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Abstract 
 
In this paper, some geometric properties of equiform Smarandache ruled surfaces in Minkowski 
space E13 using an equiform frame are investigated. Also, we give the sufficient conditions that 
make these surfaces are equiform developable and equiform minimal related to the equiform 
curvatures and when the equiform base curve contained in a plane or general helix. Finally, we 
provide an example, such as these surfaces. 
 
Keywords: Ruled surfaces; Equiform frame; Minkowski 3-space; Smarandache curve 
 
MSC 2010 No.: 53B30, 53C40, 53C50 
  
1.  Introduction 
 
The theory of ruled surface is a branch of the classical differential geometry which has been 
developed by several researchers. In general, the rulings of the ruled surface are the set of a family 
of straight lines that depend on a parameter that is mentioned see Do Carmo (2016); Struik (1988); 
Barbosa and Colares (1986). One of the most interesting points is to study of ruled surfaces with 
different moving frames (see, for example, Hu et. al. (2020); Ibrahim Al-Dayel and Solouma 
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(2021); Lam (2020); Ouarab et al. (2018); Ouarab et al. (2020); Ouarab (2021); Solouma and 
Ibrahim AL-Dayel (2021); Emad Solouma and Mohamed Abdelkawy (2022)).  
 
In Euclidean and Lorentzian geometry, the Smarandache curve is the curve whose position vector 
is made by Frenet frame vectors on another regular curve (Ashbacher (1997); Bishop (1975); Iseri 
(2002); Mao (2006)). Many researchers (such as Cetin et al. (2014); Emad Solouma (2021); 
Solouma (2017); Solouma and Mahmoud (2017); Solouma and Mahmoud (2019); Solouma 
(2021); Turgut and Yılmaz (2008); Taskopru and Tosun (2014); Yılmaz and Turgut (2010)) 
studied Smarandache curves in Minkowski and the Euclidean spaces. 
 
In this work, we introduce the definitions of a special kind of ruled surfaces called equiform 
Smarandache ruled surfaces via the equiform frame in Minkowski 3- space. The main results are 
presented in theorems that we concert the sufficient and necessary conditions for those ruled 
surfaces to be equiform developable and equiform minimally. Finally, an illustration-based 
example is provided. 
 
2.  Preliminaries 
 
In Minkowski space E13 the Lorentzian product is defined as:  
 

ℋ = −𝑑𝑑𝑒𝑒12 + 𝑑𝑑𝑒𝑒22 + 𝑑𝑑𝑒𝑒32, 
 

where (𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3) is the E13 rectilinear coordinate system. An arbitrary 𝑢𝑢 ∈ E13 vector is one of the 
following; spacelike if ℋ(𝑢𝑢, 𝑢𝑢)  >  0 or 𝑢𝑢 =  0, timelike if ℋ(𝑢𝑢,𝑢𝑢)  <  0 and zero if ℋ(𝑢𝑢,𝑢𝑢)  =
 0 and 𝑢𝑢 ≠  0. Likewise, a curve 𝜉𝜉 = 𝜉𝜉(𝜚𝜚) can be spacelike, timelike or zero if its 𝜉𝜉′(𝜚𝜚) is 
spacelike, timelike or null. Let 𝜑𝜑 = 𝜑𝜑(𝜚𝜚) is a spacelike curve with a timelike principal normal. If 
{𝑡𝑡,𝑛𝑛, 𝑏𝑏} denotes the moving Frenet frame of the spacelike curve 𝜑𝜑, then {𝑡𝑡,𝑛𝑛, 𝑏𝑏} has the following 
properties:  
 

                             
�̇�𝑡(𝜚𝜚) = 𝜅𝜅(𝜚𝜚)𝑛𝑛(𝜚𝜚),                        
�̇�𝑛(𝜚𝜚) = 𝜅𝜅(𝜚𝜚)𝑡𝑡(𝜚𝜚) + 𝜏𝜏 (𝜚𝜚) 𝑏𝑏(𝜚𝜚),
�̇�𝑏(𝜚𝜚) = 𝜏𝜏 (𝜚𝜚)𝑛𝑛(𝜚𝜚),                       

                                                    (1) 

 
where �∙= 𝑑𝑑

𝑑𝑑𝑑𝑑
�, ℋ(𝑡𝑡, 𝑡𝑡) = −ℋ(𝑛𝑛,𝑛𝑛) = ℋ(𝑏𝑏, 𝑏𝑏) = 1 and   ℋ(𝑡𝑡,𝑛𝑛) = ℋ(𝑡𝑡, 𝑏𝑏) = ℋ(𝑛𝑛, 𝑏𝑏) = 0.  

 
For a spacelike curve 𝜁𝜁: 𝐼𝐼 → E13 with a timelike principal normal in E13. The equiform parameter of 
𝜁𝜁 by 𝜗𝜗 = ∫ 𝜅𝜅𝑑𝑑𝜚𝜚. Then 𝜎𝜎 = 𝑑𝑑𝑑𝑑

 𝑑𝑑𝑑𝑑
, where 𝜎𝜎 = 1

𝜅𝜅
 . We recall that {𝑇𝑇,𝑁𝑁,𝐵𝐵} is the moving equiform 

Frenet frame with the equiform tangent 𝑇𝑇(𝜗𝜗) = 𝜎𝜎 𝑡𝑡(𝜚𝜚), the equiform principal normal 𝑁𝑁(𝜗𝜗) =
𝜎𝜎 𝑛𝑛(𝜚𝜚) and the equiform binormal 𝐵𝐵(𝜗𝜗) = 𝜎𝜎 𝑏𝑏(𝜚𝜚). The equiform curvatures of 
𝜁𝜁 = 𝜁𝜁(𝜗𝜗) are defined by 𝑘𝑘1(𝜗𝜗) = �̇�𝜎 =  𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
  and 𝑘𝑘2(𝜗𝜗) =  �𝜏𝜏

𝜅𝜅
� . As a result, the 𝜁𝜁 equiform Frenet 

frame is given as:  
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𝑇𝑇′(𝜗𝜗) = 𝑘𝑘1(𝜗𝜗) 𝑇𝑇(𝜗𝜗) + 𝑁𝑁(𝜗𝜗),                                  
𝑁𝑁′(𝜗𝜗) = −𝑇𝑇(𝜗𝜗) + 𝑘𝑘1(𝜗𝜗)𝑁𝑁(𝜗𝜗) + 𝑘𝑘2(𝜗𝜗)𝐵𝐵(𝜗𝜗),      
 𝐵𝐵′(𝜗𝜗) = 𝑘𝑘1(𝜗𝜗) 𝑁𝑁(𝜗𝜗) + 𝑘𝑘2(𝜗𝜗) 𝐵𝐵(𝜗𝜗),                       

                                          (2) 

 
for �′ =  𝑑𝑑

𝑑𝑑𝑑𝑑
 � , ℋ(𝑇𝑇,𝑇𝑇) = −ℋ(𝐵𝐵,𝐵𝐵) = ℋ(𝑁𝑁,𝑁𝑁) = 𝜎𝜎2, and ℋ(𝑇𝑇,𝐵𝐵) = ℋ(𝑁𝑁,𝐵𝐵) = ℋ(𝑇𝑇,𝑁𝑁) =

0. 
 
Let 𝜁𝜁 = 𝜁𝜁(𝜗𝜗)  be a regular equiform spacelike curve in E13 via equiform frame { 𝑇𝑇,𝑁𝑁,𝐵𝐵}. Then 
𝑇𝑇𝑁𝑁, 𝑇𝑇𝐵𝐵 and 𝑁𝑁𝐵𝐵- equiform Smarandache curves of 𝜁𝜁 are defined, respectively, as follows (Solouma 
(2021)): 

𝜑𝜑(𝜗𝜗∗ (𝜗𝜗)) =  1
√2𝑑𝑑 

(𝑇𝑇(𝜗𝜗) + 𝑁𝑁(𝜗𝜗)), 

𝜓𝜓(𝜗𝜗∗ (𝜗𝜗)) =  1
√2𝑑𝑑 

(𝑇𝑇(𝜗𝜗) + 𝐵𝐵(𝜗𝜗)), 

𝜔𝜔(𝜗𝜗∗ (𝜗𝜗)) =  1
√2𝑑𝑑 

(𝑁𝑁(𝜗𝜗) + 𝐵𝐵(𝜗𝜗)). 
 
The Lorentzian sphere with the origin center in the E13 space and a radius of 𝜖𝜖 > 0 is defined as  
 

𝑆𝑆12 = {𝑥𝑥 ∈  E13 ∶ ℋ(𝑥𝑥, 𝑥𝑥) = 𝜖𝜖2 }. 
 
A ruled surface Γ in E13 can be represented as 
  

Γ(𝜚𝜚, 𝜐𝜐) = 𝜑𝜑(𝜚𝜚) + 𝜐𝜐𝜐𝜐(𝜚𝜚),                               (3) 
 
where 𝜑𝜑(𝜚𝜚) is the base curve and 𝜐𝜐(𝜚𝜚) is a space curve that represents the direction of a straight 
line.  
 
The unit normal vector field ℕ on Γ can be defined by  

 
ℕ =  Γ𝜚𝜚 × Γ𝜐𝜐

�Γ𝜚𝜚 × Γ𝜐𝜐�
 ,                                                                  (4) 

 
where Γ𝑑𝑑 = 𝜕𝜕Γ

𝜕𝜕𝑑𝑑
  and  Γ𝜐𝜐 = 𝜕𝜕Γ

𝜕𝜕𝜐𝜐
 . The components of Γ’s first and second fundamental forms are 

given by, and respectively, 
  𝐸𝐸 = �Γ𝑑𝑑�

2
,      𝐹𝐹 = 〈Γ𝑑𝑑 ,Γ𝜐𝜐〉,   𝐺𝐺 =  ‖Γ𝜐𝜐‖2, 

 
    𝑒𝑒 = 〈Γ𝑑𝑑𝑑𝑑 ,ℕ〉,   𝑓𝑓 = 〈Γ𝑑𝑑𝜐𝜐,ℕ〉, 𝑔𝑔 = 〈Γ𝜐𝜐𝜐𝜐,ℕ〉. 

 
The Gaussian and mean curvatures of Γ respectively are given by  
 

                                                        Κ = 𝑒𝑒 𝑔𝑔 − 𝑓𝑓2

𝐸𝐸𝐸𝐸 − 𝐹𝐹2
 ,                                                                     (5) 

 
                                                   Η = 𝐸𝐸 𝑔𝑔 + 𝐸𝐸 𝑒𝑒 − 2𝐹𝐹 𝑓𝑓

2(𝐸𝐸𝐸𝐸 − 𝐹𝐹2 )
 .                                                               (6) 
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A ruled surface is developable if and only if Κ = 0 and minimal if and only if Η = 0. 
 
3.  Main results  
 
In this section, we define the equiform Smarandache ruled surfaces within Mikowski 3-space E13 
referring to the equiform frame {𝑇𝑇,𝑁𝑁,𝐵𝐵}. Also, we investigate the necessary and sufficient 
conditions that make these surfaces have Κ = 0 and Η = 0. 
 
3.1 𝑇𝑇𝑁𝑁-equiform Smarandache ruled surface  
 
Definition 3.1. 
 
For a regular equiform spacelike curve 𝜁𝜁 = 𝜁𝜁(𝜗𝜗) in E13 via the frame (2). The 𝑇𝑇𝑁𝑁-equiform 
Smarandache ruled surface is given by 

                             Λ = Λ(𝜗𝜗, 𝜐𝜐) =  1
√2𝑑𝑑 

(𝑇𝑇(𝜗𝜗) + 𝑁𝑁(𝜗𝜗)) + 𝜐𝜐𝐵𝐵(𝜗𝜗).                                           (7) 
 
Theorem 3.1. 
 
Let Λ = Λ(𝜗𝜗, 𝜐𝜐) is 𝑇𝑇𝑁𝑁-equiform Smarandache ruled surface in E13 defined by (7). Then, we have  
1. If 𝑘𝑘1 = 1, then Λ is equiform developable surface and ΗΛ given by the formula 
 

ΗΛ = 𝑑𝑑𝜐𝜐𝑘𝑘2(√2𝑑𝑑𝜐𝜐𝑘𝑘2+2)+2𝑘𝑘2�𝑘𝑘2+√2𝑑𝑑𝜐𝜐�

√2(√2𝑑𝑑𝜐𝜐𝑘𝑘2+2)
3
2

. 

2. If 𝜁𝜁(𝜚𝜚) is a plane curve (𝑘𝑘2 = 0), then Λ is equiform developable surface and ΗΛ satisfying 
 

ΗΛ = (𝑘𝑘1+1)�𝑘𝑘1′+𝑘𝑘1(𝑘𝑘1−2)�+(𝑘𝑘1−1)�𝑘𝑘12+𝑘𝑘1′+2𝑘𝑘1+1�

4√2(𝑘𝑘1)
3
2

. 

 
Proof: 
 
Let Λ(𝜗𝜗, 𝜐𝜐) =  1

√2𝑑𝑑 
(𝑇𝑇(𝜗𝜗) + 𝑁𝑁(𝜗𝜗)) + 𝜐𝜐𝐵𝐵(𝜗𝜗) be 𝑇𝑇𝑁𝑁-equiform Smarandache ruled surface 

recording by the equiform frame {𝑇𝑇,𝑁𝑁,𝐵𝐵} in E13. Taking the first derivative of Λ(𝜗𝜗, 𝜐𝜐) with respect 
to 𝜗𝜗 and 𝜐𝜐, we get 

            Λ𝑑𝑑 =  �𝑘𝑘1−1
√2𝑑𝑑

� 𝑇𝑇(𝜗𝜗) + �𝑘𝑘1+1
√2𝑑𝑑

+ 𝜐𝜐𝑘𝑘2�𝑁𝑁(𝜗𝜗) + � 𝑘𝑘2
√2𝑑𝑑

+ 𝜐𝜐𝑘𝑘1� 𝐵𝐵(𝜗𝜗),
Λ𝜐𝜐 = 𝐵𝐵(𝜗𝜗).                                                                                          

                               (8) 

 
From (8), The components of Λ’s first fundamental form and the unit normal vector field are given 
by:  

              
𝐸𝐸Λ = 1

2
�(𝑘𝑘1 − 1)2 − �𝑘𝑘1 + √2𝜎𝜎𝜐𝜐𝑘𝑘2�

2
+ �𝑘𝑘2 + √2𝜎𝜎𝜐𝜐𝑘𝑘1�

2
� ,

𝐹𝐹Λ = 𝑑𝑑
√2
�𝑘𝑘2 + √2𝜎𝜎𝜐𝜐𝑘𝑘1�,                                                                

𝐺𝐺Λ = 𝜎𝜎2.                                                                                            

                      (9) 
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                            ℕΛ = �𝑘𝑘1+√2𝑑𝑑𝜐𝜐𝑘𝑘2+1�𝑇𝑇(𝑑𝑑)−(𝑘𝑘1−1)𝑁𝑁(𝑑𝑑)

𝑑𝑑��𝑘𝑘1+√2𝑑𝑑𝜐𝜐𝑘𝑘2+1�
2
−(𝑘𝑘1−1)2

 .                                                (10) 

 
Another time, we can differentiate (7) with respect to 𝜗𝜗 and 𝜐𝜐, respectively, and use (2) to get  
 

                                
Λ𝑑𝑑𝑑𝑑 = 𝜀𝜀1𝑇𝑇(𝜗𝜗) + 𝜀𝜀2 𝑁𝑁(𝜗𝜗) + 𝜀𝜀3 𝐵𝐵(𝜗𝜗),
Λ𝑑𝑑𝜐𝜐 = 𝑘𝑘2 𝑁𝑁(𝜗𝜗) + 𝑘𝑘1 𝐵𝐵(𝜗𝜗),                 
Λ𝜐𝜐𝜐𝜐 = 0.                                                  

                                              (11) 

 
where 

                         

𝜀𝜀1 = 1
√2𝑑𝑑

�𝑘𝑘1′ + 𝑘𝑘1(𝑘𝑘1 − 2) + √2𝜎𝜎𝜐𝜐𝑘𝑘2 + 1�,                  

𝜀𝜀2 = 1
√2𝑑𝑑

�𝑘𝑘12 + 𝑘𝑘22 + 𝑘𝑘1′ + 2𝑘𝑘1 + √2𝜎𝜎𝜐𝜐(𝑘𝑘1𝑘𝑘2 + 𝑘𝑘2′ )�,

𝜀𝜀3 = 1
√2𝑑𝑑

�𝑘𝑘2′ + 𝑘𝑘2(2𝑘𝑘1 + 1) + √2𝜎𝜎𝜐𝜐(𝑘𝑘12 + 𝑘𝑘22 + 𝑘𝑘2′ )�.

                                  (12) 

 
From (10) and (11), the components of Λ’s second fundamental form are given by:  
 

                                 

𝑒𝑒Λ = 𝑑𝑑�𝜀𝜀1�𝑘𝑘1+√2𝑑𝑑𝜐𝜐𝑘𝑘2+1�+𝜀𝜀2(𝑘𝑘1−1)�

��𝑘𝑘1+√2𝑑𝑑𝜐𝜐𝑘𝑘2+1�
2
−(𝑘𝑘1−1)2

,           

𝑓𝑓Λ = 𝑑𝑑𝑘𝑘2(𝑘𝑘1−1)

��𝑘𝑘1+√2𝑑𝑑𝜐𝜐𝑘𝑘2+1�
2
−(𝑘𝑘1−1)2

,                 

𝑔𝑔Λ = 0.                                                         

                                             (13) 

So, from (9) and (11), the equiform Gaussian and mean curvatures of 𝑇𝑇𝑁𝑁-equiform Smarandache 
ruled surface Λ given by: 

                      

ΚΛ = 𝑘𝑘22(𝑘𝑘1−1)2

��𝑘𝑘1+√2𝑑𝑑𝜐𝜐𝑘𝑘2+1�
2
−(𝑘𝑘1−1)2�

2,                                      

ΗΛ = 2√2𝑘𝑘2�𝑘𝑘2+√2𝑑𝑑𝜐𝜐𝑘𝑘2�−2𝑑𝑑�𝜀𝜀1�𝑘𝑘1+√2𝑑𝑑𝜐𝜐𝑘𝑘2+1�+𝜀𝜀2(𝑘𝑘1−1)�

��𝑘𝑘1+√2𝑑𝑑𝜐𝜐𝑘𝑘2+1�
2
−(𝑘𝑘1−1)2�

3
2

.
                                   (14) 

 
Consequently, from (14) we complete our proof.                                                                                                  ■ 
                
 
Corollary 3.2. 
 
Let Λ = Λ(𝜗𝜗, 𝜐𝜐) is 𝑇𝑇𝑁𝑁-equiform Smarandache ruled surface in E13 defined by (7). Then Λ is 
equiform minimal surface if and only if the equiform curvatures satisfy the following differential 
equation 
 

2√2𝑘𝑘2�𝑘𝑘2 + √2𝜎𝜎𝜐𝜐𝑘𝑘2� − 2𝜎𝜎�𝜀𝜀1�𝑘𝑘1 + √2𝜎𝜎𝜐𝜐𝑘𝑘2 + 1� + 𝜀𝜀2(𝑘𝑘1 − 1)� = 0, 
  
 where 𝜀𝜀1 and 𝜀𝜀2 are given by (12).  
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Proof: 
 
Let Λ(𝜗𝜗, 𝜐𝜐) be 𝑇𝑇𝑁𝑁-equiform Smarandache ruled surface defined by (7) via the equiform frame 
{𝑇𝑇,𝑁𝑁,𝐵𝐵} in E13. From (14), the equiform surface Λ(𝜗𝜗, 𝜐𝜐) is equiform minimal surface if and only 
if ΗΛ = 0 which mean that  

2√2𝑘𝑘2�𝑘𝑘2 + √2𝜎𝜎𝜐𝜐𝑘𝑘2� − 2𝜎𝜎�𝜀𝜀1�𝑘𝑘1 + √2𝜎𝜎𝜐𝜐𝑘𝑘2 + 1� + 𝜀𝜀2(𝑘𝑘1 − 1)� = 0, 
where 𝜀𝜀1 and 𝜀𝜀2 are given by (12) which complete our proof.      ■ 
 
3.2 𝑇𝑇𝐵𝐵-equiform Smarandache ruled surface  
 
Definition 3.2. 
 
For a regular equiform spacelike curve 𝜁𝜁 = 𝜁𝜁(𝜗𝜗) in E13 via the frame (2). The 𝑇𝑇𝐵𝐵-equiform        
Smarandache ruled surface is given by 

                                 Θ = Θ(𝜗𝜗, 𝜐𝜐) =  1
√2𝑑𝑑 

(𝑇𝑇(𝜗𝜗) + 𝐵𝐵(𝜗𝜗)) + 𝜐𝜐𝑁𝑁(𝜗𝜗).                                        (15) 
 
Theorem 3.3. 
 
Let Θ = Θ(𝜗𝜗, 𝜐𝜐) is 𝑇𝑇𝐵𝐵-equiform Smarandache ruled surface in E13 defined by (15). Then, we have  
1.  If 𝜁𝜁(𝜚𝜚) has non-zero constant curvature (𝑘𝑘1 = 0), then Θ is equiform developable surface and  
 

ΗΘ = −√2𝑘𝑘2(𝑘𝑘2+1)+𝑑𝑑𝜐𝜐𝑘𝑘2′

2𝑑𝑑2𝜐𝜐2(𝑘𝑘2+1)
3
2

. 

 
2.  If 𝜁𝜁(𝜚𝜚) is a general helix (𝑘𝑘2 = 1), then Θ is equiform developable surface and  
 

ΗΘ = −𝑘𝑘1′+𝑘𝑘1�𝑘𝑘1+√2𝑑𝑑𝜐𝜐�

�𝑘𝑘1−√2𝑑𝑑𝜐𝜐�
2 . 

 
Proof: 
 
We can study the ΚΘ and ΗΘ of 𝑇𝑇𝐵𝐵-equiform Smarandache ruled surface via the equiform frame 
{𝑇𝑇,𝑁𝑁,𝐵𝐵}. The velocity vectors of (15) are given by  
 

                 Θ𝑑𝑑 =  �𝑘𝑘1−√2𝑑𝑑𝜐𝜐
√2𝑑𝑑

� 𝑇𝑇(𝜗𝜗) + �𝑘𝑘2+√2𝑑𝑑𝜐𝜐𝑘𝑘1+1
√2𝑑𝑑

�𝑁𝑁(𝜗𝜗) + �𝑘𝑘1+√2𝑑𝑑𝜐𝜐𝑘𝑘2
√2𝑑𝑑

� 𝐵𝐵(𝜗𝜗),
Θ𝜐𝜐 = 𝑁𝑁(𝜗𝜗).                                                                                                

                         (16) 

 
 
Now, using (16), we get the quantities of the first fundamental form and the unit normal vector 
field of Θ are given by: 

                
𝐸𝐸Θ = 1

2
��𝑘𝑘1 − √2𝜎𝜎𝜐𝜐�

2
− �𝑘𝑘2 + √2𝜎𝜎𝜐𝜐𝑘𝑘1 + 1�

2
+ �𝑘𝑘1 + √2𝜎𝜎𝜐𝜐𝑘𝑘2�

2
� ,

𝐹𝐹Θ = − 𝑑𝑑
√2
�𝑘𝑘2 + √2𝜎𝜎𝜐𝜐𝑘𝑘1 + 1�,                                                                    

𝐺𝐺Θ = −𝜎𝜎2.                                                                                                        

                      (17) 
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                           ℕΘ = �𝑘𝑘1+√2𝑑𝑑𝜐𝜐𝑘𝑘2�𝑇𝑇(𝑑𝑑)+�𝑘𝑘1−√2𝑑𝑑𝜐𝜐�𝐵𝐵(𝑑𝑑)

𝑑𝑑 ��𝑘𝑘1+√2𝑑𝑑𝜐𝜐𝑘𝑘2�
2
+�𝑘𝑘1−√2𝑑𝑑𝜐𝜐�

2
 .                                                  (18) 

 
Differentiating (16) with respect to 𝜗𝜗 and 𝜐𝜐 respectively and using (2) we get 
 

                              
Θ𝑑𝑑𝑑𝑑 = 𝜇𝜇1𝑇𝑇(𝜗𝜗) + 𝜇𝜇2 𝑁𝑁(𝜗𝜗) + 𝜇𝜇3 𝐵𝐵(𝜗𝜗),                
Θ𝑑𝑑𝜐𝜐 = −𝑇𝑇(𝜗𝜗) + 𝑘𝑘1 𝑁𝑁(𝜗𝜗) + 𝑘𝑘2 𝐵𝐵(𝜗𝜗),                 
Θ𝜐𝜐𝜐𝜐 = 0,                                                                     

                                         (19) 

where 
𝜇𝜇1 = 1

√2𝑑𝑑
�𝑘𝑘1′ − 𝑘𝑘2 + 𝑘𝑘1�𝑘𝑘1 − √2𝜎𝜎𝜐𝜐� − √2𝜎𝜎𝜐𝜐𝑘𝑘1 + 1�,                                                       

𝜇𝜇2 = 1
√2𝑑𝑑

�𝑘𝑘1′ + 𝑘𝑘2′ + 𝑘𝑘1�𝑘𝑘2 + √2𝜎𝜎𝜐𝜐𝑘𝑘1 + 2� + 𝑘𝑘2�𝑘𝑘1 + √2𝜎𝜎𝜐𝜐𝑘𝑘2� + √2𝜎𝜎𝜐𝜐(𝑘𝑘1′ − 1)�,

𝜇𝜇3 = 1
√2𝑑𝑑

�𝑘𝑘1′ + 𝑘𝑘2�𝑘𝑘2 + √2𝜎𝜎𝜐𝜐𝑘𝑘1 + 1� + 𝑘𝑘1�𝑘𝑘1 + √2𝜎𝜎𝜐𝜐𝑘𝑘2� + √2𝜎𝜎𝜐𝜐𝑘𝑘2′ �.                     

              (20) 

 
 
From (18) and (19), the quantities of the second fundamental form of Θ are given by: 
 

                              

𝑒𝑒Θ = 𝑑𝑑�𝜇𝜇1(𝑘𝑘1+√2𝑑𝑑𝜐𝜐𝑘𝑘2)+𝜇𝜇2�𝑘𝑘1+√2𝑑𝑑𝜐𝜐��

��𝑘𝑘1+√2𝑑𝑑𝜐𝜐𝑘𝑘2�
2
+�𝑘𝑘1−√2𝑑𝑑𝜐𝜐�

2
,           

𝑓𝑓Θ = 𝑑𝑑𝑘𝑘1(𝑘𝑘2−1)

��𝑘𝑘1+√2𝑑𝑑𝜐𝜐𝑘𝑘2�
2
+�𝑘𝑘1−√2𝑑𝑑𝜐𝜐�

2
,                 

𝑔𝑔Θ = 0.                                                         

                                          (21) 

 
 
Then, from (17) and (21), the equiform ΚΘ and ΗΘ of 𝑇𝑇𝐵𝐵-equiform Smarandache ruled surface Θ 
given by   

        

ΚΘ = 2𝑘𝑘12(𝑘𝑘2−1)2

��𝑘𝑘1+√2𝑑𝑑𝜐𝜐𝑘𝑘2�
2
+�𝑘𝑘1−√2𝑑𝑑𝜐𝜐�

2
�
2 ,                                                     

ΗΘ = 2√2𝑘𝑘1(𝑘𝑘1−1)�𝑘𝑘2+√2𝑑𝑑𝜐𝜐𝑘𝑘1+1�−2𝑑𝑑�𝜇𝜇1�𝑘𝑘1+√2𝑑𝑑𝜐𝜐𝑘𝑘2�+𝜇𝜇3�𝑘𝑘1+√2𝑑𝑑𝜐𝜐��

��𝑘𝑘1+√2𝑑𝑑𝜐𝜐𝑘𝑘2�
2
+�𝑘𝑘1−√2𝑑𝑑𝜐𝜐�

2
�
3
2

,
                         (22) 

 
which complete our proof.                                                                                                                             ■ 
     
          
Corollary 3.4. 
 
Let Θ = Θ(𝜗𝜗, 𝜐𝜐) is 𝑇𝑇𝐵𝐵-equiform Smarandache ruled surface in E13 defined by (15). Then Θ is 
equiform minimal surface if and only if the equiform curvatures satisfy the following differential 
equation 

2√2𝑘𝑘1(𝑘𝑘1 − 1)�𝑘𝑘2 + √2𝜎𝜎𝜐𝜐𝑘𝑘1 + 1� − 2𝜎𝜎�𝜇𝜇1�𝑘𝑘1 + √2𝜎𝜎𝜐𝜐𝑘𝑘2� + 𝜇𝜇3�𝑘𝑘1 + √2𝜎𝜎𝜐𝜐�� = 0, 
where 𝜇𝜇1 and 𝜇𝜇3 are given by (20). 
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Proof: 
 
Let Θ = Θ(𝜗𝜗, 𝜐𝜐) be 𝑇𝑇𝐵𝐵-equiform Smarandache ruled surface defined by (15) in E13 via the 
equiform frame {𝑇𝑇,𝑁𝑁,𝐵𝐵}. Then, ΗΘ = 0 implies that Θ(𝜗𝜗, 𝜐𝜐) is equiform minimal surface. From 
(22), we have  

2√2𝑘𝑘1(𝑘𝑘1 − 1)�𝑘𝑘2 + √2𝜎𝜎𝜐𝜐𝑘𝑘1 + 1� − 2𝜎𝜎�𝜇𝜇1�𝑘𝑘1 + √2𝜎𝜎𝜐𝜐𝑘𝑘2� + 𝜇𝜇3�𝑘𝑘1 + √2𝜎𝜎𝜐𝜐�� = 0, 
for 𝜇𝜇1 and 𝜇𝜇3 are given by (20). This complete the proof.                                                            ■ 
 
 
3.3 𝑁𝑁𝐵𝐵-equiform Smarandache ruled surface  
 
Definition 3.2. 
 
For a regular equiform spacelike curve 𝜁𝜁 = 𝜁𝜁(𝜗𝜗) in E13 via the frame (2). The 𝑁𝑁𝐵𝐵-equiform 
Smarandache ruled surface is given by 

              Υ = Υ(𝜗𝜗, 𝜐𝜐) =  1
√2𝑑𝑑 

(𝑁𝑁(𝜗𝜗) + 𝐵𝐵(𝜗𝜗)) + 𝜐𝜐𝑇𝑇(𝜗𝜗).                                         (23) 
 
Theorem 3.5. 
 
Let Υ = Υ(𝜗𝜗, 𝜐𝜐) is 𝑁𝑁𝐵𝐵-equiform Smarandache ruled surface in E13 defined by (23). If 𝑘𝑘1 + 𝑘𝑘2 =
0, then Υ is equiform developable surface satisfying 

ΗΥ = 𝑘𝑘2
2𝑑𝑑2𝜐𝜐2

. 
Proof: 
 
We compute the equiform Gaussian and the equiform mean curvatures of 𝑁𝑁𝐵𝐵-equiform 
Smarandache ruled surface given by (23) via the equiform frame {𝑇𝑇,𝑁𝑁,𝐵𝐵}. The Υ’s velocity 
vectors are given by  
 

                 Υ𝑑𝑑 =  �√2𝑑𝑑𝜐𝜐𝑘𝑘1−1
√2𝑑𝑑

� 𝑇𝑇(𝜗𝜗) + �𝑘𝑘1+𝑘𝑘2+√2𝑑𝑑𝜐𝜐
√2𝑑𝑑

�𝑁𝑁(𝜗𝜗) + �𝑘𝑘1+𝑘𝑘2
√2𝑑𝑑

�𝐵𝐵(𝜗𝜗),       
Υ𝜐𝜐 = 𝑇𝑇(𝜗𝜗).                                                                                                

                       (24) 

 
By using (24), we get the components of the first fundamental form and the unit normal vector 
field of Υ are given by: 

                 
𝐸𝐸Υ = 1

2
��√2𝜎𝜎𝜐𝜐𝑘𝑘1 − 1�

2
− �𝑘𝑘1 + 𝑘𝑘2 + √2𝜎𝜎𝜐𝜐�

2
+ (𝑘𝑘1 + 𝑘𝑘2)2�,            

𝐹𝐹Υ = 𝑑𝑑
√2
�√2𝜎𝜎𝜐𝜐𝑘𝑘1 − 1�,                                                                                  

𝐺𝐺Υ = 𝜎𝜎2,                                                                                                            

                (25) 

 
                                      ℕΥ = (𝑘𝑘1+𝑘𝑘2)𝑁𝑁(𝑑𝑑)−�𝑘𝑘1+𝑘𝑘2+√2𝑑𝑑𝜐𝜐�𝐵𝐵(𝑑𝑑)

√2𝑑𝑑 �𝑑𝑑𝜐𝜐(𝑘𝑘1+𝑘𝑘2+𝑑𝑑𝜐𝜐)
 .                                                 (26) 

 
Using (2) and differentiating (24) again with respect to 𝜗𝜗 and 𝜐𝜐 respectively, we get 
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Υ𝑑𝑑𝑑𝑑 = 𝛼𝛼1𝑇𝑇(𝜗𝜗) + 𝛼𝛼2 𝑁𝑁(𝜗𝜗) + 𝛼𝛼3 𝐵𝐵(𝜗𝜗),                
Υ𝑑𝑑𝜐𝜐 = 𝑘𝑘1𝑇𝑇(𝜗𝜗) + 𝑁𝑁(𝜗𝜗),                                          
Υ𝜐𝜐𝜐𝜐 = 0,                                                                    

                                   (27) 

 
where 

            
𝛼𝛼1 = 1

√2𝑑𝑑
�𝑘𝑘1�√2𝜎𝜎𝜐𝜐𝑘𝑘1 − 1� + √2𝜎𝜎𝜐𝜐(𝑘𝑘1′ − 1) − 𝑘𝑘1 − 𝑘𝑘2�,                                                            

𝛼𝛼2 = 1
√2𝑑𝑑

�𝑘𝑘1′ + 𝑘𝑘2′ + 𝑘𝑘1�𝑘𝑘1 + 𝑘𝑘2 + √2𝜎𝜎𝜐𝜐� + 𝑘𝑘2(𝑘𝑘1 + 𝑘𝑘2) + √2𝜎𝜎𝜐𝜐𝑘𝑘1 − 1�,                           

𝛼𝛼3 = 1
√2𝑑𝑑

�𝑘𝑘1′ + 𝑘𝑘2′ + 𝑘𝑘1�𝑘𝑘1 + 𝑘𝑘2 + √2𝜎𝜎𝜐𝜐� + 𝑘𝑘2(𝑘𝑘1 + 𝑘𝑘2)�.                                                        

   (28) 

 
From (26) and (27), the quantities of the second fundamental form of Υ are given by: 
 

                            

𝑒𝑒Υ = −𝑑𝑑�𝛼𝛼2(𝑘𝑘1+𝑘𝑘2)+𝛼𝛼3�𝑘𝑘1+𝑘𝑘2+√2𝑑𝑑𝜐𝜐��
√2 �𝑑𝑑𝜐𝜐(𝑘𝑘1+𝑘𝑘2+𝑑𝑑𝜐𝜐)

 ,         

𝑓𝑓Υ = − 𝑑𝑑(𝑘𝑘1+𝑘𝑘2)

√2𝑑𝑑 �𝑑𝑑𝜐𝜐(𝑘𝑘1+𝑘𝑘2+𝑑𝑑𝜐𝜐)
,                            

𝑔𝑔Υ = 0.                                                              

                                        (29) 

 
Then, from (25) and (29), the equiform Gaussian curvature ΚΥ and the equiform mean curvature 
ΗΥ of Υ are given by 

                        
ΚΥ = (𝑘𝑘1+𝑘𝑘2)2

2𝑑𝑑2𝜐𝜐2(𝑘𝑘1+𝑘𝑘2+𝑑𝑑𝜐𝜐)2
 ,                                                            

ΗΥ = √2𝑑𝑑�𝛼𝛼2(𝑘𝑘1+𝑘𝑘2)+𝛼𝛼3�𝑘𝑘1+𝑘𝑘2+√2𝑑𝑑𝜐𝜐��+2(𝑘𝑘1+𝑘𝑘2)�√2𝑑𝑑𝜐𝜐𝑘𝑘1−1�

2[𝑑𝑑𝜐𝜐(𝑘𝑘1+𝑘𝑘2+𝑑𝑑𝜐𝜐)]
3
2

.
                          (30) 

As a consequence of the above results, we complete the proof.                                                                  ■ 
              
Corollary 3.4. 
 
Let Υ = Υ(𝜗𝜗, 𝜐𝜐) is 𝑁𝑁𝐵𝐵-equiform Smarandache ruled surface in E13 defined by (23). Then Υ is 
equiform minimal surface if and only if the equiform curvatures satisfy the following differential 
equation 
 

𝜎𝜎�𝛼𝛼2(𝑘𝑘1 + 𝑘𝑘2) + 𝛼𝛼3�𝑘𝑘1 + 𝑘𝑘2 + √2𝜎𝜎𝜐𝜐�� + √2(𝑘𝑘1 + 𝑘𝑘2)�√2𝜎𝜎𝜐𝜐𝑘𝑘1 − 1� = 0, 
 
where 𝛼𝛼2 and 𝛼𝛼3 are given by (28). 
 
Proof: 
 
Let Υ = Υ(𝜗𝜗, 𝜐𝜐) be 𝑁𝑁𝐵𝐵-equiform Smarandache ruled surface defined by (23) in E13 via the 
equiform frame {𝑇𝑇,𝑁𝑁,𝐵𝐵}. As the above way, the equiform mean curvature ΗΥ of  Υ is given by 
(30). Then, ΗΥ = 0 means the equiform surface Υ(𝜗𝜗, 𝜐𝜐) is equiform minimal surface. Then, from 
(30), we have  

𝜎𝜎�𝛼𝛼2(𝑘𝑘1 + 𝑘𝑘2) + 𝛼𝛼3�𝑘𝑘1 + 𝑘𝑘2 + √2𝜎𝜎𝜐𝜐�� + √2(𝑘𝑘1 + 𝑘𝑘2)�√2𝜎𝜎𝜐𝜐𝑘𝑘1 − 1� = 0, 
where 𝛼𝛼2 and 𝛼𝛼3 are given by (28) which complete the proof.                                                                     ■ 
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3.4 Example 

 
Consider the case of a regular spacelike curve 𝜑𝜑(𝜚𝜚) with a timelike principal normal in E13 (see 
Figure 1) 

                            𝜑𝜑(𝜚𝜚) = � 𝑑𝑑
√2

 cosh�√2 ln 𝜚𝜚� , 𝑑𝑑
√2

 sinh�√2 ln 𝜚𝜚�, 𝑑𝑑
√2
� .                                  (31) 

Then, the Frenet apparatus are given as the following 
 

 
 

Figure 1: Spacelike curve 𝜑𝜑 =  𝜑𝜑(𝜚𝜚) 
 

  𝑡𝑡(𝜚𝜚) = � 1
√2

 cosh�√2 ln 𝜚𝜚� + sinh�√2 ln 𝜚𝜚�, 1
√2

 sinh�√2 ln 𝜚𝜚� + cosh�√2 ln 𝜚𝜚�, 1
√2
�, 

𝑛𝑛(𝜚𝜚) = �√2cosh�√2 ln 𝜚𝜚� + sinh�√2 ln 𝜚𝜚�,√2sinh�√2 ln 𝜚𝜚� + cosh�√2 ln 𝜚𝜚�, 0�, 
𝜅𝜅 = 1

𝑑𝑑
,    𝜎𝜎 = 𝜚𝜚,    𝑘𝑘1 = 1, 

𝑏𝑏(𝜚𝜚) = � 1
√2

 cosh�√2 ln 𝜚𝜚� + sinh�√2 ln 𝜚𝜚� , 1
√2

 sinh�√2 ln 𝜚𝜚� + cosh�√2 ln 𝜚𝜚�, −1
√2
�, 

𝜏𝜏 = 1
𝑑𝑑

,    𝑘𝑘2 = 1. 
 
Then, the equiform parameter is 𝜗𝜗 = ∫ 𝜅𝜅 𝑑𝑑𝜚𝜚 = ln 𝜚𝜚𝑑𝑑

0 , so we have 𝜚𝜚 = 𝜎𝜎 =  𝑒𝑒𝑑𝑑. Now, the equiform 
spacelike curve 𝜁𝜁(𝜗𝜗) is define as (see Figure 2) 
 

                         𝜁𝜁(𝜗𝜗) = �𝑒𝑒
𝜗𝜗

√2
 cosh�√2𝜗𝜗� , 𝑒𝑒

𝜗𝜗

√2
 sinh�√2𝜗𝜗�, 𝑒𝑒

𝜗𝜗

√2
�.                                          (32) 
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Figure 2: Equiform spacelike curve 𝜁𝜁 =  𝜁𝜁(𝜗𝜗)   
 

It is easy to show that the vectors of equiform Frenet frame are given as: 
 

  𝑇𝑇(𝜚𝜚) = 𝑒𝑒𝑑𝑑 � 1
√2

 cosh�√2𝜗𝜗� + sinh�√2𝜗𝜗�, 1
√2

 sinh�√2𝜗𝜗� + cosh�√2𝜗𝜗�, 1
√2
�, 

𝑁𝑁(𝜚𝜚) = 𝑒𝑒𝑑𝑑�√2cosh�√2𝜗𝜗� + sinh�√2𝜗𝜗�,√2sinh�√2𝜗𝜗� + cosh�√2𝜗𝜗�, 0�, 
𝐵𝐵(𝜚𝜚) = 𝑒𝑒𝑑𝑑 � 1

√2
 cosh�√2𝜗𝜗� + sinh�√2𝜗𝜗� , 1

√2
 sinh�√2𝜗𝜗� + cosh�√2𝜗𝜗�, −1

√2
�. 

 
Thus, the equiform Smarandache ruled surfaces Λ(𝜗𝜗, 𝜐𝜐),Θ(𝜗𝜗, 𝜐𝜐) and Υ(𝜗𝜗, 𝜐𝜐) are respectively given 
as (see Figures 3, 4 and 5) 

 
 

Figure 3: 𝑇𝑇𝑁𝑁-equiform Smarandache developable ruled surface Λ(𝜗𝜗, 𝜐𝜐) 
 

Λ(𝜗𝜗, 𝜐𝜐) = ��3+√2𝜐𝜐𝑒𝑒
𝜗𝜗

2
� cosh�√2𝜗𝜗� + �1+√2𝜐𝜐𝑒𝑒

𝜗𝜗

√2
� sinh�√2𝜗𝜗� , �3+√2𝜐𝜐𝑒𝑒

𝜗𝜗

2
� sinh�√2𝜗𝜗�

                              + �1+√2𝜐𝜐𝑒𝑒
𝜗𝜗

√2
� cosh�√2𝜗𝜗� , 1−𝜐𝜐𝑒𝑒

𝜗𝜗

√2
�.                                                                                 

    

(33) 
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Figure 4: 𝑇𝑇𝐵𝐵-equiform Smarandache developable ruled surface Θ(𝜗𝜗, 𝜐𝜐) 
 

  Θ(𝜗𝜗, 𝜐𝜐) = �1 + √2𝜐𝜐𝑒𝑒𝑑𝑑� �cosh�√2𝜗𝜗� + sinh�√2𝜗𝜗�, sinh�√2𝜗𝜗� + �1+√2𝜐𝜐𝑒𝑒
𝜗𝜗

√2
� cosh�√2𝜗𝜗� , 0�.        

(34) 
 

 
Υ(𝜗𝜗, 𝜐𝜐) = ��3+√2𝜐𝜐𝑒𝑒

𝜗𝜗

2
� cosh�√2𝜗𝜗� + �1+√2𝜐𝜐𝑒𝑒

𝜗𝜗

√2
� sinh�√2𝜗𝜗� , �3+√2𝜐𝜐𝑒𝑒

𝜗𝜗

2
� sinh�√2𝜗𝜗�

                              + �1+√2𝜐𝜐𝑒𝑒
𝜗𝜗

√2
� cosh�√2𝜗𝜗� , 𝜐𝜐𝑒𝑒

𝜗𝜗−1
√2

�.                                                                                 
         

(35) 
 
 
 
4.  Conclusion  
 
Using an equiform frame, various geometric characteristics of equiform Smarandache ruled 
surfaces in Minkowski space Minkowski 3-space are studied. We also provide the necessary 
requirements for these surfaces to be equiform developable and equiform minimal in relation to 
equiform curvatures, as well as when the equiform base curve is located in a plane or general helix. 
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Figure 5: 𝑁𝑁𝐵𝐵-equiform Smarandache ruled surface Υ(𝜗𝜗, 𝜐𝜐) 
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