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§1. Introduction

As a model of spacetimes in physics, various geometries such as those of Euclid,
Riemannian and Finsler geometries are established by mathematicians. Today, more
and more evidences have shown that our spacetime is not homogenous. Thereby
models established on classical geometries are only unilateral. Then are there some
kinds of overall geometries for spacetimes in physics? The answer is YES. Those
are just Smarandache geometries established in last century but attract more one’s

attention now. According to the summary in [4], they are formally defined following.

Definition 1.1([4],[17]) A Smarandache geometry is a geometry which has at least

one Smarandachely denied axiom(1969), i.e., an axiom behaves in at least two dif-



ferent ways within the same space, i.e., validated and invalided, or only invalided
but in multiple distinct ways.
A Smarandache n-manifold is a n-manifold that support a Smarandache geom-

etry.

For verifying the existence of Smarandache geometries, Kuciuk and Antholy
gave a popular and easily understanding example on an Euclid plane in [4]. In
[3], Iseri firstly presented a systematic construction for Smarandache geometries
by equilateral triangular disks on Euclid planes, which are really Smarandache 2-
dimensional geometries (see also [5]). In references [6], [7] and [13], particularly in [7],
a general constructing way for Smarandache 2-dimensional geometries on maps on
surfaces, called map geometries was introduced, which generalized the construction
of Iseri. For the case of dimensional number> 3, these pseudo-manifold geometries
are proposed, which are approved to be Smarandache geometries and containing
these Finsler and Kéhler geometries as sub-geometries in [12].

In fact, by the Definition 1.1 a general but more natural way for constructing
Smarandache geometries should be seeking for them on a union set of spaces with an
axiom validated in one space but invalided in another, or invalided in a space in one
way and another space in a different way. These unions are so called Smarandache
multi-spaces. This is the motivation for this paper. Notice that in [8], these multi-
metric spaces have been introduced, which enables us to constructing Smarandache
geometries on multi-metric spaces, particularly, on multi-metric spaces with a same

metric.

Definition 1.2 A multi-metric space A is a union of spaces Ay, Ay, -+, A, for an

integer k > 2 such that each A; is a space with metric p; for Vi,1 <i < m.

Now for any integer n, these n-manifolds M™ are the main objects in modern
geometry and mechanics, which are locally euclidean spaces R" satisfying the T5
separation axiom in fact, i.e., for Vp,q € M™, there are local charts (U,,¢,) and
(Uy, ¢q) such that U, U, =0 and ¢, : U, — B, ¢, : U, — B", where

Bn:{($17$23"',In)|I%—I—l’g-‘-..._‘_zi <1}

is an open ball.



These manifolds are locally euclidean spaces. In fact, they are also homogenous
spaces. But the world is not homogenous. Whence, a more important thing is
considering these combinations of different dimensions, i.e., combinatorial manifolds
defined following and finding their good behaviors for mathematical sciences besides
just to research these manifolds. Two examples for these combinations of manifolds
with different dimensions in R? are shown in Fig.1.1, in where, (a) represents a
combination of a 3-manifold, a torus and 1-manifold, and (b) a torus with 4 bouquets

of 1-manifolds.
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Fig.1.1
For an integer s > 1, let ny,no, - -+, ns be an integer sequence with 0 < ny <
ng < --+ < ng. Choose s open unit balls B{"", By?,---, B where (| B # 0 in
i=1

R™*2t%s  Then a unit open combinatorial ball of degree s is a union

S
B(ny,ng, -+, ng) = UB:“
i=1

Definition 1.3 For a given integer sequence ny,ng, -+, Ny, m > 1 with 0 < ny <
ng < -+ < ng, a combinatorial manifold M is a Hausdorff space such that for
any point p € M, there is a local chart (U,,v,) of p, i.e., an open neighborhood
U, of p in M and a homoeomorphism wp 1 U, — B(ny(p), na(p), - - sy (D)) with

{n(p),n2(p), - -+ ns) (P)} € {na, g, -} and U {ma(p), na(p), -+, s ()} =

{ni1,n9,- -+, ny}, denoted by M(nl, Mgy M) OT M on the context and

A={(U,,0,)lp € M(ny,na, -+, )}

an atlas on M(nl, Ng, -+, Nm). The mazimum value of s(p) and the dimension 5(p)
s(p) —

of (| B are called the dimension and the intersectional dimensional of M(ny,ns,
i=1

“+ ., My,) at the point p, respectively.



A combinatorial manifold M s called finite if it is just combined by finite man-
ifolds.

Notice that () B # () by the definition of unit combinatorial balls of degree
i=1

s. Thereby, for Vp € M(nl,ng, .-+, ng), either it has a neighborhood U, with ¢, :
U, — R*, ¢ € {ng,ng,---,ns} or a combinatorial ball E(Tl,TQ, -+, 1) with ¢, :
U, — E(ﬁ,ﬁ, coom), L <sand {m, 7, -, 7} C{ni,ng, -, ns} hold.

The main purpose of this paper is to characterize these finitely combinatorial
manifolds, such as those of topological behaviors and differential structures on them
by a combinatorial method. For these objectives, topological and differential struc-
tures such as those of d-pathwise connected, homotopy classes, fundamental d-groups
in topology and tangent vector fields, tensor fields, connections, Minkowsk: norms in
differential geometry on these combinatorial manifolds are introduced. Some results
in classical differential geometry are generalized to finitely combinatorial manifolds.
As an important invariant, Euler-Poincare characteristic is discussed and geomet-
rical inclusions in Smarandache geometries for various existent geometries are also
presented by the geometrical theory on finitely combinatorial manifolds in this pa-
per.

For terminologies and notations not mentioned in this section, we follow [1] —[2]

for differential geometry, [5], [7] for graphs and [14], [18] for topology.

82. Topological structures on combinatorial manifolds

By a topological view, we introduce topological structures and characterize these

finitely combinatorial manifolds in this section.

2.1. Pathwise connectedness

On the first, we define d-dimensional pathwise connectedness in a finitely combina-
torial manifold for an integer d,d > 1, which is a natural generalization of pathwise

connectedness in a topological space.

Definition 2.1 For two points p,q in a finitely combinatorial manifold M(nl,ng,
o M), if there is a sequence By, Bs, -+, By of d-dimensional open balls with two

conditions following hold.



(1) B; C M(nl,ng, e ) for any integer i, 1 <i < s andp € By, q € By;
(2) The dimensional number dim(B; () Bi11) > d for Vi, 1 <i<s—1.

Then points p, q are called d-dimensional connected in M(nl, N, Ny and the se-
quence By, B, - -+, B, a d-dimensional path connecting p and q, denoted by P%(p, q).

If each pair p, q of points in the finitely combinatorial manifold ]\7(711, Moy M)
1s d-dimensional connected, then M(nl,n2, o M) 18 called d-pathwise connected

and say its connectivity> d.

Not loss of generality, we consider only finitely combinatorial manifolds with
a connectivity> 1 in this paper. Let M (n1,n2,- -, ny) be a finitely combinatorial
manifold and d, d > 1 an integer. We construct a labelled graph G [M(nl, Moy -y M)
by

V(GUM (ny,na, -+ n)]) = Vi | Vas
where Vi = {n; — manifolds M™ in M(nl,ng,---,nm)ﬂ < i < m}and Vo =
{isolated intersection points Opsn; pm; of M™ M™ in ]\/Z(nl,ng,---,nm) for 1 <

i,7 < m}. Label n; for each n;-manifold in V; and 0 for each vertex in V5 and

E(G[M(ny,na, -+, n)]) = Er | Es,

where E; = {(M", M")|dim(M™ M"™) > d,1 < i,5 < m} and FEs
{(Opmi ppmi, M™), (Opgni pgms, M™ )| M™ tangent M™ at the point Oy pmy for 1 <
i,7 < m}.
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Fig.2.1



For example, these correspondent labelled graphs gotten from finitely combina-
torial manifolds in Fig.1.1 are shown in Fig.2.1, in where d = 1 for (a) and (b), d = 2

for (c¢) and (d). By this construction, properties following can be easily gotten.

Theorem 2.1 Let GUM (ny,ny, - -+, nm)] be a labelled graph of a finitely combina-

torial manifold M/(nl, Ng, -+, Ny). Then

(1) Gd[ﬂ(nl, N, -+, Nm)] s connected only if d < n;.

(2) there exists an integer d,d < my such that Gd[]\/Z(nl,ng, o nm)| is con-
nected.

Proof By definition, there is an edge (M™, M™) in Gd[ﬂ(nl,ng, e )] for
1 < i,j < m if and only if there is a d-dimensional path P%(p,q) connecting two
points p € M™ and ¢ € M". Notice that

(PU(p.q) \ M™) € M™ and (P*(p,q) \ M"™) € M™.

Whence,

d < min{n;, n,}. (2.1)

Now if Gd[]\/Z(nl, Ng, - -+, Muy)] is connected, then there is a d-path P(M™, M"™)
connecting vertices M™ and M™ for VM™ M" € V(Gd[ﬂ(nl,w7 -, ny)]). Not

loss of generality, assume

P(M™, M™) = M"M* M - - M= M".

Then we get that

d < min{n;, s1, S2, -, S1—1,n; } (2.2)

by (2.1). However, according to Definition 1.4 we know that

U {nl(p)7 n2(p)7 T 7nS(ID)(p>} = {n17n27 T 7nm}- (2-3)

peM

Therefore, we get that



d < min({_J{m(p),na(p), -+ nspy (p)}) = min{ny, na, -+, iy} = m
peM
by combining (2.3) with (2.3). Notice that points labelled with 0 and 1 are always
connected by a path. We get the conclusion (1).

For the conclusion (2), notice that any finitely combinatorial manifold is al-
ways pathwise 1-connected by definition. Accordingly, G* [M (ny,mg, -+, Ny)] is con-
nected. Thereby, there at least one integer, for instance d = 1 enabling G¢ [M (ny,ng,

-, Nym)] to be connected. This completes the proof.

According to Theorem 2.1, we get immediately two corollaries following.

Corollary 2.1 For a given finitely combinatorial manifold M, all connected graphs

Gd[ﬁ] are isomorphic if d < ny, denoted by G[M]
Corollary 2.2 If there are k 1-manifolds intersect at one point p in a finitely

combinatorial manifold M, then there is an induced subgraph K** in G[M].

Now we define an edge set E4(M) in G[M] by

EY(M) = B(G“[M]) \ B(G*[M)).

Then we get a graphical recursion equation for graphs of a finitely combinatorial

manifold M as a by-product.

Theorem 2.2 Let M be a finitely combinatorial manifold. Then for any integer

d,d > 1, there is a recursion equation

G M| = GM] — E4(M)
for graphs of M.

Proof 1t can be obtained immediately by definition. g

For a given integer sequence 1 < n; < ny < .-+ < ny,,m > 1, denote by
H%(ny,ng, -+, ny) all these finitely combinatorial manifolds M (ny,mg, -+, ny) with
connectivity> d, where d < n; and G(ny,ng,---,n,,) all these connected graphs

G[ny,na, - - -, ny) with vertex labels 0,1, ng, - - -, n,, and conditions following hold.



(1) The induced subgraph by vertices labelled with 1 in G is a union of complete
graphs;
(2) All vertices labelled with 0 can only be adjacent to vertices labelled with

Then we know a relation between sets He(n1, ng, - - -, ny,) and G(ny, na, -+, Ny ).

Theorem 2.3 Let1 < nj; <ng < -+ < Ny, m > 1 be a given integer sequence. Then

every finitely combinatorial manifold M e H(ny,ng, -+, ny) defines a labelled con-
nected graph Gni,ng,---,nm| € G(ni,ng, -+, ny). Conversely, every labelled con-
nected graph G[ni,ng, -+, ny,| € G(ny,ng, -, ny) defines a finitely combinatorial
manifold M € H(ny,ng, -+, nm) for any integer 1 < d < n;.

Proof For VM € H(ny,ny, -, ny), there is a labelled graph G[ny, ng, - -+, ny,] €
G(ny,ng, -+, ny) correspondent to M is already verified by Theorem 2.1. For
completing the proof, we only need to construct a finitely combinatorial manifold
M € H(ny,ng, -+, ny) for VGny, ng, -+, nm] € G(ny,ng, -+, ny,). Denoted by
[(u) = s if the label of a vertex u € V(G[ny,ng,---,ny)) is s. The construction is

carried out by the following programming.

STEP 1. Choose |G[ny,ng, - -+, ny)| — |Vo| manifolds correspondent to each vertex u
with a dimensional n; if {(u) = n;, where Vy = {u|u € V(G[ny,na, -+, ny)) and {(u) =

0}. Denoted by V5, all these vertices in G[ny,na, - - -, n,,] with label> 1.

STEP 2. For Yu; € V> with I(u;) = n,,, if its neighborhood set Nepn, g, pn] (¥1) [

Var = {vl, 02, - oi") with 1(v}) = nyp, 1(02) = ngg, -+, L(0]™)) = Nis(uy), then
let the manifold correspondent to the vertex u; with an intersection dimension> d
with manifolds correspondent to vertices vi,v?, - - -,vf(ul) and define a vertex set
Ay = {u}.

STEP 3. If the vertex set A; = {uy,ug, -, } € V5, has been defined and V5 \
Ay # 0, let wpyy € Vay \ A with a label n;,, . Assume

(Nefsng,mn] ) [V Vo) \ A = {ufy, 08, vV}

with {(vf1) = g, L0F) = e, ---,l(vfﬁl“)) = Mipis(u,,)- Then let the

manifold correspondent to the vertex u;.; with an intersection dimension> d with



. . Sslu,
manifolds correspondent to these vertices v}, ,, v, -, UzJ(er) and define a vertex

set Al+1 = Al U{ul+1}.

STEP 4. Repeat steps 2 and 3 until a vertex set A; = V5, has been constructed.
This construction is ended if there are no vertices w € V(G) with I(w) = 0, i.e.,

V51 = V(G). Otherwise, go to the next step.

STEP 5. For Vw € V(G[n1,ng, -+, 1)) \ Va1, assume Nep mg,ni] (W) = {w1, wo,
-+ w}. Let all these manifolds correspondent to vertices wy, wy, - - -, w, intersects

at one point simultaneously and define a vertex set A; ; = Ay [J{w}.

STEP 6. Repeat STEP 5 for vertices in V/(G[ny, na, - - -, 1))\ V>1. This construction

is finally ended until a vertex set A}, , = V(G[ny1,ng, - - -, nyy]) has been constructed.

As soon as the vertex set Ay, has been constructed, we get a finitely combi-
natorial manifold M. It can be easily verified that M € HA(ny,ng, -+, nyy) by our

construction way. il

2.2 Combinatorial equivalence

For a finitely combinatorial manifold M in H(ny,ny, -+, Ny ), denoted by G []TJ/ (nq,
N, -+, Ny)] and G[M] the correspondent labelled graph in G(nq,ng,- -+, n,,) and
the graph deleted labels on G[]\/Z(nl,ng, <o nm)], C(n;) all these vertices with a

label n; for 1 < i < m, respectively.

Definition 2.2 Two finitely combinatorial manifolds Ml (ny,m2, M) Mg(l{il, ko,

-+, ky) are called equivalent if these correspondent labelled graphs

G[My(ny,ng, - )] = G[My(ky, ks, - -+, k).

Notice that if ]\71 (ny,na, M), Mg(k‘l, ko, -+, k) are equivalent, then we can
get that {ny,ng, -+, nm} = {k1, ko, - - -, by} and G[M;] = G[M,]. Reversing this idea
enables us classifying finitely combinatorial manifolds in H%(ny, ng, - -, n,,) by the

action of automorphism groups of these correspondent graphs without labels.

Definition 2.3 A labelled connected graph G[M(nl,n2, - Ny)] s combinatorial
unique if all these correspondent finitely combinatorial manifolds M(nl, Mg,y My)

are equivalent.



A labelled graph G[nq,ng, - - -, n,,| is called class-transitive if the automorphism
group AutG is transitive on {C(n;),1 < i < m}. We find a characteristic for

combinatorially unique graphs.

Theorem 2.4 A labelled connected graph G[ny,na, - -+, ny,) is combinatorially unique

if and only if it is class-transitive.

Proof For two integers 4, j,1 < 4,5 < m, re-label vertices in C(n;) by n; and
vertices in C'(n;) by n; in G[ny,ng, -+, ny]. Then we get a new labelled graph
G'[ny,ng, -+, ny| in Gny, ng, -+, npy]. According to Theorem 2.3, we can get two
finitely combinatorial manifolds ]\71(711, Ng, -+, Nyy,) and Mg(k‘l, ko, - - -, k) correspon-
dent to G[ny, ng, -+, ny| and G'[ny, ng, -+, Ny .

Now if G[nq, ng, - - -, ny,| is combinatorially unique, we know ]\Z(nl, Mg,y M)
is equivalent to Mg(k‘l, ko, -+ ki), i.e., there is an automorphism 6 € AutG such that
C%n;) = C(n;) for Vi, j,1 <i,j <m.

On the other hand, if G[ny,ng,---,n,| is class-transitive, then for integers
i,j,1 <i,j < m, there is an automorphism 7 € AutG such that C"(n;) = C(n;).
Whence, for any re-labelled graph G'[ny,na, -+, n,], we find that

[

G[n17n27 e 7nm] = G/[n17n27 T '7nm]7

which implies that these finitely combinatorial manifolds correspondent to G[nq, ns,
-+, ny) and G'[ng, ng, - - -, nyy,| are combinatorially equivalent, i.e., G[ny, ng, -+, Ny
is combinatorially unique. b

Now assume that for parameters t;1, ¢;2, - - -, t;s,, we have known an enufunction

— ti1, .ti2 tis
Curi[Tin, Tig, - -] = E ni(tin, tig, - - tis) T s - -
ti1,ti2,0 tis
for n;-manifolds, where n;(t;1, 0, - -, t;s) denotes the number of non-homeomorphic

n;-manifolds with parameters t;1,%;2,- - -, t;s. For instance the enufunction for com-

pact 2-manifolds with parameter genera is

Cyla](2) =1+ 2a7.

p=>1
Consider the action of AutG[ny, ng, - -+, ny| on G[ny, ng, - -+, ny|. If the number of

orbits of the automorphism group AutG[ny,ns,---,n,] action on {C(n;),1 <1 <

10



m} is my, then we can only get my! non-equivalent combinatorial manifolds corre-
spondent to the labelled graph G[ny, ng,- -, ny,| similar to Theorem 2.4. Calcula-
tion shows that there are [! orbits action by its automorphism group for a complete
(s1+ s2 + - -+ + s;)-partite graph K(kj', k32, -, k"), where k" denotes that there
are s; partite sets of order k; in this graph for any integer 7,1 < ¢ < [, particularly,
for K(ny,ng, -+, ny,) with n; # n; for 4, 5,1 <4, j < m, the number of orbits action
by its automorphism group is m!. Summarizing all these discussions, we get an enu-
function for these finitely combinatorial manifolds M (ny,ng, -+, ny) correspondent

to a labelled graph Glny,ng, -, ny] in G(ng, ng, - -+, n,y,) with each label> 1.

Theorem 2.5 Let Gny,na, - -, Ny be alabelled graph in G(ny,na, - - -, ny,) with each
label> 1. For an integer 1,1 < i <m, let the enufunction of non-homeomorphic n;-
manifolds with given parameters ty,to, -+, be Cyni[xi1, Ti2, - -] and my the number
of orbits of the automorphism group AutGlny, ng, - -+, ny] action on {C(n;),1 <i <
m}, then the enufunction of combinatorial manifolds M(nl, Mo, -+, Ny) COTTESPON-

dent to a labelled graph G[ny,ng, -, ny| is

C]T/f(f) = 7T0! H CM"z [zila Lig, - .]a

i=1
particularly, if G[ny,ng, -+, ny| = K(ET*, k32, -+ k3 such that the number of par-
tite sets labelled with n; is s; for any integer i,1 < ¢ < m, then the enufunction

correspondent to K (ki*, k32, -+, k™) is

1=1

and the enufunction correspondent to a complete graph K,, is
Ci(@) = [[ Curmilzin, o, -+ ).
i=1

Proof Notice that the number of non-equivalent finitely combinatorial manifolds

correspondent to G[ny, ng, - -+, Ny is
m

o H ni(tin, tios -+ -, tis)

1=1

11



for parameters t;1,t;0, -, tis, 1 < 7 < m by the product principle of enumeration.
Whence, the enufunction of combinatorial manifolds M (ny,mna, -+, Ny,) correspon-

dent to a labelled graph G[ny, ng, -+, ny| is

m
Cy(T) = Z (7o H ni(tin, tiz, -, tis H witaliz gl
i=1

ti1,ti2, tis

= ! HCMW [%17%‘27 . ] h

i=1

2.3 Homotopy classes

Denote by f ~ g two homotopic mappings f and g. Following the same pattern of

homotopic spaces, we define homotopically combinatorial manifolds in the next.

Definition 2.4 Two finitely combinatorial manifolds M(kl, ko, -+, k) and M(nl, no,
-, Ny) are said to be homotopic if there exist continuous maps
f: M(kl,k2,~-,kl) — M(nl,n2,~-~,nm),
g: M(nl,ng,-- M) — M(kl,k‘g,"',k‘l)
such that gf ~identity: M(k‘l, ko, - k) — M(kl, ko, -+ k) and fg ~identity:

M(n17n27 nm) _>M(n17n27 7nm>-

For equivalent homotopically combinatorial manifolds, we know the following
result under these correspondent manifolds being homotopic. For this objective, we

need an important lemma in algebraic topology.

Lemma 2.1(Gluing Lemma, [16]) Assume that a space X is a finite union of closed

subsets: X = |J X;. If for some space Y, there are continuous maps f; : X; — Y
i=1

that agree on overlaps, i.c., filx,nx;, = filx.nx, for alli,j, then there evists a

unique continuous f: X — Y with f|x, = fi for alli.

Theorem 2.6 Let M(nl,ng, Cee M) and M(l{:l, ko, -+, k) be finitely combinato-
rial manifolds with an equivalence @ : G[IM (ny,ny, - -+ )] — GIM (ky, ko, - - - k)]
If for VM, M, € V(G[]\/Z(nl,ng,---,nm)]), M; is homotopic to w(M;) with ho-
motopic mappings fu, : My — w(M;), gu, + w(M;) — M; such that far|v, 0, =
= 9m; | v, 0 m, providing (M;, M;) € E(G[M(nl,m, cnm)))

fMj|MimMj;9Mi

12



for 1 <i,7 <m, then M(nl,ng, -+ ) 18 homotopic to M(l{:l, ko, k).

Proof By the Gluing Lemma, there are continuous mappings
f: M(nl,n2,-~-,nm) — M(kl,k2,~-,kl)
and
g: M(kl,k‘g,"',k‘l) — ]\/Z(nl,ng,---,nm)
such that
N flar = fur and gloon) = g
for VM € V(G[M (ny,ng,---,ny)]). Thereby, we also get that
gf =~ identity : M(ky, ky, - -, ki) — M(ky, ko, -+, k)
and
fg >~ identity : M(nl,n2, Ce M) — M(nl,ng, Ce M)
as a result of gy far ~ identity : M — M, fygy ~ identity : w(M) — w(M). §
We have known that a finitely combinatorial manifold M (ny,ng, -+, Nyy) is d-
pathwise connected for some integers 1 < d < n;. This consequence enables us

considering fundamental d-groups of finitely combinatorial manifolds.

Definition 2.5 Let ]\7(711, Ng, -+, Ny) be a finitely combinatorial manifold. For
an integer d,1 < d < n; and Vz € ]\7(711, N, -+, Nm), a fundamental d-group at the

point z, denoted by 7¢(M (ny,ng, -+, nm),x) is defined to be a group generated by

all homotopic classes of closed d-pathes based at x.

If d=1 and M(nl, Ng, -+, My) is just a manifold M, we get that

Wd(M(nl,ng, e M), ) = w(M, T).

Whence, fundamental d-groups are a generalization of fundamental groups in topol-
ogy. We obtain the following characteristics for fundamental d-groups of finitely

combinatorial manifolds.

Theorem 2.7 Let ]\7(711, N, -+, Ny) be a d-connected finitely combinatorial mani-
fold with 1 < d <mny. Then

(1) forVz € M(nl,ng, Ce M),



where G* = GUM(ny,ng, -+, np)], #(M), 7(G?) denote the fundamental d-groups
of a manifold M and the graph G¢, respectively and
(2) forVz,y € M(nl,ng, Ce M),

wd(M(nl,ng, Ce M), T) = wd(M(nl,ng, e M)y Y).

Proof For proving the conclusion (1), we only need to prove that for any
cycle C'in M(ny,na, - -+, ny), there are clements CM CM ... C%M e m(M),
o1, g, aggay € m(GY) and integers al,b; for VM € V(G?) and 1 < i < (M),
1 <j <ce(G? < B(G?) such that

c(G?)

C= Z ZQMCM+ Zbaj (mod2)

MeV(Ge) i=1
and it is unique. Let CM CM ... C’b(M) be a base of m¢(M) for VM € V(GY). Since
C is a closed trail, there must exist integers EM 1,1 <i <b(M),1<j<p(GY
and hp for an open d-path on C such that

b(M) B(G)
= Y Zl{:MC’M+Zla]+thP,
Mev(Gd) i=1 PeA

where hp = 0(mod2) and A denotes all of these open d-paths on C. Now let

{a™1<i<UM)} = {EMEM £0and 1 <i < b(M)},

{biI1 <5 < (G} ={lill; #0,1 < j < BG}.

Then we get that

(M) c(GY)
C= Z ZaMC'M + Z bjaj(mod2). (2.4)
Mev(Gd) i=1

If there is another decomposition

(M) c(GY)
C = Z Z aMCoM 4 Z Varj(mod2),
MeVv(Gd) =1

14



not loss of generality, assume I'(M) < [(M) and /(M) < ¢(M), then we know that

1(M) c(G?)
>, D@ =aMCM Y (b~ bay =0,
Mev(Gd) =1 J=1

where o/M = 0 if i > I'(M), v, = 0if j/ > (M). Since CM,1 < i < b(M) and
aj, 1 < j < B(GY) are bases of the fundamental group 7(M) and 7(G?) respectively,

we must have

aM =aM 1 <i<I(M)and b, =V,1<j<c(GY.

)

Whence, the decomposition (2.4) is unique.

For proving the conclusion (2), notice that M (ny,ng,- -, ny) is pathwise d-
connected. Let P?(z,y) be a d-path connecting points z and y in M(nl, Moy M)
Define

w.(C) = Pz, y)C(P) " (z,y)

for VC € M (ny,m2, -+, ny). Then it can be checked immediately that

Wy & ﬂ-d(M(nla/rLQa T 'anm)az) - ﬂ-d(M(nl)/rLQa e 7nm)7y)

is an isomorphism. f
A d-connected finitely combinatorial manifold M (ny,mg, -+, ny) is said to be
simply d-connected if Wd(M(nl, N9, -+, Nm), ) is trivial. As a consequence, we get

the following result by Theorem 2.7.

Corollary 2.3 A d-connected finitely combinatorial manifold M(nl,ng, Ce M) 1S
simply d-connected if and only if

(1) for VM € V(Gd[]\/Z(nl, N, -+, Nm)]), M is simply d-connected and

(2) GUM(ny,na, -, nm)| is a tree.

Proof According to the decomposition for 7rd(]\7(n1,n2, <+ Ny),x) in The-
orem 2.7, it is trivial if and only if m(M) and w(G?) both are trivial for VM €
V(GYUM(ny,ng,- -+ np)]), i.e M is simply d-connected and G4 is a tree. 1§

For equivalent homotopically combinatorial manifolds, we also get a criterion

under a homotopically equivalent mapping in the next.
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Theorem 2.8 If f : M(nl,n2, Ce M) — M(lﬁ, ko, -+, k) is a homotopic equiva-
lence, then for any integer d,1 < d < mny and x € M(nl, Moy M),

Wd(M(nl,ng, o ,nm),x) = Wd(M(kla k27 Ty kl)? f(l‘))

Proof Notice that f can natural induce a homomorphism

fr T (M(ny,ng, - nm), ) — 7 M ki, kg, - -, ki), f(2))

defined by f, (g) = (f(g)) for Vg € 7¥(M(ny,na,---,nm), ) since it can be easily
checked that f.(gh) = f<(g9)fr(h) for Vg, h € Wd(]\/Z(nl,ng,---,nm),x). We only
need to prove that f is an isomorphism.

By definition, there is also a homotopic equivalence g : M (k1,koy -+, k) —
M(nl,ng, -+, ny,) such that g f ~ identity : M(nl,ng, Ce M) — M(nl,ng, Ce M)

Thereby, g fr = (g.f)ﬂ = M(Zdentlty)n :

ﬁd(M(nl,ng, co ), ) — (M (ng,ng, e ), T),

where p is an isomorphism induced by a certain d-path from x to g f(z) in M (ny,ng,
-, Nm). Therefore, g, fr is an isomorphism. Whence, f, is a monomorphism and
gr is an epimorphism.

Similarly, apply the same argument to the homotopy

fg = identity : M(ky, ko, ki) — M(k1, ko, -, k),

we get that frg, = (fg)r = v(identity),; :

UM (ky, ko, -+ k), ) — 75 (M (kv kay - -+ k), ),

where v is an isomorphism induced by a d-path from fg(x) to z in M(kl, ko, -+ k).

So g, is a monomorphism and f; is an epimorphism. Combining these facts enables

us to conclude that fr : 7¢(M(ny,na, -+, ), ) — 7(M(ky, ko, -+, ), f(2)) is an

isomorphism . f

Corollary 2.4 If f : M(nl,ng, R M(kl, ko, -+, k) is a homeomorphism,
then for any integer d,1 < d <n; and = € M(nl,ng, S M),
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Wd(M(nl,ng, s ,nm),x) = Wd(ﬂ(kla k27 ) kl)? f(l‘))

2.4 Euler-Poincare characteristic

It is well-known that the integer

e e}

X(M) =Y (=)'
i=0
with «; the number of i-dimensional cells in a C'W-complex 91 is defined to be the
Euler-Poincare characteristic of this complex. In this subsection, we get the Euler-
Poincare characteristic for finitely combinatorial manifolds. For this objective, define
a clique sequence {Cl(7)};>; in the graph G []T/f | by the following programming.

STEP 1. Let CI(G[M]) = ly. Construct

Cl(ly) = {KiO,KéO7"'7K;O|K£O . G[M] and K% N Kjl-o — 0,

or a vertex € V(G[M]) for i # 5,1 <i,5 < p}.

STEP 2. Let Gy = |J K'and Cl(G[M]\ G;) =1;. Construct
Kl'eCl(l)

Cilly) = {KI K}, KD|K" = GM) and KI' 0 K =0

or a vertex € V(G[M)]) for i # 5,1 <1i,7 < q}.

STEP 3. Assume we have constructed Cl(lx_1) for an integer k¥ > 1. Let G =

U K% and CI(GIM]\ (G1U---UGy)) = l. We construct
K'k=1eci(l)

Cl(ly) = {KP Ky, K¥|KY = G[M] and K* 0 Kl =0,

or a vertex € V(G[M]) for i # j,1 <i,5 <r}.

STEP 4. Continue STEP 3 until we find an integer ¢ such that there are no edges
— t
in GIM]\ U G;.
i=1

By this clique sequence {C1(i)};>1, we can calculate the Eucler-Poincare char-

acteristic of finitely combinatorial manifolds.
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Theorem 2.9 Let M be a finitely combinatorial manifold. Then

X(M) = Z Z 8+1 M;, U UMZs

KkeCl(k),k>2 MijEV(Kk),lgjgsgk

Proof Denoted the numbers of all these i-dimensional cells in a combinatorial
manifold M or in a manifold M by & and «;(M). If G[M] is nothing but a complete
graph K* with V(G[M ]) = {My, Ms,---, My}, k > 2, by applying the inclusion-

exclusion principe and the definition of Euler-Poincare characteristic we get that
X(M) = > (-1)a;

i=0 M, eV(KFk),1<j<s<k

_ Z (_1)5+1 Z(_I)ZQZ(M“UUMZS)

Mij eV(KFk),1<j<s<k

_ ( 1 s+1 U UMZS

M;; €V (Kk),1<j<s<k

for instance, x(M) = x (M) + x(Ms) — x(My N M) if GIM] = K2 and V(G[M]) =
{My, Ms}. By the definition of clique sequence of G []\7 |, we finally obtain that

X(M) = Z Z H_l M;, U U M;,).
KFeCI(k),k>2 M;, eV(Kk),lgjgsgk

ItG [M | is just one of some special graphs, we can get interesting consequences
by Theorem 2.9.

Corollary 2.5 Let M be a finitely combinatorial manifold. If G[]\/Z] is K3-free, then

XM=Y xX*(M)- Y. x(M[)M).

MeV(G[M]) (M, M2)€E(G[M])

Particularly, if dim(My (| Ma) is a constant for any (My, Ms) € E(G[M]), then
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XM) = > (M) — x(M; [ M) E(G[M])].

MeV (G[M])

Proof Notice that G[M] is K3-free, we get that

X(M) = S (M) + x(Ms) — (M [ M)

(M1,M2)€ E(G[M])

_ Yoo ) L)+ Y x(Mi () M)

(M1 ,M2)eE(G[M]) (M1,M2)€ E(G[M])
= Y - Y (M) &
MeV/(G[M)) (M1, M2)€ E(G[M])

Since the Euler-Poincare characteristic of a manifold M is 0 if dimM = 1(mod2),

we get the following consequence.

Corollary 2.6 Let M be a finitely combinatorial manifold with odd dimension

number for any intersection of k manifolds with k > 2. Then

MeV (G[M)])

83. Differential structures on combinatorial manifolds

We introduce differential structures on finitely combinatorial manifolds and charac-

terize them in this section.

3.1 Tangent vector fields

Definition 3.1 For a given integer sequence 1 < ny < ng < -++ < Ny, G COM-
binatorially C" differential manifold (M(nl, Na, - ) A) is a finitely combinato-

rial manifold M(nl,ng, s ), M(ny,ng, - ng) = J Ui, endowed with a atlas
il

A ={(Uy;0a)|a € I} on M(ny,ng, -+, ny) for an integer h,h > 1 with conditions

following hold.

(1) {Uy; @ € 1} is an open covering of M(nl,m, e M);
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(2) For Na,p € I, local charts (Uy; va) and (Ug; pg) are equivalent, i.e.,
UsNUsg =0 or U, Us # 0 but the overlap maps

Py 9s(Uq ﬂUﬁ) — p3(Us) and gt : QDg(Uaﬂ Us) — 0a(Us)

are C" mappings;

(3) A is mazimal, i.e., if (U; ) is a local chart of M(nl, Mo, Nyy) equivalent
with one of local charts in A, then (U;¢) € A.

Denote by (]\7(711,712, e ,nm);j) a combinatorially differential manifold. A
finitely combinatorial manifold M(nl,ng, e Myy) 18 said to be smooth if it is en-

dowed with a C* differential structure.

Let A be an atlas on M(nl,ng, -+, nm). Choose a local chart (U;w@) in A.

s(p) s(p)
For Vp € (U;¢), if w, : U, — |J B™® and 3(p) = dim(() B"®), the following
i=1 i=1
5(p) X ngp) matrix [w(p)]
a2l 1P+ o0 pln
s(ﬁ) 82(5())) v z
z= .. 22 2B+ oL 20
[w(p) =] @ s(p) v v
z @ @R @) EEA) L @)l PN
s(p) s(p)

with 2% = 27 for 1 < 4,57 < s(p),1 < s < 5(p) is called the coordinate matriz of
p. For emphasize w is a matrix, we often denote local charts in a combinatorially
differential manifold by (U; [w]). Using the coordinate matrix system of a combina-

torially differential manifold (M (nqy, ng, -+, ny); A), we introduce the conception of

C" mappings and functions in the next.

Definition 3.2 Let M (ny,na, - -+, ), Mo(k1, ka, - -, k) be smoothly combinatorial

manifolds and

f: Ml(nl,nz, C Nyy) — Mz(kl,k% e k)

be a mapping, p € Ml(nl,ng, o Ny). If there are local charts (Uy;[wp]) of p on
My (ny,na, -+, nm) and (Vi) lwrm]) of f(p) with f(U,) C Vi such that the com-

position mapping
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f=lwmlofolm™ : [@l(Up) = [wig) (Vi)
is a C" mapping, then f is called a C" mapping at the point p. If f is C" at
any point p of M, (n1,m9, -+, Nm), then f is called a C" mapping. Particularly, if
%(kl,kg,"',kl> = R, f ia called a C* function on ]\Z(nl,n2,~-~,nm). In the
extreme h = oo, these terminologies are called smooth mappings and functions,

respectively. Denote by £, all these C* functions at a point p € M (N1, Mo, Ny

For the existence of combinatorially differential manifolds, we know the follow-

ing result.

Theorem 3.1 Let M(nl, Ng, -+, Ny) be a finitely combinatorial manifold and d, 1 <
d < ny an integer. If YM € V(GUM(ni,ng, -, nm)]) is C" differential and
V(My, M) € E(Gd[ﬂ(nl, N, -+, Nm)]) there exist atlas

Ar = {(Va; ¢a) |V € My} Ay = {(Wy;9,)|Vy € M}

such that @.|v, aw, = Yylv.nw, for Yo € My, y € My, then there is a differential

structures

A= {(Uyi [@,))I¥p € M(ny, s, -+, min)}

such that (M(ny,na, -, np); A) is a combinatorially C* differential manifold.

Proof By definition, We only need to show that we can always choose a neigh-
borhood U, and a homoeomorphism [w,| for each p € M (ny,ng,- -, ny,) satisfying
these conditions (1) — (3) in definition 3.1.

By assumption, each manifold VM € V(Gd[M (n1,m2,+,ny)]) is C* differen-
tial, accordingly there is an index set ), such that {U,; « € I} is an open covering
of M, local charts (U,;¢,) and (Us; pg) of M are equivalent and A = {(U; )} is

maximal. Since for Vp € M(ni,ng,---,nm), there is a local chart (Up; [w,]) of

s(p)

p such that [w,] : U, — |J B%®, ie. p is an intersection point of manifolds
i=1

Mmi®) 1 <4 < s(p). By assumption each manifold M™®) is C" differential, there

exists a local chart (V/; ¢!) while the point p € M™®) such that ¢!, — B™"). Now

we define
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s(p)

@:UW
=1

Then applying the Gluing Lemma again, we know that there is a homoeomorphism
[cw,] on U, such that

(@) ppmirr = &},

for any integer i, < i < s(p). Thereafter,

A= {(Uy; [@p))I¥p € M(m, s, -+, nm)}

is a C" differential structure on M(ni, ng, - - -, ny,) satisfying conditions (1) — (3).

Thereby (M (nq,ng, -+, Ny); .Z) is a combinatorially C" differential manifold.

Definition 3.3 Let (M (nq,ng,- -+, nm), A) be a smoothly combinatorial manifold
and p € M(nl,ng, o Ny). A tangent vector v at p is a mapping v : %, — R with

conditions following hold.

(1) Vg, h e Z,,YA € R, v(h+ Ah) = v(g) + Av(h);
(2) Vg, h € 2;,v(gh) = v(g)h(p) + g(p)v(h).

Denoted all tangent vectors at p € M(nl, N, -+, M) by Tpﬁ(nl,ng, Ce M)
and define addition + and scalar multiplication - for Vu,v € T, p]\/Z (ny,ma, M),
AeRand f e Z, by

(u+v)(f) = u(f) +o(f), Qu)(f) =A-u(f).

Then it can be shown immediately that Tp]\7 (ny,ng, -+, ny) is a vector space under

these two operations + and -

Theorem 3.2 For any point p € M/(nl, Na, -+, Ny) With a local chart (Uy; [pp]), the

dimension of TPJ\/Z(nl, Mo,y Ny 1S

s(p)

dimTpM(nl, No, =+, nm) = §(P) + Z(nl - /S\(p))

i=1

with a basis matriz
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T R T 9 D . 0
s(p) Ozl s(p) Ox15(p) oz1(P)+1) Oxlni
1 9 co. L _9 9 ce. 9
s(p) Ox21 s(p) Ox28(p) 022((P)+1) Ox2n2
1 90 .., 1 _ 9 9 e 9 9
s(p) Bzs(P)L s(p) Ozs@)3(P)  PgsP)(BE(P)+1) 9" @ sy~ g5 (p)

where 2 = 29 for 1 < 4,5 < s(p),1 < 1 < 3(p), namely there is a smoothly
functional matriz [vij]s(p)xns(p) such that for any tangent vector v at a point p of

M(n17n2a e 7nm)7

0

U= [Uij]s(p)xns(p) @ [%]S([J)an(z,ﬁ

where [aijlkxi © [bislext = Z Z ijbij.

i=17=

Proof For Vf € Z,, let f=f- lop] ™! € Zip, 1) We only need to prove that

f can be spanned by elements in

(oshll < }UU U ol 1 1<i<s)), (31)

=1 j=3(p)+1

for a given integer h,1 < h < s(p), namely (3.1) is a basis of TpM(nl,ng, Ce M)
In fact, for VZ € [p,](U,), since fis smooth, we know that

fia) - ) = [ jtﬂxm(x—xo))dt

2

s(p) n;

= DDyl

i=1 j=1

To))dt

0

in a spherical neighborhood of the point p in [p,](U,) C RIP)=s@sE)tnitnat-+nyp,
with [¢,](p) = To, where
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i sy i 1< <3,
Tp) =

1, otherwise.
Define
G / O @+ 1(7 ~ Tt
and g;; = gij - [¢p]- Then we find that
o of _
9ij(p) = 9;(To) = i (Zo)
o(f - lpp]™) _of

Therefore, for Vq € U,, there are g;j,1 < i < s(p),1 < j <n; such that

5(1’ ng

D)+ D> ndiy (@7 = 2)gi5(p).

=1 j=1

Now let 7 € Tp]\7(n1, Na, -+, Nm). Application of the condition (2) in Definition
3.1 shows that

v(f(p)) =0, and v(i,zy) = 0.

Accordingly, we obtain that

s(p) n;
o(f) = (D) + D> 0k, (@ — 2)gii(p))
=1 j=1
S(p) i . .. ..
= W)+ Zun;(p) (27 = 2)g:5(p)))
s(p) mn;
= ZZ W95 (PO — ) + (27 (p) — 2 Jo(ny,96(P)))
s(p) mn;
= 22775(17 xz] Z])
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s(p) ny
0 0
ZZ P) §pis p(f) = [Uij]S(p)an(p) [a_] Xné(p)|p( )-

=1 j=1
Therefore, we get that

_ 0
U= [Uij]s(p)an(p) @ [%]S(IJ)XW/S(]J)' (32)

The formula (3.2) shows that any tangent vector 7 in Tpﬂ(nl, Mgy, Ny Can
be spanned by elements in (3.1).

Notice that all elements in (3.1) are also linearly independent. Otherwise, if
there are numbers a*,1 < i < s(p),1 < j < n; such that

s(p) s(p
(Z ¢ 8xh9 * Z Z 8:6” =9
J=1 i=1 j=3(p)+1
then we get that
s(p) s(p)
Z S(Zh] + Zl Z ng ) =0
=1 i=1 j=3(p

for 1 <i < s(p),1 <j <n;. Therefore, (3.1) is a basis of the tangent vector space
Tpﬂ(nl,ng, -+, Ny,) at the point p € (M(nl,ng, . -,nm);ﬂ). i

By Theorem 3.2, if s(p) = 1 for any point p € (M(nl,ng,---,nm);.ﬁ), then
dimTp]\/Z(nl,ng, -++,Ny,) = n1. This can only happens while M(nl,ng, Ce M) S
combined by one manifold. As a consequence, we get a well-known result in classical

differential geometry again.

Corollary 3.1([2]) Let (M";.A) be a smooth manifold and p € M™. Then

dim7, M" =
with a basis
0
{8xl|p| 1 <i<n}.

Definition 3.4 ForVp € (M (nl,ng, < ) A), the dual space T;M(nl, Moy M)

1s called a co-tangent vector space at p.
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Definition 3.5 For f € Z,,d € T;M(nl,ng, cee Ny) and T € Tpﬁ(nl,ng, Ce M),
the action of d on f, called a differential operator d : Z,, — R, is defined by

df = o(f).
Then we immediately obtain the result following.

Theorem 3.3 For Vp € (M(nl,ng,---,nm);.g) with a local chart (Uy; [pp]), the

dimension of T;M(nl, Mo,y Ny 1S

s(p)
dimT; M (g, n2, -+, nyn) = 3(p) + Y (0 — 5(p))
i=1
with a basis matric
[df]s(p)XTLs(p) =
a0 g AGEH) L gplm 0 |
s(p) s(p)
de?t 0 da®W) g2 L gy2ne
s(p) s(p)
dxs(p)l . 7dxs(p)§(p) dxs(p)(’s\(p)""l) e . e dxs(p)ns(p)_l dxs(p)ns(p)
L s(p) s(p) -

where ¥ = 29" for 1 <i,j < s(p),1 <1 <3(p), namely for any co-tangent vector d
at a point p of M(nl, Na, -+, Nm), there is a smoothly functional matriz [wi;)sp)xsp)

such that,

s(p)”

3.2 Tensor fields

Definition 3.6 Let M(nl,m, o M) be a smoothly combinatorial manifold and
pE M(nl,ng, coo ny). A tensor of type (r,s) at the point p on M(nl,ng, Ce M)

is an (r + s)-multilinear function T,

T:T;Mx-~-><T;M><TPM><~-~><TPMJ—>R,

v~
T
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where TPJTJ/ = Tpﬁ(nl, N, ++yNyy) and T;]TJ/ = T;M(nl,ng, Ce M)

Denoted by 17 (p, M) all tensors of type (r, s) at a point p of ]\7(711, Moy M)

Then we know its structure by Theorems 3.2 and 3.3.

Theorem 3.4 Let ]\/Z(nl,ng, < M) be a smoothly combinatorial manifold and

pE M(nl,ng, oo Ny). Then

T (pM)=T,M® - @T,MRTM®--- @ T;M,

where Tp]\7 = Tpﬂ(nl, Mg, -+, Ny) and T;M = T;M(nl, Ng, -+ M), particularly,

s(p)

dimT (p, M) = (3(p) + D _ (i = 5(p)))""".

i=1

Proof By definition and multilinear algebra, any tensor t of type (r, s) at the

point p can be uniquely written as

0
i1l .. k)lll R k‘sls
t=> axm ® 5 g @Az © - @ du

Q1 iy

i € R according to Theorems 3.2 and 3.3, where 1 < ip, kj <
s(p) and 1 < jj, <ip, 1 <1 < kj for 1 < h <r. As a consequence, we obtain that

for components t"

T (p,M)=T,M®---@T,M@TM&---@T:M.

s(p)

Since dimTpM = dimT}; M =3(p)+ > (n; — 5(p)) by Theorems 3.2 and 3.3, we

also know that

dim T (p, M) = (5(p) + 3 (ns — 5(p)))"**.

Definition 3.7 Let T7 (M ) U T7(p, ) for a smoothly combinatorial manifold
peM

M = M(nl,n2,~-,nm). A tensor filed of type (r,s) on M(nl,n2,~-~,nm) is a
mapping T : M(nl,ng,---,nm) — T;(M) such that T(p) € T (p, ]\7) for ¥p €

M(ni,ng, -, ny).
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A k-form on M(ny,na, -+, ny,) is a tensor field w € Tg(ﬂ). Denoted all k-form
o) -s@EEA S e —

of M(ny,na, -+, nm) by A¥(M) and A(M) = 5_90 A(M), 2 (M) =
U 2, _

Similar to the classical differential geometry, we can also define operations ¢ Ay

for Vo, v € TT (M), [X,Y] for VX, Y € Z (M) and obtain a Lie algebra under the
commutator. For the exterior differentiations on combinatorial manifolds, we find

results following.

Theorem 3.5 Let M be a smoothly combinatorial manifold. Then there is a unique
exterior differentiation d : A(]\/Z) — A(]\/Z) such that for any integer k > 1, d(A¥) C

AFY(M) with conditions following hold.
(1) d is linear, i.c., for Vo, € A(]Tf), AeER,

d(p + M) = dp Atp + Adib
and for ¢ € Ak(M),@b € A(M)’

d(p A ) = dp + (=1)Fp A dy.

(2) For f € AO(]\/Z), df is the differentiation of f.
B d=d-d=
(4) d is a local operator, i.e., if U CV C M are open sets and oo € A*(V), then

d(alv) = (da)|u.

Proof Let (U;[y]), where [¢] : p — Sﬁ) [0](p) = [p(p)] be a local chart for
i=1

a point p € M and o = O pyn)ee- (o) AT A - - Adat e with 1T < vy < ny, for
1 < p < s(p), 1 < i < k. We first establish the uniqueness. If £ = 0, the

local formula da = aaﬁ‘y
X

1 < p; <s(p), 1 < i<k shows that the differential of 2# is 1-form dz*”. From (3),

d(z"") = 0, which combining with (1) shows that d(dx*1"* A -+ A d®*™) = 0. This,
again by (1),

dxz"” applied to the coordinates x*” with 1 < v; < n,, for

da =

aa(M1V1)“'(uk¢k)de Adz N A da (3.3)
oxhv
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and d is uniquely determined on U by properties (1) — (3) and by (4) on any open
subset of M.

For existence, define on every local chart (U; [¢]) the operator d by (3.3). Then
(2) is trivially verified as is R-linearity. If 8 = B(5,q,)(01q) A7 A+ - -Ada”t € AYU),
then

d(OK A 6) = d(a(uwl) (Mkiﬁk)ﬁ(mq)'“(am)dxmyl Ao NN TN A dxolQ)
_ (0a pav)-(per) ﬂ
= (o161)

w(ora) T Curvn)(uwn)

oxtv
v Vo) @w ("glé;("”) VAP A - AT A AT A A da
T
Oa v
- (Mgl)uu(ukwk)dl'mul Ao AT A ﬁ(cr1<1)"'(ol<l)d‘fljal§1 Ao Nda
T

B(o161) (o)

k 1% THEY
+ (_1) a(#ll/l)“‘(#kd’k)d‘rul Lo Ad o A azuu

)da7is - A das

= daAfB+(-Drands

and (1) is verified. For (3), symmetry of the second partial derivatives shows that

2
Ot gyses 5 p 5 7 g A dz™) = 0.
Ozt Qs

d(da) =
Thus, in every local chart (U; [¢]), (3.3) defines an operator d satisfying (1)-(3). It
remains to be shown that d really defines an operator d on any open set and (4)
holds. To do so, it suffices to show that this definition is chart independent. Let d
be the operator given by (3.3) on a local chart (U’; [¢']), where U U’ # 0. Since d’
also satisfies (1) — (3) and the local uniqueness has already been proved, d'a = do

on U (U'. Whence, (4) thus follows.

Corollary 3.2 Let M = M(nl,ng, M) be a smoothly combinatorial manifold
and dy; - A¥(M) — A*Y(M) the unique exterior differentiation on M with condi-
tions following hold for M € V(G'[M(ny,ng, -, nm)]) where, 1 < 1 < min{ny, ns,

. .’nm}.
(1) dps is linear, i.e., for Vo, € A(M), A € R,

dar(p + M) = dprp + M.
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(2) For ¢ € A"(M), 4 € A(M),

dy(p Np) = dyo + (—1)"@ Adarid.

(3) For f € A°(M), dyf is the differentiation of f.
(4) 2, = dys - dps = 0.
Then

Proof By Theorem 2.4.5 in [1], dj; exists uniquely for any smoothly manifold
M. Now since d is a local operator on M, i.e., for any open subset U, C ]\7,

J(Oé\Uu) = (CA[OK)\U“ and there is an index set J such that M = |J U, we finally get
pned
that

dly = dy

by the uniqueness of d and dy;. b

Theorem 3.6 Let w € AY(M). Then for VX,Y € 2 (M),

dw(X,Y) = X(w(Y)) = Y (w(X)) = w([X,Y]).

Proof Denote by a(X,Y") the right hand side of the formula. We know that
a: M x M — C®(M). It can be checked immediately that « is bilinear and for

VX,Y € & (M), f € C=(M),

a(fX,Y) = [fX(w(V)) -Y(w(fX)) —w([fX,Y])
= [X(w(Y)) -Y(fu(X)) —w(fIX, Y] =Y (f)X)
= fOé(X,Y)

and

a(X, fY) = —a(fY, X) = —fa(V, X) = fa(X,Y)
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by definition. Accordingly, « is a differential 2-form. We only need to prove that
for a local chart (U, [¢]),

aly = dw|y.

In fact, assume w|y = w,, dz"”. Then

([@)ly = dwly) = 29 4575 p g
xS
1 0w B OWer

2 ( ox°s  Ozmv

On the other hand, a|y = $a(5%s, 5% )da® A dz"”, where

dzh 3 Paos

)dz®s A dz .

0 0 0 0 0 0
a(ﬁxW’ %> Oz (w(&')s“”))  Oxmw (w(0x°§>)
0 -2

oxHv  Ox°s

Therefore, dw|y = aly. 1§
3.3 Connections on tensors

We introduce connections on tensors of smoothly combinatorial manifolds by the

next definition.

Definition 3.8 Let M be a smoothly combinatorial manifold. A connection on
tensors of M is a mapping D %(M) X T;M — T;M with Dyt = D(X, ) such
that for VX,Y € %]\7, T, TE TST(]\/Z),)\ ceRand f € C"X’(]\/Z),

(1) Ex+fy7' = Dy7 + fﬁyT; and 5X(T + ) = Dyt + Aﬁxﬁ;

(2) Dx(r®n) = Dx7t @7+ 0 ® Dy

(3) for any contraction C' on T7 (M),

Dx(C(1)) = C(Dx7).

We get results following for these connections on tensors of smoothly combina-

torial manifolds.
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Theorem 3.7 Let M be a smoothly combinatorial manifold. Then there exists a

connection D locally on M with a form

~ v (pava)- (v 0
(Dx7)|y = xos v (uave) - (prvr) Q- ® Q drf M ® - - - @ drtes

(k1A1)(R2A2) (RsXs),(0) Gpprvn = Oxhrvr

for¥Y € Z' (M) and 7 € TI (M), where

g (1) uava)-(urve)

(p1v1)(p2va)-(urvr) - (k1A1)(k2A2) (ks As)
(k1A1)(K2A2) - (KsXs),(uv) 8xﬂ”
(r1v1)(pa—1va—1)(06) (Ha+1Va+1)(1rVr) 1 faVa
T T e L o6 u)
a=1
_ ZT(uwl)(uzm)m(MrW) res
(R1 A1) (k=1 Ap—1) (1) (Op15p41) (ks As) ™ (opsp) (ur)
b=1
and F’@g)(w) s a function determined by
=~ 8 H)\ 8
D o gpes = Yioo)w) o

on (Up; [¢p]) = (Up; ™) of a point p € ]\7, also called the coefficient on a connection.

Proof We first prove that any connection D on smoothly combinatorial man-
ifolds M is local by definition, namely for X;, X, € %(]\7) and 71,7 € TS”(]\/Z), if
Xily = Xao|ly and 7|y = 7|v, then (BxlTl)U = (5){27'2)(]. For this objective, we
need to prove that (Dx,m)y = (Dx,72)v and (Dx,m)v = (Dx,m)u. Since their
proofs are similar, we check the first only.

In fact, if 7 =0, then 7 = 7 — 7. By the definition of connection,

DxT = ﬁX(T —7) = Dx7— Dx1 = 0.

Now let p € U. Then there is a neighborhood V,, of p such that V is compact and
V C U. By aresult in topology, i.e., for two open sets V,, U of R¥P)=s@)sp)nit-Fn.q)
with compact V,, and V,, C U, there exists a function f € C(RSP)=s®EEFm++nyp))
such that 0 < f < 1 and fly, = 1, f
f- (2 —7) =0. Whence, we know that

RIS @F@) tnattngy\ ;= 0, we find that

0=Dx,((f-(m—7))) = Xi(f) (2 — 1) + f(Dx, 72 — Dx,71).
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As a consequence, we get that (Dx,71)y = (Dx,m)v, particularly, (Dx,71), =
(Dx,73),. For the arbitrary choice of p, we get that (Dx, 1)y = (Dx,72)y finally.

The local property of D enables us to find an induced connection DV : 2 (U) x
T7(U) — Tr(U) such that E%W(Thj) = (Dx7)|y for VX € %(M) and T € TS"]\/Z.
Now for VX1, X, € Z°(M), V1,7 € T] (M) with Xi[y, = Xs|v, and 7]y, = 7|y,
define a mapping DV : 2 (U) x T7(U) — T7(U) by

(Dx,m)lv, = (Dx,72)ly,
for any point p € U. Then since D is a connection on M. , it can be checked easily
that DV satisfies all conditions in Definition 3.8. Whence, DV is indeed a connection
onU.

Now we calculate the local form on a chart (Up, [¢,]) of p. Since

~ 0
D g, =Tl 7o
it can find immediately that
I KA o
D s, dv™ = —To uydz”
by Definition 3.8. Therefore, we find that
(f) Ny = X1 (wav1)(pzve)-(prvr) 9 QR ® Q dzf M @ - - - @ datNs
X U— (51)‘1)(&2)‘2) (Ns)\s)7(MV) axﬂllfl axﬂr'l/r'
with
(p1v1)(pava)-(prvr)
T(MIVI)(M2V2)"'(NT'V7") _ 87—(“1)\1)(“2)‘2)"'(“8)‘8)
(R1A1) (k2 A2) - (RsAs),(u) Orhv
(r1v1)(pa—1Va—1)(06) (Ha+1Va+1) - (prvr) HaVa
+ ZTHV\I (k2X2) (ks Xs) F(0<)(W)
_ ZT(MW)(MW)W(MW) res
(K1) (Kp—1A0—1) (1) (Fb4150+1) (s As) ™ (op5p) (W)
b=1

This completes the proof.

Theorem 3,8 Let M be a smoothly combinatorial manifold with a connection D.
Then for VX,Y € %(M),
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T(X,Y)=DyxY — DyX — [X,Y]
is a tensor of type (1,2) on M.

Proof By definition, it is clear that 7' : 2 (M) x 2 (M) — 2 (M) is anti-
symmetrical and bilinear. We only need to check it is also linear on each element in
C°(M) for variables X or Y. In fact, for Vf € C*(M),

T(fX,Y) = DixY —Dy(fX)—[fX,Y]
= fDxY — (Y(f)X + fDyX)
— (fIX.Y]=Y(f)X) = fT(X,Y).

and

T(X, fY) = -T(fY,X) = —fI(Y,X) = fT(X,Y).

Notice that

Jg 0 ~ 0 ~ 0
T(&BW’ 01'“) B Daw% dxos mes Pghv
0
= (Fes — Dloou) e
under a local chart (U,;[p,]) of a point p € M. If T(3%,5%) = 0, we call T

torsion-free. This enables us getting the next useful result.

Theorem 3.9 A connection D on tensors of a smoothly combinatorial manifold M

is torsion-free if and only sz =

(wv)(os) = = (o) (w)”

Now we turn our attention to the case of s = r = 1. Similarly, a combinatorially

Riemannian geometry is defined in the next definition.

Definition 3.9 Let M be a smoothly combinatorial manifold and g € A2(]\7) =

U T3 (p, ]\7) If g is symmetrical and positive, then M is called a combinatorially
peM

Riemannian manifold, denoted by (]\7, g). In this case, if there is a connection D

on (]\7, g) with equality following hold

34



Z(9(X,Y)) = g(Dz,Y) +9g(X,DzY) (34)
then M is called a combinatorially Riemannian geometry, denoted by (M,g, 13)

We get a result for connections on smoothly combinatorial manifolds similar to

that of Riemannian geometry.

Theorem 3.10 Let (M, g) be a combinatorially Riemannian manifold. Then there
exists a unique connection D on (M,q) such that (M,g,D) is a combinatorially

Riemannian geometry.

Proof By definition, we know that

Dzg(X,Y) = Z(g(X,Y)) — g(DzX.Y) — g(X,DzY)

for a connection D on tensors of M and VZ € 2° (]\7 ). Thereby, the equality (3.4)
is equivalent to that of Dzg = 0 for VZ € 2 (M), namely D is torsion-free.

Not loss of generality, assume g = g(u)(oc)dr"*dz? in a local chart (Up; [¢p]) of

a point p, where g(u)(os) = g(%, %). Then we find that

— ag v)(o
By = (e

¢ ¢ v o KA
= 9oL nyoe) — Iaenl Do) de” ® dz” @ dz"™.
Therefore, we get that

OY(w)(05)

_ ¢ ¢
IS S 9@ iy T Inen Loy  (3:5)

if Dyg =0 for VZ € 2 (M). The formula (3.5) enables us to get that

o1 (n,\)@n)(ag(w)((n) no 5g<uu><o<>)
(m)(es) = 99 dxs Oz dxn 7

where gt"*V( is an element in the matrix inverse of [g(u)oo]-

Now if there exists another torsion-free connection D* on (]T/f ,g) with

~ 0
D* 5 — I—W*Ii)\

P (@) (1) §prX’

then we must get that
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e 1L (m\)(gn)(ag(w)(én) gcmos) 59<uu><o<>)
(w)(es) = 99 dzs Oz dan

Accordingly, D = D, Whence, there are at most one torsion-free connection D on

a combinatorially Riemannian manifold (]\7 . g).
For the existence of torsion-free connection D on (M, g), let T e = Loy )
and define a connection D on (M ,g) such that

~ 0
_ TRA
Doy = Vo) e

then D is torsion-free by Theorem 3.9. This completes the proof. f

Corollary 3.3([2]) For a Riemannian manifold (M, g), there exists only one torsion-

free connection D, i.e.,

Dzg(X.Y) = Z(9(X,Y)) = g(DzX,Y) — g(X,DzY) =0
forvX,Y, Z € Z'(M).

3.4 Minkowski Norms

These Minkowski norms are the fundamental in Finsler geometry. Certainly, they

can be also generalized on smoothly combinatorial manifolds.

Definition 3.10 A Minkowski norm on a vector space V' is a function F : V — R
such that

(1) F is smooth on V\{0} and F(v) >0 for Vv e V;

(2) F is 1-homogenous, i.e., F(Av) = AF(v) for VA > 0;

(3) for ally € V\{0}, the symmetric bilinear form g, : V x V — R with

gyluv) = 3 TEW)

v Oyt oyd
is positive definite for u,v € V.
Denoted by T’ M = U Tpﬂ . Similar to Finsler geometry, we introduce combi-

peM
natorially Finsler geometries on a Minkowski norm defined on T'M.
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Definition 3.11 A combinatorially Finsler geometry is a smoothly combinatorial
manifold M endowed with a Minkowski norm F on TM, denoted by (M; F).

Then we get the following result.

Theorem 3.11 There are combinatorially Finsler geometries.

Proof Let M (n1,ng,-,ny) be a smoothly combinatorial manifold. We con-
struct Minkowski norms on T'M (n1,mna, -+, Ny). Let R™MT2F+7m he an eucildean
space. Then there exists a Minkowski norm F(T) = |Z| in R™ "2t +m at Jeast, in

here |Z| denotes the euclidean norm on R™*"2+m = According to Theorem 3.2,

Tp]f\\j(nl,n% -+, Ny,) is homeomorphic to RP) @SSP 4 Whence there
are Minkowski norms on TpM(nl, No, -+, Ny,) for p € U, where (Uy; [¢,]) is a local
chart.

Notice that the number of manifolds are finite in a smoothly combinatorial
manifold M (nq,ns, - - -, n,) and each manifold has a finite cover {(Uy; @a)|o € I,

where [ is a finite index set. We know that there is a finite cover

U {(Unta; para)la € Iy}

MeV(GIM(n1,n2,nm)])
By the decomposition theorem for unit, we know that there are smooth functions

hara, @ € Iy such that

Z ZhMazlwithoghMagl.

MEeV(G[M(n1,na,nm)]) ¥€IM

Now we choose a Minkowski norm FM® on T »M,, for Vp € Uprqo. Define
~ hMO‘ﬁMO‘, if pE UMQ,
FMa =
07 if p ¢ UMa
for Vp € M. Now let

F- Y Yhw

MEV (G[M(n1,n2,+nm)]) @€

Then F is a Minkowski norm on TM (ny,mna, -+, ny) since it can be checked imme-
diately that all conditions (1) — (3) in Definition 3.10 hold. f
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For the relation of combinatorially Finsler geometries with these Smarandache

geometries, we obtain the next consequence.

Theorem 3.12 A combinatorially Finsler geometry (M (ni,ng, -, ny,); F) is a

Smarandache geometry if m > 2.

Proof Notice that if m > 2, then M(nl,ng, -+, My,) is combined by at least
two manifolds M™ and M™ with ny # ny. By definition, we know that

M™ \ M™ 2 () and M™ \ M™ # (.

Now the axiom there is an integer n such that there exists a neighborhood homeo-
morphic to a open ball B™ for any point in this space is Smarandachely denied, since
for points in M™ \ M™2  each has a neighborhood homeomorphic to B™, but each
point in M™ \ M™ has a neighborhood homeomorphic to B™.

Theorems 3.11 and 3.12 imply inclusions in Smarandache geometries for clas-

sical geometries in the following.

Corollary 3.5 There are inclusions among Smarandache geometries, Finsler ge-

ometry, Riemannian geometry and Weyl geometry:

{Smarandache geometries} D {combinatorially Finsler geometries}
D {Finsler geometry} and {combinatorially Riemannian geometries}

D {Riemannian geometry} D {Weyl geometry}.

Proof Let m = 1. Then a combinatorially Finsler geometry (M (ny, ng, -+, ny); F )
is nothing but just a Finsler geometry. Applying Theorems 3.11 and 3.12 to this

special case, we get these inclusions as expected.

Corollary 3.6 There are inclusions among Smarandache geometries, combinatori-

ally Riemannian geometries and Kdahler geometry:

{Smarandache geometries} DO {combinatorially Riemannian geometries}
D {Riemannian geometry}

D {Kahler geometry}.
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Proof Let m = 1 in a combinatorial manifold M (ny,ng,- -, ny,) and applies

Theorems 3.10 and 3.12, we get inclusions

{Smarandache geometries} O {combinatorially Riemannian geometries}

O {Riemannian geometry}.

For the Kahler geometry, notice that any complex manifold M is equal to a
smoothly real manifold M?" with a natural base {%, a%i} for T, M at each point
p € M. Whence, we get

{Riemannian geometry} D {Kéhler geometry}. f

84. Further Discussions

4.1 Embedding problems Whitney had shown that any smooth manifold M? can
be embedded as a closed submanifold of R**1 in 1936 ([1]). The same embedding
problem for finitely combinatorial manifold in an euclidean space is also interesting.
Since M is finite, by applying Whitney theorem, we know that there is an integer
n(]\7 ),n(M ) < 400 such that M can be embedded as a closed submanifold in
R*™). Then what is the minimum dimension of euclidean spaces embeddable a
gwen finitely combinatorial manifold M? Wether can we determine it for some
combinatorial manifolds with a given graph structure, such as those of complete

graphs K™, circuits P" or cubic graphs Q"7

Conjecture 4.1 The minimum dimension of euclidean spaces embeddable a finitely

combinatorial manifold M is
2min{s(p) — s(p)s(p) +niy, +niy + -+, b+ 1
peEM
4.2 D-dimensional holes For these closed 2-manifolds S, it is well-known that

2 —2p(9), if S is orientable,
X(5) :{ )

2 —q(S). if Sis non — orientable.

with p(S) or ¢(S) the orientable genus or non-orientable genus of S, namely 2-

dimensional holes adjacent to S. For general case of n-manifolds M, we know that
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[e.e]

Z D)Fdim Hy (M),

k=0

where dimHy (M) is the rank of these k-dimensional homolopy groups Hy(M) in
M, namely the number of k-dimensional holes adjacent to the manifold M. By
the definition of combinatorial manifolds, some k-dimensional holes adjacent to a
combinatorial manifold are increased. Then what is the relation between the Fuler-
Poincare characteristic of a combinatorial manifold M and the i-dimensional holes
adjacent to M? Wether can we find a formula likewise the Euler-Poincare formula?
Calculation shows that even for the case of n = 2, the situation is complex. For
example, choose n different orientable 2-manifolds Sy, .55, - -, .S, and let them inter-
sects one after another at n different points in R®. We get a combinatorial manifold
M. Calculation shows that

X(M) = (x(S1) + x(S2) + -+ x(Sn)) — n

by Theorem 2.9. But it only increases one 2-holes. What is the relation of 2-

dimensional holes adjacent to M?

4.3 Local properties Although a finitely combinatorial manifold M is not ho-
mogenous in general, namely the dimension of local charts of two points in M
maybe different, we have still constructed global operators such as those of exterior
differentiation d and connection D on T v M. A operator O is said to be local on a
subset W C TSTM if for any local chart (Up, [¢,]) of a point p € W,

Oy, (W) = D(W)y,.

Of course, nearly all existent operators with local properties on 77 M in Finsler
or Riemannian geometries can be reconstructed in these combinatorially Finsler
or Riemannian geometries and find the local forms similar to those in Finsler or

Riemannian geometries.

4.4 Global properties To find global properties on manifolds is a central task
in classical differential geometry. The same is true for combinatorial manifolds.
In classical geometry on manifolds, some global results, such as those of de Rham

theorem and Atiyah-Singer index theorem,..., etc. are well-known. Remember that
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the p™ de Rham cohomology group on a manifold M and the inder IndD of a
Fredholm operator D : H*(M, E) — L?(M, F) are defined to be a quotient space

_ Ker(d: A?(M) — APTY(M))
~ Im(d: APY (M) — AP(M))

HP(M)
and an integer

L*(M, F ))
ImD
respectively. The de Rham theorem and the Atiyah-Singer index theorem respec-

IndD = dimKer (D) — dim(

tively conclude that

for any manifold M, a mapping ¢ : AP(M) — Hom(IL,(M),R) induces a
natural isomorphism ¢* : H?(M) — H"(M;R) of cohomology groups, where I1,(M)
is the free Abelian group generated by the set of all p-simplexes in M

and

IndD = Indy (o (D)),

where o(D)) : T*"M — Hom(E,F) and Indy(o(D)) is the topological index of
o(D). Now the questions for these finitely combinatorial manifolds are given in the

following.

(1) Is the de Rham theorem and Atiyah-Singer index theorem still true for
finitely combinatorial manifolds? If not, what is its modified forms?
(2) Check other global results for manifolds whether true or get their new mod-

ified forms for finitely combinatorial manifolds.
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