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Abstract The main purpose of this paper is using the elementary method to study the
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§1. Introduction and results

For any positive integer n, we define L(n) as the Least Common Multiply (LCM) of the
natural number from 1 to n. That is,

L(n) = [1, 2, · · · , n].

The Smarandache Least Common Multiply Sequence is defined by:
SLS −→ L(1), L(2), L(3), · · · , L(n), L(n + 1), · · · .

For example, the first few values in the sequence {L(n)} are: L(1) = 1, L(2) = 2, L(3) = 6,
L(4) = 12, L(5) = 60, L(6) = 60, L(7) = 420, L(8) = 840, L(9) = 2520, L(10) = 2520, · · · .

About the elementary arithmetical properties of L(n), there are many results in elementary
number theory text books (See references [2] and [3]), such as:

[a, b] =
ab

(a, b)
and [a, b, c] =

abc · (a, b, c)
(a, b)(b, c)(c, a)

,

where (a1, a2, · · · , ak) denotes the Greatest Common Divisor of a1, a2, · · · , ak−1 and ak.
Recently, Pan Xiaowei [4] studied the deeply arithmetical properties of L(n), and proved

that for any positive integer n > 2, we have the asymptotic formula:




L(n2)∏

p≤n2

p




1
n

= e + O

(
exp

(
−c

(lnn)
3
5

(ln lnn)
1
5

))
,

where c is a positive constant, and
∏

p≤n2

denotes the product over all primes p ≤ n2.

In this paper, we shall use the elementary method to study the calculating problem of
L(n), and give an exact calculating formula for it. That is, we shall prove the following:
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Theorem 1. For any positive integer n > 1, we have the calculating formula

L(n) = exp

( ∞∑

k=1

θ
(
n

1
k

))
= exp


∑

k≤n

Λ(k)


 ,

where exp(y) = ey, θ(x) =
∑

p≤x

ln p,
∑

p≤x

denotes the summation over all primes p ≤ x, and Λ(n)

is the Mangoldt function defined as follows:

Λ(n) =





ln p, if n = pα, p be a prime, and α be a positive integer;

0, otherwise.

Now let d(n) denotes the Dirichlet divisor function, n = pα1
1 pα2

2 · · · pαk

k be the factorization
of n into prime powers. We define the function Ω(n) = α1 + α2 + · · ·+ αk. Then we have the
following:

Theorem 2. For any positive integer n > 1, we have the calculating formula

Ω (L(n)) =
∞∑

k=1

π
(
n

1
k

)
.

Theorem 3. For all positive integer n ≥ 2, we also have

d (L(n)) = exp

( ∞∑

k=1

ln
(

1 +
1
k

)
π

(
n

1
k

))
,

where exp(y) = ey and π(x) =
∑

p≤x

1.

From these theorems and the famous Prime Theorem we may immediately deduce the
following two corollaries:

Corollary 1. Under the notations of the above, we have

lim
n→∞

[L(n)]
1
n = e and lim

n→∞
[d (L(n))]

1
Ω(L(n)) = 2,

where e = 2.718281828459 · · · is a constant.
Corollary 2. For any integer n > 1, we have the asymptotic formula

Ω (L(n)) =
n

lnn
+ O

(
n

ln2 n

)
.

§2. Proof of the theorems

In this section, we shall complete the proof of these theorems. First we prove Theorem 1.
Let

L(n) = [1, 2, · · · , n] = pα1
1 pα2

2 · · · pαs
s =

∏

p≤n

pα(p) (1)

be the factorization of L(n) into prime powers. Then for each 1 ≤ i ≤ s, there exists a positive
integer 1 < k ≤ n such that pαi

i ‖ k. So from (1) we have
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L(n) = [1, 2, · · · , n] = pα1
1 pα2

2 · · · pαs
s = exp

(
s∑

t=1

αt ln pt

)
= exp


∑

p≤n

α(p) ln p




= exp




∞∑

k=1

∑

n
1

k+1 <p≤n
1
k

α(p) ln p


 . (2)

Note that if n
1

k+1 < p ≤ n
1
k , then pk ≤ n, pk+1 > n and α(p) = k. So from (2) we have

L(n) = exp




∞∑

k=1

∑

n
1

k+1 <p≤n
1
k

k · ln p




= exp




∞∑

k=1

k




∑

n
1

k+1 <p≤n
1
k

ln p







= exp

( ∞∑

k=1

k
[
θ
(
n

1
k

)
− θ

(
n

1
k+1

)])

= exp

( ∞∑

k=1

[
kθ

(
n

1
k

)
− (k + 1)θ

(
n

1
k+1

)
+ θ

(
n

1
k+1

)])

= exp

( ∞∑

k=1

θ
(
n

1
k

))
= exp


∑

k≤n

Λ(k)


 ,

where θ(x) =
∑

p≤x

ln p, and Λ(n) is the Mangoldt function. This proves Theorem 1.

Now we prove Theorem 2. In fact from the definition of Ω(n) and the method of proving
Theorem 1 we have

Ω (L(n)) =
∑

p≤n

α(p) =
∞∑

k=1

∑

n
1

k+1 <p≤n
1
k

α(p) =
∞∑

k=1

∑

n
1

k+1 <p≤n
1
k

k

=
∞∑

k=1

k




∑

n
1

k+1 <p≤n
1
k

1




=
∞∑

k=1

k
[
π

(
n

1
k

)
− π

(
n

1
k+1

)]

=
∞∑

k=1

[
kπ

(
n

1
k

)
− (k + 1)π

(
n

1
k+1

)
+ π

(
n

1
k+1

)]

=
∞∑

k=1

π
(
n

1
k

)
,

where π(x) =
∑

p≤x

1. This proves Theorem 2.
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Note that the definition of the Dirichlet divisor function d(n) we have

d (L(n)) =
∏

p≤n

(α(p) + 1) = exp


∑

p≤n

ln[α(p) + 1]




= exp




∞∑

k=1

∑

n
1

k+1 <p≤n
1
k

ln[α(p) + 1]




= exp




∞∑

k=1

∑

n
1

k+1 <p≤n
1
k

ln(k + 1)




= exp




∞∑

k=1

ln(k + 1)
∑

n
1

k+1 <p≤n
1
k

1




= exp

( ∞∑

k=1

ln(k + 1)
[
π

(
n

1
k

)
− π

(
n

1
k+1

)])

= exp

( ∞∑

k=1

[
ln(k)π

(
n

1
k

)
− ln(k + 1)π

(
n

1
k+1

)
+ ln

(
1 +

1
k

)
π

(
n

1
k

)])

= exp

( ∞∑

k=1

ln
(

1 +
1
k

)
π

(
n

1
k

))
.

This completes the proof of Theorem 3.
Corollary 1 and Corollary 2 follows from our theorems and the asymptotic formulae:

θ(x) =
∑

p≤x

ln p = x + O

(
x exp

(
−c

(lnx)
3
5

(ln lnx)
1
5

))
and π(x) =

x

lnx
+ O

(
x

ln2 x

)
,

where c > 0 is a constant. These formulae can be found in reference [5].
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§1. Introduction

For any fixed positive integer k > 1 and any positive integer n, we define function Sk(n)
as the smallest positive integer m such that kn | m!. That is,

Sk(n) = min{m : m ∈ N, kn | m!}.

For example, S4(1) = 4, S4(2) = 6, S4(3) = 8, S4(4) = 10, S4(5) = 12, · · · . In problem
49 of book [1], Professor F.Smarandache asked us to study the properties of the sequence
{Sp(n)}, where p is a prime. The problem is interesting because it can help us to calculate the
Smarandache function. About this problem, many scholars have shown their interest on it, see
[2], [3], [4] and [5]. For example, professor Zhang Wenpeng and Liu Duansen had studied the
asymptotic properties of Sp(n) in reference [2], and give an interesting asymptotic formula:

Sp(n) = (p− 1)n + O

(
p

ln p
lnn

)
.

Yi Yuan [3] had studied the mean value distribution property of |Sp(n + 1)− Sp(n)|, and
obtained the following asymptotic formula: for any real number x ≥ 2, let p be a prime and n

be any positive integer, then

1
p

∑

n≤x

|Sp(n + 1)− Sp(n)| = x

(
1− 1

p

)
+ O

(
lnx

ln p

)
.

Xu Zhefeng [4] had studied the relationship between the Riemann zeta-function and an
infinite series involving Sp(n), and obtained some interesting identities and asymptotic formula
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for Sp(n). That is, for any prime p and complex number s with Re s > 1, we have the identity:

∞∑
n=1

1
Ss

p(n)
=

ζ(s)
ps − 1

,

where ζ(s) is the Riemann zeta-function.
And let p be any fixed prime, then for any real number x ≥ 1,

∞∑
n=1

Sp(n)≤x

1
Sp(n)

=
1

p− 1

(
lnx + γ +

p ln p

p− 1

)
+ O

(
x−

1
2+ε

)
,

where γ is the Euler constant, ε denotes any fixed positive number.
Zhao Yuan-e [5] had studied an equation involving the function Sp(n), and obtained some

interesting results: let p be a fixed prime, for any positive integer n with n ≤ p, the equation
∑

d|n
Sp(d) = 2pn

holds if and only if n be a perfect number. If n be an even perfect number, then n = 2r−1(2r −
1), r ≥ 2, where 2r − 1 is a Mersenne prime.

In this paper, we shall use the elementary methods to study the asymptotic properties
of Sk(n), and get a more general asymptotic formula. That is, we shall prove the following
conclusion:

Theorem. For any fixed positive integer k > 1 and any positive integer n, we have the
asymptotic formula

Sk(n) = α(p− 1)n + O

(
p

ln p
lnn

)
,

where k = pα1
1 pα2

2 · · · pαr
r be the factorization of k into prime powers, and α(p−1) = max

1≤i≤r
{αi(pi−

1)}.

§2. Some lemmas

To complete the proof of Theorem, we need the following several lemmas. First for any
fixed prime p and positive integer n, we let α(n, p) denote the sum of the base p digits of
n. That is, if n = a1p

α1 + a2p
α2 + · · · + asp

αs with αs > αs−1 > · · · > α1 ≥ 0, where

1 ≤ ai ≤ p− 1, i = 1, 2, · · · , s, then α(n, p) =
s∑

i=1

αi, and for this number theoretic function, we

have the following:

Lemma 1. For any integer n ≥ 1, we have the identity

αp(n) ≡ α(n) ≡
+∞∑

i=1

[
n

pi

]
=

1
p− 1

(n− α(n, p)),

where [x] denotes the greatest integer not exceeding x.
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Proof. (See Lemma 1 of reference [2]).
Lemma 2. For any positive integer n with p | n, we have the estimate

α(n, p) ≤ p

ln p
lnn.

Proof. (See Lemma 2 of reference [2]).

§3. Proof of the theorem

In this section, we use Lemma 1 and Lemma 2 to complete the proof of Theorem. For
any fixed positive integer k and any positive integer n, let Sk(n) = m, and k = pα1

1 pα2
2 · · · pαr

r .

Then from the definition of Sk(n), we know that kn | m! and kn † (m − 1)!. So we also get
pα1n
1 pα2n

2 · · · pαrn
r | m! and pα1n

1 pα2n
2 · · · pαrn

r † (m − 1)!. From the definition of F.Smarandache
function S(n) we may immediately get Sk(n) = m = max

1≤i≤r
{S(pαin

i )}.
For convenient, let

mi = S(pαin
i ),

so we have
m = max

1≤i≤r
{mi}.

Let mi = ai1p
βi1
i + ai2p

βi2
i + · · · + aisp

βis

i with βis > βi(s−1) > · · · > βi1 ≥ 0 under the base
pi. From the definition of S(pαin

i ), we know that pαin
i ‖ mi!, so that βi1 ≥ 1. Note that the

factorization of mi! into prime powers is

mi! =
∏

q≤mi

qαq(mi),

where
∏

q≤mi

denotes the product over all prime ≤ mi, and αq(mi) =
+∞∑
j=1

[
mi

qj

]
. From Lemma 1

we may immediately get the inequality

αpi
(mi)− βi1 < αin ≤ αpi

(mi),

or
1

pi − 1
(mi − α(mi, pi))− βi1 < αin ≤ 1

pi − 1
(mi − α(mi, pi)),

αi(pi − 1)n + α(mi, pi) ≤ mi ≤ αi(pi − 1)n + α(mi, pi) + (pi − 1)(βi1 − 1).

Combining this inequality and Lemma 2 we obtain the asymptotic formula

mi = αi(pi − 1)n + O

(
pi

ln pi
lnmi

)
.

From above asymptotic formula we can easily see that mi can achieve the maxima if αi(pi− 1)
come to the maxima. So taking α(p− 1) = max

1≤i≤r
{αi(pi − 1)}, we can obtain

m = α(p− 1)n + O

(
p

ln p
lnm

)
= α(p− 1)n + O

(
p

ln p
lnn

)
.

This completes the proof of Theorem.



Vol. 3 On the generalization of the primitive number function 21

References

[1] F. Smaradache, Only problems, not solutions, Xiquan Publishing House, Chicago, 1993,
41-42.

[2] Zhang Wenpeng and Liu Duansen, On the primitive numbers of power p and its asymp-
totic property, Smaradache Notions, Book series, 13(2002), 173-175.

[3] Yi Yuan, On the primitive numbers of power p and its asymptotic property, Scientia
Magna, 1(2005), No.1, 175-177.

[4] Xu Zhefeng, Some arithmetical properties of primitive numbers of power p, Scientia
Magna, 2(2006), No.1, 9-12.

[5] Zhao Yuan-e, An equation involving the function Sp(n), Scientia Magna, 2(2006), No.2,
105-107.

[6] Tom M.Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag,
1976.




