On the hybrid mean value of the Smarandache $k n$-digital sequence and Smarandache function ${ }^{1}$

Chan Shi
Department of Mathematics, Northwest University, Xi'an, Shaanxi, P.R.China
E-mail: yongyuandexizhong@163.com

Abstract

The main purpose of this paper is using the elementary method to study the hybrid mean value properties of the Smarandache $k n$-digital sequence and Smarandache function, and give an interesting asymptotic formula for it.

Keywords Smarandache $k n$-digital sequence, Smarandache function, hybrid mean value, as -ymptotic formula, elementary method.

§1. Introduction

For any positive integer k, the famous Smarandache $k n$-digital sequence $a(k, n)$ is defined as all positive integers which can be partitioned into two groups such that the second part is k times bigger than the first. For example, Smarandache $2 n$ and $3 n$ digital sequences $a(2, n)$ and $a(3, n)$ are defined as $\{a(2, n)\}=\{12,24,36,48,510,612,714,816, \cdots\}$ and $\{a(3, n)\}=$ $\{13,26,39,412,515,618,721,824, \cdots\}$.

Recently, Professor Gou Su told me that she studied the hybrid mean value properties of the Smarandache $k n$-digital sequence and the divisor sum function $\sigma(n)$, and proved that the asymptotic formula

$$
\sum_{n \leq x} \frac{\sigma(n)}{a(k, n)}=\frac{3 \pi^{2}}{k \cdot 20 \cdot \ln 10} \cdot \ln x+O(1)
$$

holds for all integers $1 \leq k \leq 9$.
When I read professor Gou Su's work, I found that the method is very new, and the results are also interesting. This paper as a note of Gou Su's work, we consider the hybrid mean value properties of the Smarandache $k n$-digital sequence and Smarandache function $S(n)$, which is defined as the smallest positive integer m such that $n \mid m!$. That is, $S(n)=\min \{m: n \mid m!, m \in$ $N\}$. In this paper, we will use the elementary and analytic methods to study a similar problem, and prove a new conclusion. That is, we shall prove the following:

Theorem. Let $1 \leq k \leq 9$, then for any real number $x>1$, we have the asymptotic formula

$$
\sum_{n \leq x} \frac{S(n)}{a(k, n)}=\frac{3 \pi^{2}}{k \cdot 20} \cdot \ln \ln x+O(1)
$$

[^0]
§2. Proof of the theorem

In this section, we shall use the elementary and combinational methods to complete the proof of our theorem. First we need following:

Lemma. For any real number $x>1$, we have

$$
\sum_{n \leq x} \frac{S(n)}{n}=\frac{\pi^{2}}{6} \cdot \frac{x}{\ln x}+O\left(\frac{x}{\ln ^{2} x}\right)
$$

Proof. For any real number $x>2$, from [4] we have the asymptotic formula

$$
\begin{equation*}
\sum_{n \leq x} S(n)=\frac{\pi^{2}}{12} \cdot \frac{x^{2}}{\ln x}+O\left(\frac{x^{2}}{\ln ^{2} x}\right) \tag{1}
\end{equation*}
$$

Then from Euler summation formula (see theorem 3.1 of [3]) we can deduce that

$$
\begin{aligned}
\sum_{1<n \leq x} \frac{S(n)}{n} & =\frac{1}{x}\left(\frac{\pi^{2}}{12} \cdot \frac{x^{2}}{\ln x}+O\left(\frac{x^{2}}{\ln ^{2} x}\right)\right)+\int_{1}^{x}\left(\frac{\pi^{2}}{12} \cdot \frac{t^{2}}{\ln t}+O\left(\frac{t^{2}}{\ln ^{2} t}\right) \frac{1}{t^{2}}\right) d t \\
& =\frac{\pi^{2}}{12} \cdot \frac{x}{\ln x}+O\left(\frac{x}{\ln ^{2} x}\right)+\frac{\pi^{2}}{12} \cdot \frac{x}{\ln x}+\frac{13 \pi^{2}}{12} \int_{1}^{x} \frac{1}{\ln ^{2} t} d t \\
& =\frac{\pi^{2}}{6} \cdot \frac{x}{\ln x}+O\left(\frac{x}{\ln ^{2} x}\right)
\end{aligned}
$$

This proves our Lemma.
Now we take $k=2$ (or $k=4$), then for any real number $x>1$, there exists a positive integer M such that

$$
5 \cdot 10^{M} \leq x<5 \cdot 10^{M+1}
$$

then we can deduce that

$$
\begin{equation*}
M=\frac{1}{\ln 10} \cdot \ln x+O(1) \tag{2}
\end{equation*}
$$

So from the definition of $a(2, n)$ we have

$$
\begin{align*}
\sum_{1 \leq n \leq x} \frac{S(n)}{a(2, n)}= & \sum_{n=1}^{4} \frac{S(n)}{a(2, n)}+\sum_{n=5}^{49} \frac{S(n)}{a(2, n)}+\sum_{n=50}^{499} \frac{S(n)}{a(2, n)}+\cdots+\sum_{n=5 \cdot 10^{M-1}}^{5 \cdot 10^{M}-1} \frac{S(n)}{a(2, n)} \\
& +\sum_{5 \cdot 10^{M} \leq n \leq x} \frac{S(n)}{a(2, n)} \\
= & \sum_{n=1}^{4} \frac{S(n)}{n \cdot(10+2)}+\sum_{n=5}^{49} \frac{S(n)}{n \cdot\left(10^{2}+2\right)}+\sum_{n=50}^{499} \frac{S(n)}{n \cdot\left(10^{3}+2\right)}+\cdots \\
& +\sum_{n=5 \cdot 10^{M-1}}^{5 \cdot 10^{M}-1} \frac{S(n)}{n \cdot\left(10^{M+1}+2\right)}+\sum_{5 \cdot 10^{M} \leq n \leq x} \frac{S(n)}{n \cdot\left(10^{M+2}+2\right)} \tag{3}
\end{align*}
$$

and

$$
\begin{align*}
\sum_{1 \leq n \leq x} \frac{S(n)}{a(4, n)}= & \sum_{n=1}^{2} \frac{S(n)}{a(4, n)}+\sum_{n=3}^{24} \frac{S(n)}{a(4, n)}+\sum_{n=25}^{249} \frac{S(n)}{a(4, n)}+\cdots+\sum_{n=\frac{1}{4} \cdot 10^{M-1}}^{\frac{1}{4} \cdot 10^{M}-1} \frac{S(n)}{a(4, n)} \\
& +\sum_{\frac{1}{4} \cdot 10^{M} \leq n \leq x} \frac{S(n)}{a(4, n)} \\
= & \sum_{n=1}^{2} \frac{S(n)}{n \cdot(10+4)}+\sum_{n=3}^{24} \frac{S(n)}{n \cdot\left(10^{2}+4\right)}+\sum_{n=25}^{249} \frac{S(n)}{n \cdot\left(10^{3}+4\right)}+\cdots \\
& +\sum_{n=\frac{1}{4} \cdot 10^{M-1}}^{\frac{1}{4} \cdot 10^{M}-1} \frac{S(n)}{n \cdot\left(10^{M}+4\right)}+\sum_{\frac{1}{4} \cdot 10^{M} \leq n \leq x} \frac{S(n)}{n \cdot\left(10^{M+1}+4\right)} . \tag{4}
\end{align*}
$$

Then from (2), (3) and Lemma we may immediately deduce

$$
\begin{align*}
\sum_{n=5 \cdot 10^{k-1}}^{5 \cdot 10^{k}-1} \frac{S(n)}{n \cdot\left(10^{k+1}+2\right)} & =\sum_{n \leq 5 \cdot 10^{k}-1} \frac{S(n)}{n \cdot\left(10^{k+1}+2\right)}-\sum_{n \leq 5 \cdot 10^{k-1}} \frac{S(n)}{n \cdot\left(10^{k+1}+2\right)} \\
& =\frac{\pi^{2}}{6} \cdot \frac{5 \cdot 10^{k}-5 \cdot 10^{k-1}}{10^{k+1}+2} \cdot \frac{1}{\ln \left(5 \cdot 10^{k}\right)}+O\left(\frac{1}{k^{2}}\right) \\
& =\frac{3 \pi^{2}}{40} \cdot \frac{1}{k}+O\left(\frac{1}{k^{2}}\right) \tag{5}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\sum_{n=\frac{1}{4} \cdot 10^{k-1}}^{\frac{1}{4} \cdot 10^{k}-1} \frac{S(n)}{n \cdot\left(10^{k}+4\right)} & =\sum_{n \leq \frac{1}{4} \cdot 10^{k}-1} \frac{S(n)}{n \cdot\left(10^{k}+4\right)}-\sum_{n \leq \frac{1}{4} \cdot 10^{k-1}} \frac{S(n)}{n \cdot\left(10^{k}+4\right)} \\
& =\frac{\pi^{2}}{6} \cdot \frac{\frac{1}{4} \cdot 10^{k}-\frac{1}{4} \cdot 10^{k-1}}{10^{k}+4} \cdot \frac{1}{\ln \left(\frac{1}{4} \cdot 10^{k}\right)}+O\left(\frac{1}{k^{2}}\right) \\
& =\frac{3 \pi^{2}}{80} \cdot \frac{1}{k}+O\left(\frac{1}{k^{2}}\right) . \tag{6}
\end{align*}
$$

Noting that the identity $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\pi^{2} / 6$ and the asymptotic formula

$$
\sum_{1 \leq k \leq M} \frac{1}{k}=\ln M+\gamma+O\left(\frac{1}{M}\right)
$$

where γ is the Euler constant.

From (2), (3) and (5) we have

$$
\begin{aligned}
\sum_{1 \leq n \leq x} \frac{S(n)}{a(2, n)}= & \sum_{n=1}^{4} \frac{S(n)}{a(2, n)}+\sum_{n=5}^{49} \frac{S(n)}{a(2, n)}+\sum_{n=50}^{499} \frac{S(n)}{a(2, n)}+\cdots+\sum_{n=5 \cdot 10^{M-1}}^{5 \cdot 10^{M}-1} \frac{S(n)}{a(2, n)} \\
& +\sum_{5 \cdot 10^{M} \leq n \leq x} \frac{S(n)}{a(2, n)} \\
= & \sum_{k=1}^{M} \frac{3 \pi^{2}}{40} \cdot \frac{1}{k}+O\left(\sum_{k=1}^{M} \frac{1}{k^{2}}\right) \\
= & \frac{3 \pi^{2}}{40} \ln \ln x+O(1) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\sum_{1 \leq n \leq x} \frac{S(n)}{a(4, n)}= & \sum_{n=1}^{2} \frac{S(n)}{a(4, n)}+\sum_{n=3}^{24} \frac{S(n)}{a(4, n)}+\sum_{n=25}^{249} \frac{S(n)}{a(4, n)}+\cdots+\sum_{n=\frac{1}{4} \cdot 10^{M-1}}^{\frac{1}{4} \cdot 10^{M}-1} \frac{S(n)}{a(4, n)} \\
& +\sum_{\frac{1}{4} \cdot 10^{M} \leq n \leq x} \frac{S(n)}{a(4, n)} \\
= & \sum_{k=1}^{M} \frac{3 \pi^{2}}{80} \cdot \frac{1}{k}+O\left(\sum_{k=1}^{M} \frac{1}{k^{2}}\right) \\
= & \frac{3 \pi^{2}}{80} \ln \ln x+O(1)
\end{aligned}
$$

For using the same methods, we can also prove that the theorem holds for all integers $k=1,3,5,6,7,8,9$. This completes the proof of our theorem.

References

[1] F. Smarandache, Sequences of Numbers Involved in Unsolved Problems, Hexis, 2006.
[2] Gou Su , Smarandache $3 n$-digital sequence and it's asymptotic properties, Journal of Inner Mongolia Normal University (Natural Science Edition), 6(2010), No. 39, 450-453.
[3] Tom M. Apostol., Introduction to Analytical Number Theory, Spring-Verlag, New York, 1976.
[4] Chen Guohui, New Progress on Smarandache Problems, High American Press, 2007.
[5] Kenichiro Kashihara, Comments and topics on Smarandache notions and problems, Erhus University Press, USA, 1996.
[6] Zhang Wenpeng, The elementary number theory (in Chinese), Shaanxi Normal University Press, Xi'an, 2007.
[7] Wu Nan, On the Smarandache 3n-digital sequence and the Zhang Wenpeng's conjecture, Scientia Magna, 4(2008), No. 4, 120-122.
[8] Guo Xiaoyan, New Progress on Smarandache Problems Research, High American Press, Xi'an, 2010.

[^0]: ${ }^{1}$ This paper is supported by the N. S. F. of P. R. China.

