Scientia Magna

Vol. 1 (2005), No. 2, 52-54

Some interesting properties of the Smarandache function

Kang Xiaoyu
Editorial Board of Journal of Northwest University Xi'an, Shaanxi, P.R.China

Abstract

The main purpose of this paper is using the elementary method to study the property of the Smarandache function, and give an interesting result. Keywords Smarandache function; Additive property; Greatest prime divisor.

§1. Introduction and results

Let n be an positive integer, the famous Smarandache function $S(n)$ is defined as following:

$$
S(n)=\min \{m: m \in N, n \mid m!\} .
$$

About this function and many other Smarandache type function, many scholars have studied its properties, see [1], [2], [3] and [4]. Let $p(n)$ denotes the greatest prime divisor of n, it is clear that $S(n) \geq p(n)$. In fact, $S(n)=p(n)$ for almost all n, as noted by Erdös [5]. This means that the number of $n \leq x$ for which $S(n) \neq p(n)$, denoted by $N(x)$, is $o(x)$. It is easily to show that $S(p)=p$ and $S(n)<n$ except for the case $n=4, n=p$. So there have a closely relationship between $S(n)$ and $\pi(x)$:

$$
\pi(x)=-1+\sum_{n=2}^{[x]}\left[\frac{S(n)}{n}\right]
$$

where $\pi(x)$ denotes the number of primes up to x, and $[x]$ denotes the greatest integer less than or equal to x. For two integer m and n, can you say $S(m n)=S(m)+S(n)$ is true or false? It is difficult to say. For some m an n, it is true, but for some other numbers it is false.

About this problem, J.Sandor [7] proved an very important conclusion. That is, for any positive integer k and any positive integers $m_{1}, m_{2}, \cdots, m_{k}$, we have the inequality

$$
S\left(\prod_{i=1}^{k} m_{i}\right) \leq \sum_{i=1}^{k} S\left(m_{i}\right)
$$

This paper as a note of [7], we shall prove the following two conclusions:

Theorem 1. For any integer $k \geq 2$ and positive integers $m_{1}, m_{2}, \cdots, m_{k}$, we have the inequality

$$
S\left(\prod_{i=1}^{k} m_{i}\right) \leq \prod_{i=1}^{k} S\left(m_{i}\right)
$$

Theorem 2. For any integer $k \geq 2$, we can find infinite group numbers $m_{1}, m_{2}, \cdots, m_{k}$ such that:

$$
S\left(\prod_{i=1}^{k} m_{i}\right)=\sum_{i=1}^{k} S\left(m_{i}\right)
$$

§2. Proof of the theorems

In this section, we will complete the proof of the Theorems. First we prove a special case of Theorem 1. That is, for any positive integers m and n, we have

$$
S(m) S(n) \geq S(m n)
$$

If $m=1$ (or $n=1$), then it is clear that $S(m) S(n) \geq S(m n)$. Now we suppose $m \geq 2$ and $n \geq 2$, so that $S(m) \geq 2, S(n) \geq 2, m n \geq m+n$ and $S(m) S(n) \geq S(m)+S(n)$. Note that $m \mid S(m)$!, $n \mid S(n)$!, we have $m n|S(m)!S(n)!|((S(m)+S(n))$!. Because $S(m) S(n) \geq S(m)+S(n)$, we have $(S(m)+S(n))!\mid(S(m) S(n))!$. That is, $m n|S(m)!S(n)!|(S(m)+S(n))!\mid(S(m) S(n))$!. From the definition of $S(n)$ we may immediately deduce that

$$
S(m n) \leq S(m) S(n)
$$

Now the theorem 1 follows from $S(m n) \leq S(m) S(n)$ and the mathematical induction.
Proof of Theorem 2. For any integer n and prime p, if $p^{\alpha} \| n$!, then we have

$$
\alpha=\sum_{j=1}^{\infty}\left[\frac{n}{p^{j}}\right] .
$$

Let n_{i} are positive integers such that $n_{i} \neq n_{j}$, if $i \neq j$, where $1 \leq i, j \leq k, k \geq 2$ is any positive integer. Since

$$
\sum_{r=1}^{\infty}\left[\frac{p^{n_{i}}}{p^{r}}\right]=p^{n_{i}-1}+p^{n_{i}-2}+\cdots+1=\frac{p^{n_{i}}-1}{p-1}
$$

For convenient, we let $u_{i}=\frac{p^{n_{i}}-1}{p-1}$. So we have

$$
\begin{equation*}
S\left(p^{u_{i}}\right)=p^{n_{i}}, \quad i=1,2, \cdots, k . \tag{1}
\end{equation*}
$$

In general, we also have

$$
\sum_{r=1}^{\infty}\left[\frac{\sum_{i=1}^{k} p^{n_{i}}}{p^{r}}\right]=\sum_{i=1}^{k} \frac{p^{n_{i}}-1}{p-1}=\sum_{i=1}^{k} u_{i}
$$

So

$$
\begin{equation*}
S\left(p^{u_{1}+u_{2}+\cdots+u_{k}}\right)=\sum_{i=1}^{k} p^{n_{i}} \tag{2}
\end{equation*}
$$

Combining (1) and (2) we may immediately obtain

$$
S\left(\prod_{i=1}^{k} p^{u_{i}}\right)=\sum_{i=1}^{k} S\left(p^{u_{i}}\right)
$$

Let $m_{i}=p^{u_{i}}$, noting that there are infinity primes p and n_{i}, we can easily get Theorem 2 .
This completes the proof of the theorems.

References

[1] C.Ashbacher, Some Properties of the Smarandache-Kurepa and Smarandache-Wagstaff Functions. Mathematics and Informatics Quarterly, 7(1997), 114-116.
[2] A.Begay, Smarandache Ceil Functions Bulletin of Pure and Applied Sciences, 16(1997), 227-229.
[3] Mark Farris and Patrick Mitchell, Bounding the Smarandache function Smarandache Notions Journal,13(2002), 37-42.
[4] Kevin Ford, The normal behavior of the Smarandache function, Smarandache Notions Journal, 10(1999), 81-86.
[5] P.Erdös, Problem 6674 Amer. Math. Monthly, 98(1991), 965.
[6] Pan Chengdong and Pan Chengbiao, Element of the analytic number theory, Science Press, Beijing, (1991).
[7] J.Sandor, On a inequality for the Smarandache function, Smarandache Notions Journal, 10(1999), 125-127.

