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Abstract For any positive integer n, we define the function P (n) as the smallest prime p

such that n | p!. That is, P (n) = min{p : n |p!, where p be a prime}. This function is a

generalization of the famous Smarandache function S(n). The main purpose of this paper is

using the elementary and analytic methods to study the mean value properties of P (n), and

give two interesting mean value formulas for it.
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§1. Introduction and results

For any positive integer n, the famous Smarandache function S(n) is defined as the smallest
positive integer m such that n | m!. That is, S(n) = min{m : n | m!, n ∈ N}. For example,
the first few values of S(n) are: S(n) are S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5,
S(6) = 3, S(7) = 7, S(8) = 4, S(9) = 6, S(10) = 5, S(11) = 11, S(12) = 4, · · · · · · .

About the elementary properties of S(n), many authors had studied it, and obtained a series
results, see references [1], [2], [3], [4] and [5]. In reference [6], Jozsef Sandor introduced another
arithmetical function P (n) as follows: P (n) = min{p : n |p!, where p be a prime}. That is,
P (n) denotes the smallest prime p such that n | p!. In fact function P (n) is a generalization of
the Smarandache function S(n). Its some values are: P (1) = 2, P (2) = 2, P (3) = 3, P (4) = 5,
P (5) = 5, P (6) = 3, P (7) = 7, P (8) = 5, P (9) = 7, P (10) = 5, P (11) = 11, · · · . It is easy to
prove that for each prime p one has P (p) = p, and if n is a square-free number, then P (n) =
greatest prime divisor of n. If p be a prime, then the following double inequality is true:

2p + 1 ≤ P (p2) ≤ 3p− 1.

For any positive integer n, one has (See Proposition 4 of reference [6])

S(n) ≤ P (n) ≤ 2S(n)− 1. (1)

The main purpose of this paper is using the elementary and analytic methods to study the
mean value properties of the function P (n), and give two interesting mean value formulas it.
That is, we shall prove the following conclusions:
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Theorem 1. For any real number x > 1, we have the asymptotic formula

∑

n≤x

P (n) =
1
2
· x2 + O

(
x

19
12

)
.

Theorem 2. For any real number x > 1, we also have the mean value formula

∑

n≤x

(
P (n)− P (n)

)2
=

2
3
· ζ

(
3
2

)
· x

3
2

lnx
+ O

(
x

3
2

ln2 x

)
,

where P (n) denotes the largest prime divisor of n, and ζ(s) is the Riemann zeta-function.

§2. Proof of the theorems

In this section, we shall prove our theorems directly. First we prove Theorem 1. For any
real number x > 1, we divide all positive integers in the interval [1, x] into two subsets A and
B, where A denotes the set of all integers n ∈ [1, x] such that there exists a prime p with p|n
and p >

√
n. And B denotes the set involving all integers n ∈ [1, x] with n /∈ A. From the

definition and properties of P (n) we have
∑

n∈A

P (n) =
∑

n≤x

p|n,
√

n<p

P (n) =
∑

pn≤x
n<p

P (pn) =
∑

pn≤x
n<p

p =
∑

n≤√x

∑

n<p≤ x
n

p. (2)

By the Abel’s summation formula (See Theorem 4.2 of [7]) and the Prime Theorem (See The-
orem 3.2 of [8]):

π(x) =
k∑

i=1

ai · x
lni x

+ O

(
x

lnk+1 x

)
,

where ai (i = 1, 2, · · · , k) are constants and a1 = 1.
We have

∑

n<p≤ x
n

p =
x

n
· π

(x

n

)
− n · π(n)−

∫ x
n

n

π(y)dy

=
x2

2n2 lnx
+

k∑

i=2

bi · x2 · lni n

n2 · lni x
+ O

(
x2

n2 · lnk+1 x

)
, (3)

where we have used the estimate n ≤ √
x, and all bi are computable constants.

Note that
∞∑

n=1

1
n2

=
π2

6
, and

∞∑
n=1

lni n

n2
is convergent for all i = 2, 3, · · · , k. From (2) and

(3) we have

∑

n∈A

P (n) =
∑

n≤√x

(
x2

2n2 lnx
+

k∑

i=2

bi · x2 · lni n

n2 · lni x
+ O

(
x2

n2 · lnk+1 x

))

=
π2

12
· x2

lnx
+

k∑

i=2

ci · x2

lni x
+ O

(
x2

lnk+1 x

)
, (4)
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where ci (i = 2, 3, · · · , k) are computable constants.
Now we estimate the summation in set B. Note that for any prime p and positive integer

α, S (pα) ≤ α · p, so from (1) we have
∑

n∈B

P (n) =
∑

n∈B

(2S(n)− 1) ≤
∑

n≤x

√
n · lnn ¿ x

3
2 · lnx. (5)

Combining (4) and (5) we may immediately deduce the asymptotic formula

∑

n≤x

P (n) =
∑

n∈A

P (n) +
∑

n∈B

P (n) =
π2

12
· x2

lnx
+

k∑

i=2

ci · x2

lni x
+ O

(
x2

lnk+1 x

)
,

where ci (i = 2, 3, · · · , k) are computable constants. This proves Theorem 1.
Now we prove Theorem 2. For any positive integer n > 1, let P (n) denotes the largest

prime divisor of n. We divide all integers in the interval [1, x] into three subsets A, C and D,
where A denotes the set of all integers n ∈ [1, x] such that there exists a prime p with p|n and
p >

√
n; C denotes the set of all integers n = n1p

2 in the interval [1, x] with n1 ≤ p ≤ √
n,

where p be a prime; And D denotes the set of all integers n ∈ [1, x] with n /∈ A and n /∈ C. It
is clear that if n ∈ A, then P (n) = P (n) and

(
P (n)− P (n)

)2
= 0. So we have the identity

∑

n∈A

(
P (n)− P (n)

)2
= 0. (6)

If n ∈ C, then P (n) = P (p2) ≥ 2p + 1. On the other hand, for any real number x

large enough, from M.N.Huxley [9] we know that there at least exists a prime in the interval[
x, x + x

7
12

]
. So we have the estimate

2p + 1 ≤ P (p2) ≤ 2p + O
(
p

7
12

)
. (7)

From [3] we also have the asymptotic formula

∑

n≤x
1
3

∑

n<p≤
√

x
n

p2 =
2
3
· ζ

(
3
2

)
· x

3
2

lnx
+ O

(
x

3
2

ln2 x

)
. (8)

Note that P (n) = p, if n = n1 · p2 ∈ C.
Therefore, from (7) and (8) we have the estimate
∑

n∈C

(
P (n)− P (n)

)2
=

∑

n≤x
1
3

∑

n<p≤√ x
p

(
P (np2)− P (np2)

)2

=
∑

n≤x
1
3

∑

n<p≤
√

x
n

(
P (p2)− p

)2
=

∑

n≤x
1
3

∑

n<p≤
√

x
n

(
p2 + O

(
p

19
12

))

=
∑

n≤x
1
3

∑

n<p≤
√

x
n

p2 + O
(
x

31
24

)

=
2
3
· ζ

(
3
2

)
· x

3
2

lnx
+ O

(
x

3
2

ln2 x

)
, (9)
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where ζ(s) is the Riemann zeta-function.
If n ∈ D and

(
P (n)− P (n)

)2 6= 0, then P (pα) ¿ S(pα) ¿ p · ln p and P (p3) ¿ p · ln p, so
we have the trivial estimate

∑

n∈D

(
P (n)− P (n)

)2 ¿
∑

3≤α≤ln x

∑

npα≤x

p
2
3 ¿ x · lnx. (10)

Combining (6), (9) and (10) we may immediately the asymptotic formula

∑

n≤x

(
P (n)− P (n)

)2
=

2
3
· ζ

(
3
2

)
· x

3
2

lnx
+ O

(
x

3
2

ln2 x

)
,

where P (n) denotes the largest prime divisor of n, and ζ(s) is the Riemann zeta-function.
This completes the proof of Theorem 2.
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