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Abstract The main purpose of this paper is using the elementary method to study the property of

the Smarandache function, and give an interesting result.
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§1. Introduction and results

Let n be an positive integer, the famous Smarandache function S(n) is defined as following:

S(n) = min{m : m ∈ N, n|m!}.

About this function and many other Smarandache type function, many scholars have studied
its properties, see [1], [2], [3] and [4]. Let p(n) denotes the greatest prime divisor of n, it is clear
that S(n) ≥ p(n). In fact, S(n) = p(n) for almost all n, as noted by Erdös [5]. This means that
the number of n ≤ x for which S(n) 6= p(n), denoted by N(x), is o(x). It is easily to show that
S(p) = p and S(n) < n except for the case n = 4, n = p. So there have a closely relationship
between S(n) and π(x):

π(x) = −1 +
[x]∑

n=2

[
S(n)

n

]
,

where π(x) denotes the number of primes up to x, and [x] denotes the greatest integer less than
or equal to x. For two integer m and n, can you say S(mn) = S(m) + S(n) is true or false? It
is difficult to say. For some m an n, it is true, but for some other numbers it is false.

About this problem, J.Sandor [7] proved an very important conclusion. That is, for any
positive integer k and any positive integers m1,m2, · · · ,mk, we have the inequality

S

(
k∏

i=1

mi

)
≤

k∑

i=1

S(mi).

This paper as a note of [7], we shall prove the following two conclusions:

Theorem 1. For any integer k ≥ 2 and positive integers m1,m2, · · · ,mk, we have the
inequality

S

(
k∏

i=1

mi

)
≤

k∏

i=1

S(mi).
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Theorem 2. For any integer k ≥ 2, we can find infinite group numbers m1,m2, · · · ,mk

such that:

S

(
k∏

i=1

mi

)
=

k∑

i=1

S(mi).

§2. Proof of the theorems

In this section, we will complete the proof of the Theorems. First we prove a special case
of Theorem 1. That is, for any positive integers m and n, we have

S(m)S(n) ≥ S(mn).

If m = 1 ( or n = 1), then it is clear that S(m)S(n) ≥ S(mn). Now we suppose m ≥ 2 and n ≥ 2,
so that S(m) ≥ 2, S(n) ≥ 2, mn ≥ m + n and S(m)S(n) ≥ S(m) + S(n). Note that m|S(m)!,
n|S(n)!, we have mn|S(m)!S(n)!|((S(m) + S(n))!. Because S(m)S(n) ≥ S(m) + S(n), we have
(S(m) + S(n))!|(S(m)S(n))!. That is, mn|S(m)!S(n)!|(S(m) + S(n))!|(S(m)S(n))!. From the
definition of S(n) we may immediately deduce that

S(mn) ≤ S(m)S(n).

Now the theorem 1 follows from S(mn) ≤ S(m)S(n) and the mathematical induction.
Proof of Theorem 2. For any integer n and prime p, if pα‖n!, then we have

α =
∞∑

j=1

[
n

pj

]
.

Let ni are positive integers such that ni 6= nj , if i 6= j, where 1 ≤ i, j ≤ k, k ≥ 2 is any positive
integer. Since

∞∑
r=1

[
pni

pr

]
= pni−1 + pni−2 + · · ·+ 1 =

pni − 1
p− 1

.

For convenient, we let ui = pni−1
p−1 . So we have

S(pui) = pni , i = 1, 2, · · · , k. (1)

In general, we also have

∞∑
r=1




k∑

i=1

pni

pr




=
k∑

i=1

pni − 1
p− 1

=
k∑

i=1

ui.

So

S
(
pu1+u2+···+uk

)
=

k∑

i=1

pni . (2)
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Combining (1) and (2) we may immediately obtain

S

(
k∏

i=1

pui

)
=

k∑

i=1

S(pui).

Let mi = pui , noting that there are infinity primes p and ni, we can easily get Theorem 2.
This completes the proof of the theorems.
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