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ABSTRACT: For any positive integer », let a(n) and 5(n) denote the inferior and superior k-th power
part of n respectively. That is, a(n) denotes the largest k-th power less than or equal to », and b(n)
denotes the smallest k-th power greater than or equal to n. In this paper, we study the properties of
the sequences {a(n)} and {b{r}}, and give two interesting asymptotic formulas.
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1. INTRODUCTION

For a fixed positive integer £>1, and any positive integer n, let a(n) and b(n) denote the inferior
and superior k-th power part of n respectively .That is, a(n) denotes the largest k-th power less than
or equal to , b(n) denotes the smallest k-th power greater than or equal to n. For example, let £&=2
then a(l)=a(2)=a(3)=1,a(¥)=a(5)= -—-=a(7)=4, --,b(1)=1, b(2)=b(3)=b(4)=4, b(5)=b(6)=
=b(8)=8+; let k=3 then a(l)=a(2)= ---=a(7)=1, a(8)=a(9)= ---=a(26)=8,--,b(1)=1, b(2)=b(3)= -
=b(8)=8, b(9)=b(10)==--=h(27)=27---. In problem 40 and 41 of [1], Professor F. Smarandache asks
us to study the properties of the sequences {a(n)} and {b(n)}. About these problems, Professor
Zhang Wenpeng [4] gave two interesting asymptotic formulas of the cure part of a positive integer.
In this paper, we give asymptotic formulas of the k-th power part of a positive integer. That is, we
shall prove the following:
Theorem 1. For any real number x>1 , we have the asymptotic formula
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where 4, 4, --- A, are constants, especially when & equals to 2, 45=I; d(n) denotes the
Dirichlet divisor function, # is any fixed positive number.

For the sequence {h(n)} , we can also get similar result.
‘Theorem 2. For any real number x>1, we have the asymptotic formula

leee

d(b(n))——w( 6 ye- tlnkx+Axlnklx+ + A xInx+ Ax+ Ox 2% )
k-1 k

ol kk’ kx 7)

2. A SIMPLE LEMMA
To complete the proof of the theorems, we need following
Lemma 1. For any real number x>1, we have the asymptotic formula
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By are constants, especially when k=2, 4p=1; ¢ is any fixed positive number.
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where By, B;, ---

Proof. Let 5 = o + i be a complex number and f(s) = Z

n=l1

Note that d(n*) << n", So it is clear that f{s) is a Dirichlet serics absolutely convergent in

Re(s)>1, by the Buler Product formula [2] and the definition of d(n} we have
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where ¢(s) is Riemann zeta-function and H denotes the product over all primes.
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From (1) and Perron’s formula [3] we have
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where g(s) is absolutely convergent in Re(s)>z+&'. We move the integration in (2) to
1 .
Re(s) = 5 + & . The pole at 5 =1 contributes to
(3)
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where B,, B, ,.. B are constants, especially when k=2 B, =1.
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For 5 Lo <l,notethat (s)=C(o+it) < It| 2" . Thus, the horizontal integral contributes to
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and the vertical integral contributes to
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On the line Re(s) =5+ &, taking parameter 7' = x2, then combining (2), (3), (4) and (5) we

have
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This proves Lemma 1.

3. PROOFS OF THE THEQREMS ‘
Now we complete the proof of the Theorems. First we prove Theorem 1.
For any real number x >1, Let M be a fixed positive integer such that

M* <x<(M+1), (6)

then, from the definition of afn), we have
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where we have used the estimate () << n®.

Let B(y) = Zd(nk) , then by Abel’s identity and Lemma 1, we have
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Applying (7) and (8) we obtain the asymptotic formula
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where B),C,,---,C, ; are constants.
From (6) we have the estimates
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Combining (9), (10) and (11) we have
1
b———+g
3 d(a(n ))—kk'( 2)" YgxIn® x4 Axin® b v 4, whx+ dpx+ 0 %),
n<sx kn

where 4y equals to By .

This proves Theorem 1.

Using the methods of proving Theorem 1 we can also prove Theorem 2. This completes the proof of
the Theorems.
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