally, (3) generates new iterative
point xk+1.

To develop the FDL method, it is necessary to plan three global steps: neutrosophisti-
cation, neutrosophic inference engine, and de-neutrosophistication (score function).

(1) Neutrosophication maps the input ∆k := f (xk)− f (xk+1) into neutrosophic ordered
triplets (T(∆k), I(∆k), F(∆k)). The MFs are defined with the aim to improve the CG
iterative rule exploiting numerical experience. The sigmoid function with the slope
defined by ς1 at the crossover point ∆ = ς2 is a proper choice for T:

T(∆) = 1/
(

1 + e−ς1(∆−ς2)
)

. (24)

A proper choice for F is the following sigmoid function:

F(∆) = 1/(1 + eς1(∆−ς2)). (25)
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The Gaussian function with the standard deviation ς1 and the mean ς2 defines the
indeterminacy I:

I(∆) = e
− (∆−ς2)

2

2ς2
1 . (26)

Then the neutrosophication of ∆ ∈ R is defined as the transition ∆→ 〈T(∆), I(∆), F(∆)〉,
where the MFs are determined in (24)–(26).

(2) Neutrosophic inference between an input fuzzy set I and an output fuzzy set is based
on the subsequent “IF–THEN” regulations:

<1 : If I = SP =⇒ O = {T, I, F}
<2 : If I = SN =⇒ O = {T, I, F}.

Fuzzy sets SP and SN point, respectively, to positive or negative errors. Applying
the unification < = <1 ∪ <2, we define Oi = I ◦ <i, i = 1, 2, where ◦ denotes the
fuzzy transformation. In addition, for a fuzzy vector ζ = {T(∆k), I(∆k), F(∆k)}, it
follows κI◦<(ζ) = κI◦<1

∨
κI◦<2 = sup(κI

∧
κOi ), i = 1, 2, where

∧
and

∨
denote

the (min, max, max) and (max, min, min) operator, respectively. In this research, the
centroid defuzzification method is utilized to generate a vector of crisp outputs ζ∗ ∈
R3:

ζ∗ =

∫
O ζ κI◦<(ζ)dζ∫
O κI◦<(ζ)dζ

.

(3) De-neutrosophication is based on the transformation 〈T(∆k), I(∆k), F(∆k)〉 → νk ∈ R
resulting in a crisp value νk and suggested as:

νk = 2− (T(∆k) + I(∆k) + F(∆k)). (27)

The diagram of Figure 2 presents the NLC based on the neutrosophic rules.

Figure 2. The NLC design based on the neutrosophy.

The settings in the NLC employed in numerical testing are arranged in Table 1.

Table 1: Recommended parameters in NLC.

Set Membership Function ς1 ς2 Weight

Input

Sigmoid function (24) 1 3 1

Sigmoid function (25) 1 3 1

Gaussian function (26) 120 0 1

Output Score function (27) - - 1

Our imperative requirement is 0 ≤ νk(∆k) ≤ 1, requested in (21). This statement is
verified in Lemma 1.

Lemma 1. The inequality (21) holds for the given choice of the score function (27) and the parame-
ters given in the Table 1.
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Proof. In order to prove (21), we need to replace the MFs (24), (25), and (26) in (27). After
applying the parameters from Table 1, we get

T(∆k) = 1/
(

1 + e−(∆−3)
)

, F(∆k) = 1/
(

1 + e∆−3
)

, I(∆k) = e−
∆2

k
2∗1202

Elementary calculation gives

νk(∆k) = 2− (T(∆k) + I(∆k) + F(∆k)) = 1− e−
∆2

k
28800 . (28)

A careful analysis of the function (28) inside the interval ∆k ∈ (−∞,+∞) discovers
min νk(∆k) = 0 and max νk(∆k) = 1, which proves the inequality (21).

Graphs of T(∆k), I(∆k), F(∆k) are displayed in Figure 3(a). The fulfilment of the re-
quirements (21) in the NLC output νk generated throughout the described de-neutrosophication
is illustrated in Figure 3(b).

-500 0 500

k

0.2

0.4

0.6

0.8

T(
k
)

F(
k
)

I(
k
)

(a) Neutrosophication.

-400 -300 -200 -100 0 100 200 300 400

k

0.2

0.4

0.6

0.8

1

2-(T(
k
)+I(

k
)+F(

k
)

(b) De-neutrosophication.

Figure 3. Neutrosophication (24)–(26) and de-neutrosophication (27) guided by the parameters in
Table 1.

Remark 1. The objective function decreases with the flow of iterations and tends to the minimal
value, which means limk→∞ ∆k = 0, i.e., limk→∞ νk(∆k) = 0. Such behavior leads to νk → 0 as
the minimum of f approaches, so the impact of the proposed neutrosophic strategy decreases and
disappears, which agrees with our goal.

Remark 2. Obviously, larger values of ∆k lead to increasing values νk(∆k) approaching to 1, which
will be denoted as νk(∆k) ↗ 1. In addition, based on the limit ∆k → 0, we anticipate smaller
values νk(∆k) approaching 0, i.e., νk(∆k)↘ 0 in final iterations. As a result, νk(∆k) is suitable as
an adjustable regulator for the quantity t in the Dai–Liao CG method.

The backtracking line search from [29] begins from α=1 and generates further step
sizes which ensure decrease of the goal function in each iteration. Algorithm 1, restated
from [30], is used to define the primary step size αk.

Algorithm 1 The backtracking line search.

Input: Objective function f (x), foregoing point xk, the search direction dk, a real positive
constants 0 < ϕ < 1, and 0 < ω < 0.5.

1: ` = 1.
2: While f (xk + `dk) > f (xk) + ω`gT

k dk, do ` := `ϕ.
3: Output: αk = `.
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Algorithm 2 of the FDL method is described as follows:

Algorithm 2 Fuzzy neutrosophic Dai-Liao (FDL) conjugate gradient method.

Input: A starting point x0 and 0 < ε, δ < 1.
1: Assign k = 0 and d0 = −g0.
2: If

‖gk‖ ≤ ε and
| f (xk+1)− f (xk)|

1 + | f (xk)|
≤ δ,

STOP;
else go to Step 3.

3: (Backtracking line search) Regulate αk ∈ (0, 1] utilizing Algorithm 1.
4: Calculate xk+1=xk + αkdk.
5: Calculate gk+1, yk =gk+1 − gk, sk =xk+1 − xk.
6: Calculate ∆k := fk − fk+1.
7: Calculate T(∆k), I(∆k), and F(∆k) as in (24)–(26).
8: Calculate νk := νk(∆k) using (27).
9: Calculate βFDL

k+1 by (20).

10: Generate dk+1=−gk+1 + βFDL
k+1 dk.

11: Set k := k + 1, and go to Step 2.

3. Convergence Examination

The subsequent assumptions are necessary during the theoretical examination of the
FDL algorithm.

Assumption 1. (1) The level set f = {x ∈ Rn| f (x) ≤ f (x0)} of the iterative process (3) is
bounded.

(2) The objective f is continuously differentiable in a neighborhood P of f with the Lipschitz
continuous gradient g. Such assumption initiates the existence of a constant L > 0 such that

‖g(u)− g(v)‖ ≤ L‖u− v‖, ∀ u, v ∈ P . (29)

The Assumption 1 provides the existence of quantities Υ and γ such that

‖u− v‖ ≤ Υ, ∀ u, v ∈ P (30)

and
‖g(u)‖ ≤ γ, ∀ u ∈ P . (31)

If Assumption 1 holds, in view of the uniform convexity of f , there exists θ > 0
satisfying

(g(u)− g(v))T(u− v) ≥ θ‖u− v‖2, ∀ u, v ∈ f, (32)

or equivalently,

f (u) ≥ f (v) + g(v)T(u− v) +
θ

2
‖u− v‖2, ∀ u, v ∈ f. (33)

It follows from (32) and (33) that

sT
k−1yk−1 ≥ θ‖sk−1‖2 (34)

and
f (xk−1)− f (xk) ≥ −g(xk)

Tsk−1 +
θ

2
‖sk−1‖2. (35)
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By (29) and (34), one concludes

θ‖sk−1‖2 ≤ sT
k−1yk−1 ≤ L‖sk−1‖2, (36)

and further θ ≤ L.
The inequality (36) implies

sT
k−1yk−1 = αk−1dT

k−1yk−1 > 0. (37)

Taking into account αk−1 > 0 and the last inequality, we conclude

dT
k−1yk−1 > 0. (38)

Lemma 2. [31,32] Let the constraints in Assumption 1 hold and the points {xk} be produced by
the iterations (3)-(4). Then the following inequality is satisfied:

∞

∑
k=0

‖gk‖4

‖dk‖2 < +∞. (39)

Lemma 3. Observe the suggested Fuzzy neutrosophic Dai-Liao CG method defined by (3), (19),
(20). If the search procedure guarantees (38), for all k ≥ 0, then

gT
k dk≤−c‖gk‖2 (40)

for some c ≥ 0.

Proof. In the initial stage it follows gT
0 d0=−‖g0‖2. Since c = 1, obviously (40) is satisfied

in the initial stage k = 0. Assume (40) for some k ≥ 1. Applying the inner product of both
the left and right hand side in (4) with gT

k , it is concluded

gT
k dk =−‖gk‖2 + βFDL

k gT
k dk−1

=−‖gk‖2 +

(
gT

k yk−1

dT
k−1yk−1

− νk
gT

k sk−1

dT
k−1yk−1

)
gT

k dk−1

=−‖gk‖2 +
gT

k yk−1

dT
k−1yk−1

gT
k dk−1 − νk

gT
k sk−1

dT
k−1yk−1

gT
k dk−1

=−‖gk‖2 +
gT

k yk−1

dT
k−1yk−1

gT
k dk−1 − νk

αk−1gT
k dk−1

dT
k−1yk−1

gT
k dk−1

=−‖gk‖2 +
gT

k yk−1

dT
k−1yk−1

gT
k dk−1 − νk

αk−1(gT
k dk−1)

2

dT
k−1yk−1

.

(41)

Using (21) in conjunction with (38) and αk−1 > 0, we conclude

νk
αk−1(gT

k dk−1)
2

dT
k−1yk−1

≥ 0. (42)

Now from (41) and (42) it follows

gT
k dk≤−‖gk‖2 +

gT
k yk−1

dT
k−1yk−1

gT
k dk−1

=
−‖gk‖2(dT

k−1yk−1)
2 + (gT

k yk−1)(gT
k dk−1)(dT

k−1yk−1)

(dT
k−1yk−1)2

.

(43)
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Applying the inequality PTQ ≤ 1
2 (‖P‖2 + ‖Q‖2) to the equality (43) with P =

1√
2
(dT

k−1yk−1)gk and Q =
√

2(gT
k dk−1)yk−1, it is obtained

gT
k dk≤

−‖gk‖2(dT
k−1yk−1)

2 + 1
2

(
‖ 1√

2
(dT

k−1yk−1)gk‖2 + ‖
√

2(gT
k dk−1)yk−1‖2

)
(dT

k−1yk−1)2

=
−‖gk‖2(dT

k−1yk−1)
2 + 1

2

(
1
2 (d

T
k−1yk−1)

2‖gk‖2 + 2(gT
k dk−1)

2‖yk−1‖2
)

(dT
k−1yk−1)2

=
−‖gk‖2(dT

k−1yk−1)
2 + 1

4 (d
T
k−1yk−1)

2‖gk‖2 + (gT
k dk−1)

2‖yk−1‖2

(dT
k−1yk−1)2

=−‖gk‖2 +
1
4
‖gk‖2 +

(gT
k dk−1)

2‖yk−1‖2

(dT
k−1yk−1)2

≤−‖gk‖2 +
1
4
‖gk‖2 +

α2
k−1(|g

T
k dk−1|)2‖yk−1‖2

(αk−1dT
k−1yk−1)2

≤−‖gk‖2 +
1
4
‖gk‖2 +

α2
k−1‖gk‖2‖dk−1‖2‖yk−1‖2

(sT
k−1yk−1)2

≤−‖gk‖2 +
1
4
‖gk‖2 +

‖gk‖2‖αk−1dk−1‖2‖yk−1‖2

θ2‖sk−1‖4

≤−‖gk‖2 +
1
4
‖gk‖2 +

‖gk‖2‖sk−1‖2‖yk−1‖2

θ2‖sk−1‖4

≤−‖gk‖2 +
1
4
‖gk‖2 +

‖gk‖2‖yk−1‖2

θ2‖sk−1‖2

≤−‖gk‖2 +
1
4
‖gk‖2 +

L2‖gk‖2‖sk−1‖2

θ2‖sk−1‖2

=−‖gk‖2 +
1
4
‖gk‖2 +

L2

θ2 ‖gk‖2

=−
(

1− 1
4
− L2

θ2

)
‖gk‖2 = −

(
3
4
− L2

θ2

)
‖gk‖2.

(44)

The requirement (40) is satisfied for c =
(

3
4 −

L2

θ2

)
in (44) and an arbitrary k ≥ 0.

Theorem 1 confirms the global convergence of the FDL flow.

Theorem 1. Let the constraints in Assumption 1 be valid and f be uniformly convex. Then the
series {xk} generated on the basis of (3), (19) and (20) fulfils the limit relation

lim inf
k→∞

‖gk‖=0. (45)

Proof. Suppose the opposite. Since (45) is not valid, we conclude the existence of c1 > 0
satisfying

‖gk‖ ≥ c1, for all k. (46)

Squaring both sides of (19) one derives

‖dk‖2=‖gk‖2 − 2βFDL
k gT

k dk−1 + (βFDL
k )2‖dk−1‖2. (47)
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Taking into account (20), we obtain

−2βFDL
k gT

k dk−1=−2

(
gT

k yk−1

dT
k−1yk−1

− νk
gT

k sk−1

dT
k−1yk−1

)
gT

k dk−1

=−2

(
gT

k yk−1

dT
k−1yk−1

gT
k dk−1 − νk

αk−1gT
k dk−1

dT
k−1yk−1

gT
k dk−1

)

=−2

(
gT

k yk−1

dT
k−1yk−1

gT
k dk−1 − νk

αk−1(gT
k dk−1)

2

dT
k−1yk−1

)
.

(48)

Now from (42), it follows

−2βEDL
k gT

k dk−1≤2

∣∣∣∣∣ gT
k yk−1

dT
k−1yk−1

∣∣∣∣∣|gT
k dk−1| ≤ 2

‖gk‖‖yk−1‖∣∣∣dT
k−1yk−1

∣∣∣ ‖gk‖‖dk−1‖

= 2
αk−1‖gk‖2‖yk−1‖‖dk−1‖

αk−1dT
k−1yk−1

= 2
‖gk‖2‖yk−1‖‖sk−1‖

sT
k−1yk−1

≤ 2
‖gk‖2L‖sk−1‖‖sk−1‖

θ‖sk−1‖2

=
2L
θ
‖gk‖2.

(49)

Now, an application of (20) initiates

βFDL
k =

gT
k yk−1

dT
k−1yk−1

− νk
gT

k sk−1

dT
k−1yk−1

=
gT

k yk−1 − νkgT
k sk−1

dT
k−1yk−1

≤
∣∣∣∣∣gT

k yk−1 − νkgT
k sk−1

dT
k−1yk−1

∣∣∣∣∣ = αk−1

∣∣gT
k yk−1 − νkgT

k sk−1
∣∣

αk−1dT
k−1yk−1

= αk−1

∣∣gT
k yk−1 − νkgT

k sk−1
∣∣

sT
k−1yk−1

≤ αk−1

∣∣gT
k yk−1 − νkgT

k sk−1
∣∣

θ‖sk−1‖2 = αk−1

∣∣gT
k (yk−1 − νksk−1)

∣∣
θα2

k−1‖dk−1‖2

≤ ‖gk‖(‖yk−1‖+ νk‖sk−1‖)
θαk−1‖dk−1‖2

≤ ‖gk‖(L‖sk−1‖+ νk)‖sk−1‖)
θαk−1‖dk−1‖2 =

‖gk‖(L + νk)‖sk−1‖
θαk−1‖dk−1‖2

=
‖gk‖(L + νk)αk−1‖dk−1‖

θαk−1‖dk−1‖2

=
(L + νk)‖gk‖

θ‖dk−1‖
.

(50)

Further (21) and (50) lead to

βFDL
k ≤ (L + 1)‖gk‖

θ‖dk−1‖
. (51)
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Using (49) and (51) in (47), we get

‖dk‖2≤‖gk‖2 +
2L
θ
‖gk‖2 +

(L + 1)2‖gk‖2

θ2‖dk−1‖2 ‖dk−1‖2

=‖gk‖2 +
2L
θ
‖gk‖2 +

(L + 1)2‖gk‖2

θ2

=

(
1 +

2L
θ

+
(L + 1)2

θ2

)
‖gk‖2

=

(
θ + 2L

θ
+

(L + 1)2

θ2

)
‖gk‖2

=
(θ + 2L)θ + (L + 1)2

θ2 ‖gk‖2.

(52)

Dividing both sides of (52) by ‖gk‖4 and utilizing (46), it can be decided

‖dk‖2

‖gk‖4 ≤
(θ + 2L)θ + (L + 1)2

θ2 · 1
c2

1
,

‖gk‖4

‖dk‖2 ≥
θ2 · c2

1
(θ + 2L)θ + (L + 1)2 .

(53)

The inequalities in (53) imply

∞

∑
k=0

‖gk‖4

‖dk‖2 ≥
∞

∑
k=0

θ2 · c2
1

(θ + 2L)θ + (L + 1)2 =∞. (54)

Therefore, ‖gk‖ ≥ c1 causes a contradiction with Lemma 2.

4. Numerical Results

In this section, numerical results obtained by the FDL method are analyzed and
compared with the numerical results generated by the EDL [19] and DL [1] methods.

All the algorithms were written in Matlab R2017a and ran on a 64-bit Lenovo laptop
(Intel Core i3 2.0 GHz, RAM 8 GB) with the Windows 10 operating system. The implemen-
tation of the FDL method is based on Algorithm 2, while EDL and DL implementation are
based on algorithms given in [19] and [1], respectively.

The numerical testing is performed on 50 test functions collected in [33,34], with
dimensions from the range [100, 20000]. All three tested methods used start from the
same initial point x0 for each test function. Each case in testing is evaluated 10 times with
gradually increased dimensions n = 102, 5× 102, 103, 3× 103,×103, 7× 103, 8× 103, 104,
1.5× 104 and 2× 104.

The uniform terminating criteria for observed DL, EDL, and FDL algorithms are

‖gk‖ ≤ ε and
| f (xk+1)− f (xk)|

1 + | f (xk)|
≤ δ, ε = 10−6, δ = 10−16.

We are going to evaluate the efficiency of the FDL method and compare it with the
EDL and DL methods under the backtracking search based on the parameters ω=0.0001
and ϕ=0.8.

Summary numerical results for DL, FDL, and EDL methods, performed on 50 test
functions, are shown in Table 2, where ‘Test function’, ‘Nitr’, ‘Nfe’, and ‘Tcpu’ represent
the name of the tested function, the total number of iterations, the total number of function
evaluations, and the running time, respectively.

To visually compare the performance of tested methods, we used the performance
profiles technique [35] on numerical results corresponding to Nitr, Nfe, and Tcpu criteria
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Table 2: Summary numerical results on unconstrained problems of DL, FDL, and EDL methods for the Nitr, Nfe, and Tcpu.

Test function DL FDL EDL
Nitr/Nfe/Tcpu Nitr/Nfe/Tcpu Nitr/Nfe/Tcpu

Extended Penalty 1905/77578/32.438 1610/62534/24.266 2304/82602/39.344
Perturbed Quadratic 14555/606750/379.359 10800/440213/206.5 10012/408474/248.5
Raydan 1 4337/114595/98.984 5497/122843/76.813 4194/109164/96.938
Raydan 2 1427/2864/3.188 67/144/0.281 2572540/5145090/894.453
Diagonal 1 5809/223750/245.578 5488/212491/227.781 4673/178295/219.109
Diagonal 3 5247/196745/423.766 4531/168162/307.594 4596/171636/366.203
Hager 1742/31516/103.672 1242/22799/47.063 1940/33206/98.766
Generalized Tridiagonal 1 2058/32313/49.5 2160/32033/27.5 2161/33285/44.703
Extended Tridiagonal 1 310/2932/8.391 182/2501/6.297 308/4129/12.766
Extended TET 1140/9840/11.031 619/5808/5.484 749/6362/5.969
Diagonal 5 1394/2798/6.938 60/130/0.609 3053907/6107824/3124.875
Extended Himmelblau 50/2431/1.016 51/2602/0.813 50/2413/0.938
Perturbed quadratic diagonal 1837/69156/18.453 1261/36785/13.875 2157/86977/34.797
Quadratic QF1 13895/526995/187.313 21989/846402/376.156 10199/379554/122.844
Extended quadratic penalty QP1 1080/17440/9.922 1524/23840/8.25 1157/18043/9.109
Extended quadratic penalty QP2 218/9479/11.047 112/5513/4.953 218/9194/8.906
Quadratic QF2 19211/847031/348.781 18861/816310/225.891 15555/689736/250.891
Extended quadratic exponential EP1 1254/3443/3.172 56/404/0.516 21431/43829/7.531
Extended Tridiagonal 2 22468/998473/549.484 3668/114169/87.438 10989/510713/93.609
TRIDIA (CUTE) 33278/1647913/967.234 40156/1977068/950.547 29133/1428866/675.422
ARWHEAD (CUTE) 1624/81625/44.875 1529/72379/31.594 1219/57140/28.672
Almost Perturbed Quadratic 14904/621925/259.797 19675/829784/357.359 13201/543372/188.047
LIARWHD (CUTE) 30/2705/1.281 30/2732/1.25 30/2739/1.438
POWER (CUTE) 532442/44419504/16742.672 580790/48609979/17435.609 629342/52431424/23630.781
ENGVAL1 (CUTE) 2489/33103/13.781 2400/32299/10.719 1975/27260/12.922
INDEF (CUTE) 21/1924/2.125 26/2238/2.5 30/2610/4.266
Diagonal 6 1583/3197/4.531 74/185/0.359 7052401/14105032/5037.219
DIXON3DQ (CUTE) 320921/1775846/1083.281 229757/1368033/727.172 257451/1517252/1045.328
COSINE (CUTE) 20/1600/1.891 20/1697/1.891 20/1700/2
BIGGSB1 (CUTE) 249919/1400798/832.375 259475/1549293/810.766 236612/1389720/945.672
Generalized Quartic 866/11273/3.984 1099/8951/4.063 959/10662/3.125
Diagonal 7 1453/4564/6.875 68/162/0.469 469477/940686/140.172
Diagonal 8 1371/3962/5.359 67/199/0.422 594522/1193760/195.094
Full Hessian FH3 2237/6202/7.125 52/513/0.688 767988/1537759/188.469
Diagonal 9 3312/138545/225.719 5344/217150/224.906 4520/189307/260.453
HIMMELH (CUTE) 20/1690/4.797 20/1758/4.531 20/1760/4.891
FLETCHCR (CUTE) 303212/10189775/5073.688 300227/10011849/4704.125 289670/9702961/4411.453
Extended BD1 (Block Diagonal) 1597/16783/7.625 1227/15639/5.875 1200/12605/6.625
Extended Maratos 72/3366/1.188 50/2069/0.719 40/1975/0.75
Extended Cliff 234/2992/2.078 217/6000/4.891 950/13187/6.188
Extended Hiebert 70/7215/1.938 70/7220/1.828 70/7228/1.859
NONDIA (CUTE) 33/3066/1.375 30/2829/1.266 32/3031/1.625
NONDQUAR (CUTE) 58/4652/18.047 45/3666/17.219 86/4989/19.016
DQDRTIC (CUTE) 3456/87105/26.453 2327/59047/16.406 3637/92315/34.953
Extended Freudenstein and Roth 1376/46597/10.734 3390/111830/28.516 2018/66654/16.172
Generalized Rosenbrock 282948/8410218/4125.516 280440/8335396/4088.547 281792/8373946/4055.172
Extended White and Holst 76/5794/9.219 50/3171/7.281 59/4022/11.563
Extended Beale 118/6791/14.047 72/3118/5.906 181/4748/6.75
EG2 (CUTE) 507/29388/47.547 697/48512/119.875 811/39769/122.469
EDENSCH (CUTE) 1694/23160/89.453 2089/27821/83.266 1684/22731/116.844

generated by DL, FDL, and EDL methods. An upper graph in a performance profile
corresponds to the method that shows better performance. The vertical axis of each
performance profile in figures undicates the percentage of test functions for which the
considered method is the winner between compared methods, whereby the right-hand
side corresponds to the percentage of successfully solved test functions.
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Figures 4 and 5 plot the performance profiles for the data in Table 2. Graphs in Figure
4 illustrate the performance profiles Nitr and Nfe for DL, FDL, and EDL iterations based
on the data from Table 2. In Figure 4(a), it is noticeable that DL, FDL, and EDL methods
are able to solve all tested functions, wherein the FDL method produces the best results
in 54.0% (27 out of 50) of test functions compared with DL (26.0% (13 out of 50)) and EDL
(38.0% (19 out of 50)). From Figure 4(a), it is observed that the FDL graph reaches the
top first, so FDL is the best relative to other examined methods with respect to the Nitr
criterion.

Figure 4(b) indicates that the FDL graph is the most efficient and successfully solves
all test cases. In addition, the obtained numerical results confirm that FDL performs well in
most cases. Most specifically, FDL is the fastest because it solves about 48.0% (24 out of 50)
of tested functions with the least Nfe compared to the DL and EDL methods. Meanwhile,
the DL and EDL are superior for solving 22.0% (11 out of 50) and 30.0% (15 out of 50) test
functions, respectively. Hence, the numerical behavior of FDL is superior compared to the
DL and EDL methods for the given test functions.

0 2 4 6 8 10 12 14 16 18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(
)

DL

FDL

EDL

(a) Nitr performance profile.
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(b) Nfe performance profile.

Figure 4. Performance profile for DL, FDL, and EDL methods.

Figure 5 shows Tcpu performance profiles graphs of DL, FDL, and EDL methods.
It is observable that DL, FDL, and EDL are able to solve all tested functions. Further
examination leads to the conclusion that the FDL method is the best in 74.0% (37 out of
50) of the test cases compared with DL (12.0% (6 out of 50)) and EDL (16.0% (8 out of 50)).
Analysing the graphs in Figure 5, a clear conclusion is that the FDL graph comes to the top
first, which confirms its dominance in terms of Tcpu.
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Figure 5. Tcpu performance profile for DL, FDL, and EDL methods.
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By analyzing the results shown in Figures 4, 5 and in Table 2, we conclude that the
FDL method achieved better results. This observation leads us to the final conclusion that
the proposed FDL method is effective for solving unconstrained optimization problems in
terms of all three criteria (iterations, function evaluations, and processor time).

5. Conclusion

In current research, we propose a novel approach to determining the parameter t
in the Dai-Liao CG iterations. New approach is based on finding suitable values for a
non-negative parameter t in the DL method using neutrosophic logic. Utilizing t = νk(∆k)
in (5), an original strategy in defining the Dai-Liao CG parameter βFDL

k is proposed and a
novel fuzzy neutrosophic Dai-Liao (FDL) CG method is presented.

Numerical experiments and comparisons with some well-known CG methods and the
theoretical convergence analysis show effectiveness of the method. The numerical testing
and initiated comparison are based on standard performance profiles, such as the total
number of iterations (Nitr), the total number of function evaluations (Nfe), and the running
time (Tcpu) performances for each function and each method. Analysis of the obtained
numerical results revealed that the FDL method is the most efficient.

We are convinced that the obtained results will be a motivation for further research in
defining improved DL methods strengthened by the neutrosophic logic.

Future scientific research in this direction can be continued in in several directions.
Previous research has shown the effectiveness of the neutrosophic principle in scaled
gradient descent methods and DL class of CG methods. The challenge is to apply such a
principle to other non-linear optimization methods. On the other hand, there is a wide
variety of different possibilities for defining the principles of neutrosophication and de-
neutrosophication, which can be considered in future research. Finally, there is a great
opportunity in improving the Neutrosophic inference engine used in this research.
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