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§1. Introduction

For any positive integer k, the famous Smarandache kn-digital sequence a(k, n) is defined
as all positive integers which can be partitioned into two groups such that the second part is
k times bigger than the first. For example, Smarandache 2n and 3n digital sequences a(2, n)
and a(3, n) are defined as {a(2, n)} = {12, 24, 36, 48, 510, 612, 714, 816, · · · } and {a(3, n)} =
{13, 26, 39, 412, 515, 618, 721, 824, · · · }.

Recently, Professor Gou Su told me that she studied the hybrid mean value properties of
the Smarandache kn-digital sequence and the divisor sum function σ(n), and proved that the
asymptotic formula

∑

n≤x

σ(n)
a(k, n)

=
3π2

k · 20 · ln 10
· lnx + O(1)

holds for all integers 1 ≤ k ≤ 9.
When I read professor Gou Su’s work, I found that the method is very new, and the results

are also interesting. This paper as a note of Gou Su’s work, we consider the hybrid mean value
properties of the Smarandache kn-digital sequence and Smarandache function S(n), which is
defined as the smallest positive integer m such that n|m!. That is, S(n) = min{m : n|m!, m ∈
N}. In this paper, we will use the elementary and analytic methods to study a similar problem,
and prove a new conclusion. That is, we shall prove the following:

Theorem. Let 1 ≤ k ≤ 9, then for any real number x > 1, we have the asymptotic formula

∑

n≤x

S(n)
a(k, n)

=
3π2

k · 20
· ln lnx + O(1).
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§2. Proof of the theorem

In this section, we shall use the elementary and combinational methods to complete the
proof of our theorem. First we need following:

Lemma. For any real number x > 1, we have

∑

n≤x

S(n)
n

=
π2

6
· x

lnx
+ O

(
x

ln2 x

)
.

Proof. For any real number x > 2, from [4] we have the asymptotic formula

∑

n≤x

S(n) =
π2

12
· x2

lnx
+ O

(
x2

ln2 x

)
. (1)

Then from Euler summation formula (see theorem 3.1 of [3]) we can deduce that

∑

1<n≤x

S(n)
n

=
1
x

(
π2

12
· x2

lnx
+ O

(
x2

ln2 x

))
+

∫ x

1

(
π2

12
· t2

ln t
+ O

(
t2

ln2 t

)
1
t2

)
dt

=
π2

12
· x

lnx
+ O

(
x

ln2 x

)
+

π2

12
· x

lnx
+

13π2

12

∫ x

1

1
ln2 t

dt

=
π2

6
· x

lnx
+ O

(
x

ln2 x

)
.

This proves our Lemma.

Now we take k = 2 (or k = 4), then for any real number x > 1, there exists a positive
integer M such that

5 · 10M ≤ x < 5 · 10M+1,

then we can deduce that

M =
1

ln 10
· lnx + O(1). (2)

So from the definition of a(2, n) we have

∑

1≤n≤x

S(n)
a(2, n)

=
4∑

n=1

S(n)
a(2, n)

+
49∑

n=5

S(n)
a(2, n)

+
499∑

n=50

S(n)
a(2, n)

+ · · ·+
5·10M−1∑

n=5·10M−1

S(n)
a(2, n)

+
∑

5·10M≤n≤x

S(n)
a(2, n)

=
4∑

n=1

S(n)
n · (10 + 2)

+
49∑

n=5

S(n)
n · (102 + 2)

+
499∑

n=50

S(n)
n · (103 + 2)

+ · · ·

+
5·10M−1∑

n=5·10M−1

S(n)
n · (10M+1 + 2)

+
∑

5·10M≤n≤x

S(n)
n · (10M+2 + 2)

(3)
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and

∑

1≤n≤x

S(n)
a(4, n)

=
2∑

n=1

S(n)
a(4, n)

+
24∑

n=3

S(n)
a(4, n)

+
249∑

n=25

S(n)
a(4, n)

+ · · ·+
1
4 ·10M−1∑

n= 1
4 ·10M−1

S(n)
a(4, n)

+
∑

1
4 ·10M≤n≤x

S(n)
a(4, n)

=
2∑

n=1

S(n)
n · (10 + 4)

+
24∑

n=3

S(n)
n · (102 + 4)

+
249∑

n=25

S(n)
n · (103 + 4)

+ · · ·

+

1
4 ·10M−1∑

n= 1
4 ·10M−1

S(n)
n · (10M + 4)

+
∑

1
4 ·10M≤n≤x

S(n)
n · (10M+1 + 4)

. (4)

Then from (2), (3) and Lemma we may immediately deduce

5·10k−1∑

n=5·10k−1

S(n)
n · (10k+1 + 2)

=
∑

n≤5·10k−1

S(n)
n · (10k+1 + 2)

−
∑

n≤5·10k−1

S(n)
n · (10k+1 + 2)

=
π2

6
· 5 · 10k − 5 · 10k−1

10k+1 + 2
· 1
ln(5 · 10k)

+ O

(
1
k2

)

=
3π2

40
· 1
k

+ O

(
1
k2

)
(5)

Similarly,

1
4 ·10k−1∑

n= 1
4 ·10k−1

S(n)
n · (10k + 4)

=
∑

n≤ 1
4 ·10k−1

S(n)
n · (10k + 4)

−
∑

n≤ 1
4 ·10k−1

S(n)
n · (10k + 4)

=
π2

6
·

1
4 · 10k − 1

4 · 10k−1

10k + 4
· 1
ln(1

4 · 10k)
+ O

(
1
k2

)

=
3π2

80
· 1
k

+ O

(
1
k2

)
. (6)

Noting that the identity
∞∑

n=1

1
n2

= π2/6 and the asymptotic formula

∑

1≤k≤M

1
k

= ln M + γ + O

(
1
M

)
,

where γ is the Euler constant.
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From (2), (3) and (5) we have

∑

1≤n≤x

S(n)
a(2, n)

=
4∑

n=1

S(n)
a(2, n)

+
49∑

n=5

S(n)
a(2, n)

+
499∑

n=50

S(n)
a(2, n)

+ · · ·+
5·10M−1∑

n=5·10M−1

S(n)
a(2, n)

+
∑

5·10M≤n≤x

S(n)
a(2, n)

=
M∑

k=1

3π2

40
· 1
k

+ O

(
M∑

k=1

1
k2

)

=
3π2

40
ln lnx + O(1).

Similarly,

∑

1≤n≤x

S(n)
a(4, n)

=
2∑

n=1

S(n)
a(4, n)

+
24∑

n=3

S(n)
a(4, n)

+
249∑

n=25

S(n)
a(4, n)

+ · · ·+
1
4 ·10M−1∑

n= 1
4 ·10M−1

S(n)
a(4, n)

+
∑

1
4 ·10M≤n≤x

S(n)
a(4, n)

=
M∑

k=1

3π2

80
· 1
k

+ O

(
M∑

k=1

1
k2

)

=
3π2

80
ln lnx + O(1).

For using the same methods, we can also prove that the theorem holds for all integers
k = 1, 3, 5, 6, 7, 8, 9. This completes the proof of our theorem.
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