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81. Introduction

Various geometries are encountered in update mathematics, such as those of Fuclid
geometry, Lobachevshy-Bolyai geometry, Riemann geometry, Weyl geometry, Kahler
geometry and Finsler geometry, ..., etc.. As a branch of geometry, each of them has
been a kind of spacetimes in physics once and contributes successively to increase
human’s cognitive ability on the natural world. Motivated by a combinatorial notion

for sciences: combining different fields into a unifying field, Smarandache introduced



neutrosophy and neutrosophic logic in references [14] —[15] and Smarandache geome-
tries in [16].

Definition 1.1([8][16]) An aziom is said to be Smarandachely denied if the aziom
behaves in at least two different ways within the same space, i.e., validated and
invalided, or only invalided but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely
denied axiom(1969).

Definition 1.2 For an integer n,n > 2, a Smarandache n-manifold is a n-manifold

that support a Smarandache geometry.

Smarandache geometries were applied to construct many world from conser-
vation laws as a mathematical tool(]2]). For Smarandache n-manifolds, Iseri con-
structed Smarandache manifolds for n = 2 by equilateral triangular disks on a plane
in [6] and [7] (see also [11] in details). For generalizing Iseri’s Smarandache man-
ifolds, map geometries were introduced in [9] — [10] and [12], particularly in [12]
convinced us that these map geometries are really Smarandache 2-manifolds. Ku-
ciuk and Antholy gave a popular and easily understanding example on an Euclid
plane in [8]. Notice that in [13], these multi-metric space were defined, which can be
also seen as Smarandache geometries. However, few observations for cases of n > 3
and their relations with existent manifolds in differential geometry are found on the
journals. The main purpose of this paper is to give general ways for constructing
dimensional n pseudo-manifolds for any integer n > 2. Differential structure, con-
nection and principal fiber bundles are also introduced on these manifolds. Following
these constructions, nearly all existent geometries, such as those of Fuclid geometry,
Lobachevshy-Bolyai geometry, Riemann geometry, Weyl geometry, Kahler geometry
and Finsler geometry, ...,etc., are their sub-geometries.

Terminology and notations are standard used in this paper. Other terminology
and notations not defined here can be found in these references [1], [3] — [5].

For any integer n,n > 1, an n-manifold is a Hausdorff space M", i.e., a space
that satisfies the T3, separation axiom, such that for Vp € M™, there is an open
neighborhood U,,p € U, C M" and a homeomorphism ¢, : U, — R" or C",
respectively.

Considering the differentiability of the homeomorphism ¢ : U — R™ enables us



to get the conception of differential manifolds, introduced in the following.

An differential n-manifold (M", A) is an n-manifold M", M™ = |J U;, endowed
with a C" differential structure A = {(U,, ¢o)|a € I} on M™ for anleiilteger r with
following conditions hold.

(1) {Us;a € I} is an open covering of M™;

(2) ForVa,p € I, atlases (U,, ¢o) and (Ug, @) are equivalent, i.e., U, N Uz = ()
or U,NUs # 0 but the overlap maps

vavs  9sUanu,) — 8(Us) and ws0" : 05(Usnu,) = PalUa)

are C;

(3) A is maximal, i.e., if (U, ) is an atlas of M"™ equivalent with one atlas in
A, then (U, ) € A.

An n-manifold is smooth if it is endowed with a C'*° differential structure. It
is well-known that a complex manifold M?" is equal to a smooth real manifold M?2"

with a natural base

f o 0
oxt’ Oyt
for T, M, where T}, M* denotes the tangent vector space of M at each point p € M.

|1 <i<n}

§2. Pseudo-Manifolds

These Smarandache manifolds are non-homogenous spaces, i.e., there are singular
or inflection points in these spaces and hence can be used to characterize warped
spaces in physics. A generalization of ideas in map geometries can be applied for

constructing dimensional n pseudo-manifolds.

Construction 2.1 Let M™ be an n-manifold with an atlas A = {(U,, ,)|p € M™}.
For Np € M™ with a local coordinates (x1,xs,- -+, xy,), define a spatially directional

mapping w : p — R" action on ¢, by

w:p = ¢ (p) = wl(pp(p)) = (wi,wa, -+ wn),

i.e., if a line L passes through ¢(p) with direction angles 01,0z, -, 0, with azes

e, e, -, e, in R", then its direction becomes
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after passing through p,(p), where for any integer 1 < i < n, w; = J;(mod4r),

m, if 0<w; <27,
g; =
0, if 2m <w; < A4m.

A manifold M™ endowed with such a spatially directional mapping w : M™ — R™ is

called an n-dimensional pseudo-manifold, denoted by (M"™, A¥).

Theorem 2.1 For a point p € M™ with local chart (Uy,, p,), @ = v, if and only if
w(p) = (2mky, 2ks, - - -, 27ky,) with k; = 1(mod2) for 1 <i <n.

Proof By definition, for any point p € M", if ©2(p) = @,(p), then w(py(p)) =

©p(p). According to Construction 2.1, this can only happens while w(p) = (27wky, 27ks, - - -

27k,,) with k; = 1(mod2) for 1 <i<mn. 1§

Definition 2.1 A spatially directional mappingw : M™ — R" is euclidean if for any
point p € M™ with a local coordinates (x1, X9, -+, x,), w(p) = (2wky, 27ks, - - -, 27ky,)

with k; = 1(mod2) for 1 < i < n, otherwise, non-euclidean.

Definition 2.2 Let w : M™ — R"™ be a spatially directional mapping and p €
(M™, A¥), w(p)(modir) = (w1,ws, -, wy). Call a point p elliptic, euclidean or

hyperbolic in direction e;, 1 < i <n if o <w; < 2w, w; =27 or 27 < w; < 4.

Then we get a consequence by Theorem 2.1.

Corollary 2.1 Let (M", A¥) be a pseudo-manifold. Then i = @, if and only if

every point in M™ is euclidean.

Theorem 2.2 Let (M", A%) be an n-dimensional pseudo-manifold and p € M".
If there are euclidean and non-euclidean points simultaneously or two elliptic or
hyperbolic points in a same direction in (U,, ¢,), then (M™, A*) is a Smarandache

n-manifold.

Proof On the first, we introduce a conception for locally parallel lines in an

n-manifold. Two lines Cy, Cy are said locally parallel in a neighborhood (U, ¢,) of

4
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a point p € M™ if p,(C1) and ¢,(Cs) are parallel straight lines in R"™.

In (M™, A¥), the axiom that there are lines pass through a point locally parallel
a given line is Smarandachely denied since it behaves in at least two different ways,
i.e., one parallel, none parallel, or one parallel, infinite parallels, or none parallel,
infinite parallels.

If there are euclidean and non-euclidean points in (U, ¢,) simultaneously, not
loss of generality, we assume that u is euclidean but v non-euclidean, w(v)(moddnr) =
(w1,wa, -+, wy) and wy # 2m. Now let L be a straight line parallel the axis e; in R".
There is only one line C,, locally parallel to ;' (L) passing through the point u since
there is only one line ¢,(C,) parallel to L in R™ by these axioms for Euclid spaces.
However, if 0 < w; < 27, then there are infinite many lines passing through u locally
parallel to ¢! (L) in (U,, ¢,) since there are infinite many straight lines parallel L
in R", such as those shown in Fig.2.1(a) in where each straight line passing through

the point @ = p,(u) from the shade field is parallel to L.

S A LQ‘K
L 1-:.,1:- L = —
(b)

(a)

Fig.2.1

But if 27 < wy < 47, then there are no lines locally parallel to ¢, '(L) in (U, ¢p)
since there are no straight lines passing through the point 7 = ¢,(v) parallel to L
in R™, such as those shown in Fig.2.1(b).




If there are two elliptic points u, v along a direction 5), consider the plane P
determined by w(u),w(v) with O in R™. Let L be a straight line intersecting with
the line wv in P. Then there are infinite lines passing through u locally parallel to
¢p(L) but none line passing through v locally parallel to 7' (L) in (U, ¢p) since
there are infinite many lines or none lines passing through @ = w(u) or 7 = w(v)
parallel to L in R", such as those shown in Fig.2.2.

Similarly, we can also get the conclusion for the case of hyperbolic points.
Since there exists a Smarandachely denied axiom in (M", A%), it is a Smarandache
manifold. This completes the proof. f

For an Euclid space R", the homeomorphism ¢, is trivial for Vp € R". In this
case, we abbreviate (R", A%) to (R™,w).

Corollary 2.2 For any integer n > 2, if there are euclidean and non-euclidean
points simultaneously or two elliptic or hyperbolic points in a same direction in

(R™,w), then (R",w) is an n-dimensional Smarandache geometry.

Particularly, Corollary 2.2 partially answers an open problem in [12] for estab-

lishing Smarandache geometries in R?.

Corollary 2.3 If there are points p,q € R3 such that w(p)(modin) # (27, 27, 27)
but w(q)(moddr) = (2mky, 2mks, 2ks), where k; = 1(mod2),1 < i < 3 or p,q are
simultaneously elliptic or hyperbolic in a same direction of R?, then (R3 w) is a

Smarandache space geometry.

Definition 2.3 For any integer r > 1, a C" differential Smarandache n-manifold
(M™, A) is a Smarandache n-manifold (M™, A¥) endowed with a differential struc-
ture A and a C" spatially directional mapping w. A C* Smarandache n-manifold

(M™, A®) is also said to be a smooth Smarandache n-manifold.

According to Theorem 2.2, we get the next result by definitions.

Theorem 2.3 Let (M™, A) be a manifold and w : M™ — R"™ a spatially directional
mapping action on A. Then (M", A¥) is a C" differential Smarandache n-manifold
for an integer r > 1 if the following conditions hold:

(1) there is a C" differential structure A = {(Uy, va)|ac € I} on M™;

(2) wisC";



(3) there are euclidean and non-euclidean points simultaneously or two elliptic

or hyperbolic points in a same direction in (U, ¢,) for a point p € M™.

Proof The condition (1) implies that (M™, A) is a C" differential n-manifold
and conditions (2), (3) ensure (M™, A¥) is a differential Smarandache manifold by
definitions and Theorem 2.2. f

For a smooth differential Smarandache n-manifold (M", A¥), a function f :

M™ — R is said smooth if for Vp € M"™ with an chart (U, ),

foley)™ () (Up) — R

is smooth. Denote by ), all these C'"° functions at a point p € M".

Definition 2.4 Let (M™, A¥) be a smooth differential Smarandache n-manifold and
p € M". A tangent vector v at p is a mapping v : F, — R with these following

conditions hold.

(1) Vg,h € 3, VA € R, v(h+ Ah) =v(g) + Mv(h);

(2) Vg,h € Sp,v(gh) = v(g)h(p) + g(p)v(h).

Denote all tangent vectors at a point p € (M™, A¥) by T,M" and define addi-
tion “+” and scalar multiplication “-” for Vu,v € T,M", A € R and f € $, by

(u+v)(f) = u(f) +o(f), Qu)(f) =A-u(f).

Then it can be shown immediately that 7, M™ is a vector space under these two
operations “+” and “-” .

Let p € (M™, A¥) and v : (—¢,e) — R™ be a smooth curve in R™ with v(0) = p.
In (M™, A¥), there are four possible cases for tangent lines on v at the point p, such

as those shown in Fig.2.3, in where these bold lines represent tangent lines.

1]
| : T i
{a) (b} {c) {d}

Fig.2.3
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By these positions of tangent lines at a point p on v, we conclude that there
is one tangent line at a point p on a smooth curve if and only if p is euclidean in
(M™, A). This result enables us to get the dimensional number of a tangent vector

space T,M™ at a point p € (M™, A¥).

Theorem 2.4 For any point p € (M", A¥) with a local chart (Uy,, ¢,), ¢p(p) =

(2329, -+, 20), if there are just s euclidean directions along e;,,e;,, -, €;. for a

rn

point , then the dimension of T,M™ is

dim7T,M" = 2n —s

with a basis

0 , o, o0F . .
{%\p\1§J§5}U{@|p=@\p\1§l§nandl7ﬁ%1§9§8}-

Proof We only need to prove that

0 , o~ of : :
ol 155t Ul gl | 1S I Snand 1461 << s} (21)
is a basis of T,M™". For Vf € S, since f is smooth, we know that
n 851‘/:‘
f@) = flp)+ > (@i —ad)5=(p)

=1
n aezf 8Ejf
2N (g, — 20 .

for Vo = (z1, 29, -+, 2,) € ¢,(U,) by the Taylor formula in R™, where each term in
R j....k contains (z; — x7)(z; — 29) - - (z, — 20), ¢ € {+, =} for 1 <1 < n but [ # i,
for 1 < j < s and ¢ should be deleted for [ =1i;,1 < j <s.

Now let v € T,M™. By Definition 2.4(1), we get that

v(f(z)) = v(f(p)+ v(il(xl - x?)agx{? (p))
+ 'U(i_ (l'z - l’?)(l'] - 1'9)886;{ aae;jf) + U(Ri,j,~~~7k)-



Application of the condition (2) in Definition 2.4 shows that

n o¢
o) =0, S o)) =0,
(3 ety =) G ) =0
and
U(Rm’,. k) =0
Whence, we get that
2L () = B (e
o) = vl o) = D e () (22

The formula (2.2) shows that any tangent vector v in 7, M"™ can be spanned by
elements in (2.1).

All elements in (2.1) are linearly independent. Otherwise, if there are numbers

at,a%,---,a,af,ay,a3,a5,--+,a_., a _, such that

?)'n—s) 'n—s

€q

. a fia —
;aijﬁij_'_ Z a; al’i‘p_o’

141,02, ,15,1<i<n

where ¢; € {4, —}, then we get that

9 L0 B
a,-j = (;a”@ + Z a; axz)(l’lj) =0

i1 iz, s, 1<i<n

for 1 < j <sand

€5

€ > a € a ) —
alt = (]z::l a;, . + > ag a:Ci)(:cl) =0

701,02, 0s,1<i<n

for i #iy,i9,+,1s,1 < i < mn. Therefore, (2.1) is a basis of the tangent vector space
T,M" at the point p € (M", A¥). 1§
Notice that dim7,M"™ = n in Theorem 2.4 if and only if all these directions are

euclidean along e, ey, - --,e,. We get a consequence by Theorem 2.4.

Corollary 2.4([4]-[5]) Let (M™, A) be a smooth manifold and p € M™. Then



dimT,M" =n
with a basis

0

— 1< < nj.
(ol 1< <0}

Definition 2.5 For Vp € (M", A”), the dual space T;M" is called a co-tangent

vector space at p.

Definition 2.6 For f € S, d € TyM" and v € T,M", the action of d on f, called
a differential operator d : 3, — R, is defined by

Then we immediately get the following result.

Theorem 2.5 For any point p € (M™, A¥) with a local chart (Uy,, @), ¢p(p) =

(2329, -, 20), if there are just s euclidean directions along e;,,e;,, -, €;. for a

rn

point , then the dimension of Ty M™" is

dimT;M" = 2n—s

with a basis

{da], | 1<j<s}J{dab,da'|, | 1<i<nandl+#i;,1<j<s},
where

st

o

i d i €
dz'|p(5=1p) = 53’ and d”'x ‘p(@‘p) F

ozl
fore e {+,-},1<i<n.

83. Pseudo-Manifold Geometries

Here we introduce Minkowski norms on these pseudo-manifolds (M", A).
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Definition 3.1 A Minkowski norm on a vector space V' is a function F: V — R
such that
(1) F is smooth on V\{0} and F(v) >0 forYv e V;
(2) F is 1-homogenous, i.e., F(Av) = AF(v) for VA > 0;
(3) for ally € V\{0}, the symmetric bilinear form g, :V x V — R with
2
TR e

Z‘?j

is positive definite for u,v € V.

Denote by TM™ = u TI,M".
pG(M”,A‘*’)

Definition 3.2 A pseudo-manifold geometry is a pseudo-manifold (M"™, A“) en-
dowed with a Minkowski norm F on T M™.

Then we get the following result.

Theorem 3.1 There are pseudo-manifold geometries.

Proof Consider an eucildean 2n-dimensional space R?". Then there exists a
Minkowski norm F(Z) = |7| at least. According to Theorem 2.4, T,M™ is R*+2(n=9)
if w(p) has s euclidean directions along ey, ey, - - -, e,. Whence there are Minkowski
norms on each chart of a point in (M", A¥).

Since (M™, A) has finite cover {(U,, pa)|o € I}, where [ is a finite index set,
by the decomposition theorem for unit, we know that there are smooth functions
he,« € I such that

> ho=1with 0 < h, <1

ael

Choose a Minkowski norm F* on each chart (U,, ¢,). Define

7o h*F*, if peU,,
“ 0, if pgU,

for Vp € (M™, ¢¥). Now let

F=YF,.

ael
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Then F' is a Minkowski norm on 7M™ since it satisfies all of these conditions (1)—(3)
in Definition 3.1. 1§
Although the dimension of each tangent vector space maybe different, we can

also introduce principal fiber bundles and connections on pseudo-manifolds.

Definition 3.3 A principal fiber bundle (PFB) consists of a pseudo-manifold (P, AY),
a projection 7 : (P, A?) — (M, AZ“)), a base pseudo-manifold (M, A7“)) and a Lie
group G, denoted by (P, M,w™, G) such that (1), (2) and (3) following hold.

(1) There is a right freely action of G on (P, AY), i.e., for Vg € G, there is a
diffeomorphism R, : (P, AY) — (P, AY) with R,(p¥) = p“g for Vp € (P, AY) such
that p“(g1g2) = (p*91)g2 for ¥p € (P, A7), V1,92 € G and p“e = p* for some
p € (P, AY), e € G if and only if e is the identity element of G.

(2) The map 7 : (P, AY) — (M, ASW) is onto with 7= (7(p)) = {pglg € G},
w1 = wom, and reqular on spatial directions of p, i.e., if the spatial directions of p
are (W1, wa, *++,wy), then w; and w(w;) are both elliptic, or euclidean, or hyperbolic
and |71 (7 (w;))| is a constant number independent of p for any integer i,1 <i < n.

(3) ForVa € (M, AZ“)) there is an open set U with x € U and a diffeomor-
phism TTw) : (7)~H(U™@) — U™ x G of the form T,(p) = (7(p®), s4(p”)), where
sy T HU™@) — G has the property s,(p*g) = s.(p*)g for Vg € G,p € 7~ (U).

We know the following result for principal fiber bundles of pseudo-manifolds.

Theorem 3.2 Let (P, M,w™, G) be a PFB. Then

(P,M,w™,G)=(P,M,n,G)
if and only if all points in pseudo-manifolds (P, AY) are euclidean.
Proof For Vp € (P, AY), let (U,, ¢,) be a chart at p. Notice that w™ = 7 if and

only if ¢ = ¢, for Vp € (P, AY). According to Theorem 2.1, by definition this is

equivalent to that all points in (P,.AY) are euclidean.

Definition 3.4 Let (P, M,w™, G) be a PFB with dimG = r. A subspace family H =
{H,|p € (P, AY),dimH, = dimTy )M} of TP is called a connection if conditions
(1) and (2) following hold.

(1) ForVp € (P, AY), there is a decomposition

12



1,0~ 1@V,
and the restriction 7.\, : Hy, — TrpM is a linear isomorphism.

(2) H is invariant under the right action of G, i.e., for p € (P, AY), Vg € G,

(Rg)*p(Hp) = Hpg-

Similar to Theorem 3.2, the conception of connection introduced in Definition

3.4 is more general than the popular connection on principal fiber bundles.

Theorem 3.3(dimensional formula) Let (P, M,w™, G) be a PF B with a connection
H. ForVp e (P, AY), if the number of euclidean directions of p is Ap(p), then

(dimP — dimM)(2dimP — Ap(p))

dimV), = :
T dimP
Proof Assume these euclidean directions of the point p being e, ez, - -+, ey, ().
By definition 7 is regular, we know that 7(e;), m(es), - -, m(ex,(p)) are also euclidean
in (M, AT“)). Now since
7l (n(er) = 7 (w(ex)) =+ = 7 (W(enp()) = 1 = constat,

we get that Ap(p) = pAar, where Ay denotes the correspondent euclidean directions
in (M, AT“)). Similarly, consider all directions of the point p, we also get that
dimP = pudimM. Thereafter

dim M
- ). B)

Now by Definition 3.4, T,P = H, @V, i.e.,

Am

dim7,P = dimH, + dimV},. (3.2)

Since m.|g, : Hy — TrpM is a linear isomorphism, we know that dimH, =

dimT% ) M. According to Theorem 2.4, we have formulae

dimT, P = 2dimP — Ap(p)

13



and

dim M

dimT )M = 2dimM — Ay = 2dimM — TP

Ap(p).

Now replacing all these formulae into (3.2), we get that

dimM
dimP

2dimP — Ap(p) = 2dimM — Ap(p) 4+ dimV,.

That is,

(dimP — dimM)(2dimP — Ap(p)) u
dimP ’
We immediately get the following consequence by Theorem 3.3.

dimV, =

Corollary 3.1 Let (P, M,w™, G) be a PFB with a connection H. Then for Vp €
(P, A7),

dimV, = dimP — dimM
if and only if the point p is euclidean.

Now we consider conclusions included in Smarandache geometries, particularly

in pseudo-manifold geometries.

Theorem 3.4 A pseudo-manifold geometry (M"™, @) with a Minkowski norm on
TM™ is a Finsler geometry if and only if all points of (M™, ¢*) are euclidean.

Proof According to Theorem 2.1, ¢ = ¢, for Vp € (M", ¢) if and only if p
is eucildean. Whence, by definition (M™, ¢*) is a Finsler geometry if and only if all
points of (M™, ¢*¥) are euclidean.

Corollary 3.1 There are inclusions among Smarandache geometries, Finsler ge-

ometry, Riemann geometry and Weyl geometry:

{Smarandache geometries} D {pseudo — manifold geometries}

D {Finsler geometry} D {Riemann geometry} D {Weyl geometry}.

14



Proof The first and second inclusions are implied in Theorems 2.1 and 3.3.
Other inclusions are known in a textbook, such as [4] — [5]. 1§

Now we consider complex manifolds. Let 2! = 2*++/—1y". In fact, any complex

9 0
Oxt)? ayi }

for T, M at each point p € M. Define a Hermite manifold M to be a manifold

manifold M is equal to a smooth real manifold M?" with a natural base {

M? endowed with a Hermite inner product h(p) on the tangent space (7, M, J) for
Vp € M}, where J is a mapping defined by

0 0 0 0
(axz |p) ayz |P7 (ayz |p) 01" |p
at each point p € M for any integer 7,1 < i < n. Now let

h(p) = g(p) + V—1k(p), pe M.

Then a Kdhler manifold is defined to be a Hermite manifold (M2, h) with a closed

k satisfying

K(X,Y) = g(X,JY), VX,Y € T,M" ¥p € M.

Similar to Theorem 3.3 for real manifolds, we know the next result.

Theorem 3.5 A pseudo-manifold geometry (M", ¢*) with a Minkowski norm on
TM" is a Kdhler geometry if and only if F' is a Hermite inner product on M with
all points of (M™, %) being euclidean.

Proof Notice that a complex manifold M" is equal to a real manifold M?".
Similar to the proof of Theorem 3.3, we get the claim. f
As a immediately consequence, we get the following inclusions in Smarandache

geometries.

Corollary 3.2 There are inclusions among Smarandache geometries, pseudo-manifold

geometry and Kdhler geometry:

{Smarandache geometries} O {pseudo—manifold geometries}

D {Kahler geometry}.
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84. Further Discussions

Undoubtedly, there are many and many open problems and research trends in
pseudo-manifold geometries. Further research these new trends and solving these
open problems will enrich one’s knowledge in sciences.

Firstly, we need to get these counterpart in pseudo-manifold geometries for

some important results in Finsler geometry or Riemann geometry.

4.1. Storkes Theorem Let (M", A) be a smoothly oriented manifold with the Ty
aziom hold. Then for Vo € Ay~ (M™),

/ dw = .

This is the well-known Storkes formula in Riemann geometry. If we replace (M", A)
by (M", A¥), what will happens? Answer this question needs to solve problems

following.

(1) Establish an integral theory on pseudo-manifolds.
(2) Find conditions such that the Storkes formula hold for pseudo-manifolds.

4.2. Gauss-Bonnet Theorem Let S be an orientable compact surface. Then

//SKda =2mx(9),

where K and x(S) are the Gauss curvature and Fuler characteristic of S This for-
mula is the well-known Gauss-Bonnet formula in differential geometry on surfaces.
Then what is its counterpart in pseudo-manifold geometries? This need us to solve

problems following.

(1) Find a suitable definition for curvatures in pseudo-manifold geometries.
(2) Find generalizations of the Gauss-Bonnect formula for pseudo-manifold

geometries, particularly, for pseudo-surfaces.
For a oriently compact Riemann manifold (M?, g), let
(—1) -
Z 611"',2151){2"”2 AR Qi2p71i2p7

- 2pppl . )
2% p: 21,22, 7,22p

where ©;; is the curvature form under the natural chart {e;} of M and
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1, if permutation 7; - - - ig, is even,
i1, . Lo oo
015, =14 —1, if permutation i; - - iy, is odd,

0, otherwise.

Chern proved that!*—D!

Q = x(M?).

M?2p
Certainly, these new kind of global formulae for pseudo-manifold geometries are
valuable to find.

4.3. Gauge Fields Physicists have established a gauge theory on principal fiber
bundles of Riemann manifolds, which can be used to unite gauge fields with gravi-
tation. Similar consideration for pseudo-manifold geometries will induce new gauge
theory, which enables us to asking problems following.

Establish a gauge theory on those of pseudo-manifold geometries with some
additional conditions.

(1) Find these conditions such that we can establish a gauge theory on a pseudo-
manifold geometry.

(2) Find the Yang-Mills equation in a gauge theory on a pseudo-manifold ge-
ometry.

(2) Unify these gauge fields and gravitation.
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