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Abstract For any positive integer n, the famous F.Smarandache function S(n) is defined

as the smallest positive integer m such that n|m!. The main purpose of this paper is using

the elementary methods to study the hybrid mean value of the Smarandache function S(n)

and the Mangoldt function Λ(n), and prove an interesting hybrid mean value formula for

S(n)Λ(n).
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§1. Introduction

For any positive integer n, the famous F.Smarandache function S(n) is defined as the
smallest positive integer m such that n|m!. That is, S(n) = min{m : n|m!, m ∈ N}. From
the definition of S(n) one can easily deduce that if n = pα1

1 pα2
2 · · · pαk

k is the factorization
of n into prime powers, then S(n) = max

1≤i≤k
{S(pαi

i )}. From this formula we can easily get

S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4, S(9) = 6,
S(10) = 5, S(11) = 11, S(12) = 4, S(13) = 13, S(14) = 7, S(15) = 5, S(16) = 6, · · · . About
the elementary properties of S(n), many people had studied it, and obtained some important
results. For example, Wang Yongxing [2] studied the mean value properties of S(n), and
obtained that: ∑

n≤x

S(n) =
π2

12
x2

lnx
+ O

(
x2

ln2 x

)
.

Lu Yaming [3] studied the positive integer solutions of an equation involving the function
S(n), and proved that for any positive integer k ≥ 2, the equation

S(m1 + m2 + · · ·+ mk) = S(m1) + S(m2) + · · ·+ S(mk)

has infinity positive integer solutions (m1,m2, · · · ,mk).
Jozsef Sandor [4] obtained some inequalities involving the F.Smarandache function. That

is, he proved that for any positive integer k ≥ 2, there exists infinite positive integer (m1,m2, · · · ,mk)
such that the inequalities

S(m1 + m2 + · · ·+ mk) > S(m1) + S(m2) + · · ·+ S(mk).
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(m1,m2, · · · ,mk) such that

S(m1 + m2 + · · ·+ mk) < S(m1) + S(m2) + · · ·+ S(mk).

On the other hand, Dr. Xu Zhefeng [5] proved: Let P (n) denotes the largest prime divisor
of n, then for any real number x > 1, we have the asymptotic formula

∑

n≤x

(S(n)− P (n))2 =
2ζ

(
3
2

)
x

3
2

3 ln x
+ O

(
x

3
2

ln2 x

)
,

where ζ(s) denotes the Riemann zeta-function.

The main purpose of this paper is using the elementary methods to study the hybrid mean
value of the Smarandache function S(n) and the Mangoldt function Λ(n), which defined as
follows:

Λ(n) =





ln p, if n = pα, p be a prime, α be any positive integer;

0, otherwise.

and prove a sharper mean value formula for Λ(n)S(n). That is, we shall prove the following
conclusion:

Theorem. Let k be any fixed positive integer. Then for any real number x > 1, we have

∑

n≤x

Λ(n)S(n) = x2 ·
k∑

i=0

ci · x2

lni x
+ O

(
x2

lnk+1 x

)
,

where ci (i = 0, 1, 2, · · · , k) are constants, and c0 = 1.

§2. Proof of the theorem

In this section, we shall complete the proof of the theorem. In fact from the definition of
Λ(n) we have

∑

n≤x

Λ(n)S(n) =
∑

α≤ ln x
ln 2

∑

p≤x
1
α

Λ(pα)S(pα) =
∑

α≤ ln x
ln 2

∑

p≤x
1
α

S(pα) ln p

=
∑

p≤x

p · ln p +
∑

2≤α≤ ln x
ln 2

∑

p≤x
1
α

S(pα) ln p. (1)

For any positive integer k, from the prime theorem we know that

π(x) =
∑

p≤x

1 = x ·
k∑

i=1

ai

lni x
+ O

(
x

lnk+1 x

)
, (2)

where ai ( i = 1, 2, · · · , k) are constants, and a1 = 1.
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From the Abel’s identity (see [6] Theorem 4.2) and (2) we have

∑

p≤x

p · ln p = π(x) · x · lnx−
∫ x

2

π(y)(ln y + 1)dy

= x lnx · x ·
(

k∑

i=1

ai

lni x
+ O

(
x

lnk+1 x

))
−

∫ x

2

(
k∑

i=1

ai

lni y
+ O

(
y

lnk+1 y

))
(ln y + 1)dy

= x2 ·
k∑

i=0

ci

lni x
+ O

(
x

lnk+1 x

)
, (3)

where ci ( i = 0, 1, 2, · · · , k) are constants, and c0 = 1.
On the other hand, applying the estimate

S(pα) ¿ α · ln p,

we have
∑

2≤α≤ ln x
ln 2

∑

p≤x
1
α

S(pα) ln p ¿
∑

2≤α≤ ln x
ln 2

∑

p≤x
1
2

α · p · ln p ¿ x · ln2 x. (4)

Combining (1)-(4) we have

∑

n≤x

Λ(n)S(n) = x2 ·
k∑

i=0

ci · x2

lni x
+ O

(
x2

lnk+1 x

)
,

where ci (i = 0, 1, 2, · · · , k) are constants, and c0 = 1.
This completes the proof of the theorem.
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