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Abstract In this paper, we use the elementary methods to study the F.Smarandache LCM

ratio sequence, and obtain three interesting recurrence relations for it.
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§1. Introduction

Let (x1, x2, ..., xt) and [x1, x2, ..., xt] denote the greatest common divisor and the least
common multiple of any positive integers x1, x2, ..., xt respectively. Let r be a positive integer
with r > 1. For any positive integer n, let

T (r, n) =
[n, n + 1, ..., n + r − 1]

[1, 2, ..., r]
,

then the sequences SLR(r) = T (r, n)∞ is called the F.Samarandache LCM ratio sequences of
degree r. In reference [1], Murthy asked us to find a reduction formula for T (r, n). Maohua Le
[2] solved this open problem for r = 3 and 4. That is, he proved that

T (3, n) =





1
6n(n + 1)(n + 2), if n is odd,

1
12n(n + 1)(n + 2), if n is even.

T (4, n) =





1
24n(n + 1)(n + 2)(n + 3), if n 6≡ 0 ( mod 3),
1
72n(n + 1)(n + 2)(n + 3), if n ≡ 0 ( mod 3).

Furthermore, Wang Ting [3] and [4] computing the value of T (5, n) and T (6, n). For example,
he obtained the identity

T (5, n) =





1
1440n(n + 1)(n + 2)(n + 3)(n + 4), if n ≡ 0, 8 ( mod 12),
1

120n(n + 1)(n + 2)(n + 3)(n + 4), if n ≡ 1, 7 ( mod 12),
1

720n(n + 1)(n + 2)(n + 3)(n + 4), if n ≡ 2, 6 ( mod 12),
1

360n(n + 1)(n + 2)(n + 3)(n + 4), if n ≡ 3, 5, 9, 11 ( mod 12),
1

480n(n + 1)(n + 2)(n + 3)(n + 4), if n ≡ 4 ( mod 12),
1

240n(n + 1)(n + 2)(n + 3)(n + 4), if n ≡ 10 ( mod 12).

In this paper, we study the recurrence relations between T (r + 1, n) and T (r, n), and get three
interesting recurrence formulas for it. That is, we shall prove the following conclusions:
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Theorem 1. For any natural number n and r, we have the recurrence formula:

T (r + 1, n) =
n + r

r + 1
· ([1, 2, ..., r], r + 1)
([n, n + 1, ..., n + r − 1], n + r)

· T (r, n).

Especially, if both r + 1 and n + r are primes, then we can get a simple formula

T (r + 1, n) =
n + r

r + 1
· T (r, n).

Theorem 2. For each natural number n and r, we also have another recurrence formula:

T (r, n + 1) =
n + r

n
· (n, [n + 1, ..., n + r])
([n, n + 1, ..., n + r − 1], n + r)

· T (r, n).

Especially, if both n and n + r are primes with r < n, then we can also get a simple formula

T (r, n + 1) =
n + r

n
· T (r, n);

If both n and n + r are primes with r ≥ n, then we have

T (r, n + 1) = (n + r) · T (r, n).

Theorem 3. For each natural number n and r, we have

T (r + 1, n + 1) =
n + r

n
· n + r + 1

r + 1
· ([1, 2, ..., r], r + 1)
([n + 1, ..., n + r], n + r + 1)

· (n, [n + 1, ..., n + r])
([n, n + 1, ..., n + r − 1], n + r)

· T (r, n).

§2. Some Lemmas

To complete the proof of the above theorems, we need the following several Lemmas.

Lemma 1. For any positive integers a and b, we have (a, b)[a, b] = ab.

Lemma 2. For any positive integers s and t with s < t, we have

(x1, x2, ..., xt) = ((x1, ..., xs), (xs+1, ..., xt))

and

[x1, x2, ..., xt] = [[x1, ..., xs], [xs+1, ..., xt]].

The proof of Lemma 1 and Lemma 2 can be found in [3].

§3. Proof of the theorems

In this section, we shall complete the proof of the theorems.
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First we prove Theorem 1. According to the definition of T (r, n), Lemma 1 and Lemma 2,
we have:

T (r + 1, n) =
[n, n + 1, ..., n + r]

[1, 2, ..., r + 1]

=
[[n, n + 1, ..., n + r − 1], n + r]

[[1, 2, ..., r], r + 1]

=
(n+r)[n,n+1,...,n+r−1]
([n,n+1,...,n+r−1],n+r)

(r+1)[1,...,r]
([1,2,...,r],r+1)

=
n + r

r + 1
[n, n + 1, ..., n + r − 1]

[1, 2, ..., r]
· ([1, 2, ..., r], r + 1)
([n, n + 1, ..., n + r − 1], n + r)

=
n + r

r + 1
· ([1, 2, ..., r], r + 1)
([n, n + 1, ..., n + r − 1], n + r)

T (r, n).

It is easily to get

T (r + 1, n) =
n + r

r + 1
T (r, n)

if both r + 1 and n + r are primes. Because at this time

([1, 2, ..., r], r + 1) = 1

and

([n, n + 1, ..., n + r − 1], n + r) = 1.

This proves Theorem 1.
Now we prove Theorem 2. From the Lemmas and the definition of T (r, n), we have

T (r, n + 1) =
[n + 1, ..., n + r]

[1, 2, ..., r]

=
[n, n + 1, ..., n + r](n, [n + 1, ..., n + r])

n
· 1
[1, 2, ..., r]

=
(n, [n + 1, ..., n + r])

n[1, 2, ..., r]
· [n, n + 1, ..., n + r − 1](n + r)
([n, n + 1, ..., n + r − 1], n + r)

=
n + r

n

(n, [n + 1, ..., n + r])
([n, n + 1, ..., n + r − 1], n + r)

· [n, n + 1, ..., n + r − 1]
[1, 2, ..., r]

=
n + r

n
· (n, [n + 1, ..., n + r])
([n, n + 1, ..., n + r − 1], n + r)

T (r, n).

If n and n + r are primes with n < r, then we can also get a simple formula

T (r, n + 1) =
n + r

n
T (r, n);

If n and n + r are primes with n ≥ r, this time note that (n, [n + 1, ..., n + r]) = n, we have

T (r, n + 1) = (n + r) · T (r, n).

This proves Theorem 2.
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The proof of Theorem 3. Applying Theorem 1 and Theorem 2 we can easily get identity

T (r + 1, n + 1) =
n + r + 1

r + 1
· ([1, 2, ..., r], r + 1)
([n + 1, ..., n + r], n + r + 1)

T (r, n + 1)

=
(n + r + 1)(n + r)

(r + 1)n
· ([1, 2, ..., r], r + 1)
([n + 1, ..., n + r], n + r + 1)

· (n, [n + 1, ..., n + r])
([n, ..., n + r − 1], n + r)

T (r, n).

This completes the proof of Theorem 3.
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