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Abstract 
 

In this paper we study the notion of Smarandache loops. 
We obtain some interesting results about them. The notion of 
Smarandache semigroups homomorphism is studied as well in 
this paper. Using the definition of homomorphism of 
Smarandache semigroups we give the classical theorem of 
Cayley for Smarandache semigroups. We also analyze the 
Smarandache loop homomorphism. We pose the problem of 
finding a Cayley theorem for Smarandache loops. Finally we 
show that all Smarandache loops Ln(m) for n > 3, n odd, 
varying n and appropriate  m have isomorphic subgroups.  
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Definition [1, Bruck]: 
 

A non-empty set L is said to form a loop if on L is defined a binary operation 
called product denoted by '•' such that  

 
1. For a, b ∈ L, we have a • b ∈ L 
2. There exists an element e ∈ L such that a • e = e • a = a for all a ∈ L ( e called 

identity element of L) 
3. For every ordered pair (a,b) ∈ L × L there exists a unique pair (x, y) ∈ L × L such 

that a • x = b and y • a = b.  
 

By a loop, we mean only a finite loop and the operation '•' need not always be 
associative for a loop. A loop is said to be a Moufang Loop if it satisfies any one of the 
following identity. 

 
1. (xy)(zx) = (x(yz))x 
2. ((xy)z)y = x(y(zy)) 
3. x(y(xz)) = ((xy)x)z 
 

for all x, y, z ∈ L.  
 



A loop L is said to be Bruck Loop if x(yx)z = x(y(xz)) and (xy)-1 = x-1y-1 for all x, 
y, z ∈ L. L is a Bol Loop if ((xy)z)y = x((yz)y) for all x, y, z ∈ L. L is a right 
alternative loop if (xy)y = x(yy) for all x, y ∈ L and left alternative if (xx)y = x(xy). L 
is said to be an alternative loop if it is both a right and a left alternative loop. A loop L 
is said to be power associative if every element generates a subgroup. L is said to be 
di-associative if every 2 elements of L generates a subgroup.  Let Ln( m ) =   (e, 1, 2, 3, 
... , n) be a set where n > 3, n is odd and m is a positive integer such that (m,n) = 1 and 
(m-1 ,n ) = 1 with m < n. Define on Ln(m) a binary operation '•' as follows . 
 

1. e • i = i • e = i for all i ∈ Ln(m) 
2. i • i = for all i ∈ Ln(m) 
3. i • j = t where t = (mj-(m-1) i) (mod n) for all i • j ∈ Ln(m) i ≠ j , i ≠ e and j ≠ e. 

Ln(m) is a loop.  
 

We call this a new class of loops. 
 

For more about loops and its properties please refer to [1] , [5] , [6] , [7] , [8] , [9] , 
[10], [11], [12] and  [13] .  

 
Definition 1: 

 
The Smarandache Loop is defined to be a loop L such that a proper subset A of L is a 
subgroup (with respect to the same induced operation). That is φ ≠ A ⊂ L.  

 
Example 1  
 

Let L be a loop given by the following table  
 
 

• e a1 a2 a3 a4 a5 a6 a7 
a2 e a1 a2 a3 a4 a5 a6 a7 
a5 a1 e a5 a2 a6 a3 a7 a4 
e a2 a5 e a6 a3 a7 a4 a1 

a6 a3 a2 a6 e a7 a4 a1 a5 

a3 a4 a6 a3 a7 e a1 a5 a2 
a7 a5 a3 a7 a4 a1 e a2 a6 
a4 a6 a7 a4 a1 a5 a2 e a3 

a1 a7 a4 a1 a5 a2 a6 a3 e 
 
 

L is a Smarandache loop. For the pair (e, a2) is a subgroup of L. 
 

Theorem 2  
 
Every power associative loop is a Smarandache loop.  
 
 



Proof  
 

By definition of a power associative loop every element in L generates a 
subgroup in L.  Hence the proof.  

  
Theorem 3 
 
Every di-associative loop is a Smarandache  loop. 
 
Proof    
 

Since in a di-associative loop L every two elements of L generate a subgroup in L. 
So every di - associative loop has subgroups, hence L is a Smarandache  loop. 

 
Theorem 4 
 
Every loop Ln(m)  for n >3, n an odd integer. (n,m)   =  (n, m-1)  =  1 with m < n is a 
Smarandache loop. 

  
Proof   
 

Since Ln(m) is power associative we have for every a in Ln(m) is such that a2 = e, 
{a,e} forms a subgroup for every a in Ln(m).  Hence the claim.  Thus it is interesting to 
note that for every odd integer n there exists a class of Smarandache loops of order n+ 
1.  For a given n > 3, n odd we can have more than one integer m, m < n such that 
(m,n) = ( m-1,  n) = 1. For instance when n = 5 we have only 3 Smarandache loops 
given by L5(2), L5(3) and L5(4). 

 
Definition 5 
 
The Smarandache Bol loop is defined to be a loop L such that a proper subset A of L is 
a Bol loop ( with respect to the same induced operation ). That is  φ ≠ A⊂ S. 

 
Note 1 - Similarly is defined Smarandache Bruck loop, Smarandache Moufang loop 
and Smarandache  right ( left ) alternative loop. 

  
Note 2- In definition 5 we insist that A should be a subloop of L and not a subgroup of 
L.  For every subgroup is a subloop but a subloop in general is not a subgroup. Further 
every subgroup will certainly be a Moufang loop, Bol loop, Bruck loop and right( left) 
alternative loop,  since in a group the operation is associative. Hence only we make the 
definition little rigid so that automatically we will not have all Smarandache loops to 
be Smarandache Bol loop, Smarandache Bruck loop, Smarandache  Moufang loop and 
Smarandache right  (left) alternative loop. 

 
Theorem 6  
 
Every Bol loop is a Smarandache Bol loop but every Smarandache Bol loop is not a 
Bol loop. 



 
Proof   

 
Clearly every Bol loop is a Smarandache Bol loop as every subloop of a Bol loop   

is a Bol loop.  But a Smarandache Bol loop L is one which has a proper subset  A 
which is a Bol loop.  Hence L need not in general be a Bol loop. 
 
Definition 7 
 
Let S and S′ be two Smarandache semigroups. A map φ  from S to S′ is said to be a 
Smarandache semigroup homomorphism  if  φ  restricted  to  a subgroup A ⊂ S and A′ 
⊂ S′ is a group homomorphism, that is φ  : A ⊂ S → A′ ⊂ S′ is a group homomorphism. 
The Smarandache semigroup homomorphism is an isomorphism if φ : A → A′  is one 
to one and onto.  
Similarly, one can define Smarandache semigroup automorphism on S.  
 
Theorem 8  
 
Let N be any set finite or infinite.  S(N) denote the set of all mappings of N to itself. 
S(N) is a semigroup under the composition of mappings.  S(N), for every N, is a 
Smarandache semigroup.  
 
Proof  
 
 S(N) is a semigroup under the composition of mappings.  Now let A(N) denote 
the set of all one to one mappings of N. Clearly φ   ≠ A(N) ⊂ S(N) and A(N) is a 
subgroup of S(N) under the operation of composition of mappings, that is A(N) is the 
permutation group of degree N. Hence S(N)  is a Smarandache semigroup for all N> 1.  
 
Example 2 
 

Let S = {set of all maps from the set (1, 2, 3, 4) to itself} and S′ = {set of all map 
from the set (1, 2, 3, 4, 5, 6) to itself}. Clearly S and S′ are Smarandache semigroups.  
For A = S4 is the permutation subgroup of S and A′ = S6 is also the permutation 
subgroup of S′. Define the map φ  : S → S′, φ(A) = B′ = {set of all permutations of (1, 
2, 3, 4) keeping the positions of 5 and 6 fixed} ⊆ A′. Clearly φ  is a Smarandache 
semigroup homomorphism.  

 
From the definition of Smarandache semigroup homomorphism one can give the 

modified form of the classical Cayley′s theorem for groups to Smarandache 
semigroups. 

 
Theorem 9 (Cayley's Theorem for Smarandache semigroups)  
 
Every Smarandache semigroup is isomorphic to a Smarandache semigroup of 
mappings of a set N to itself, for some appropriate set N.  

 



Proof 
 

Let S be a Smarandache semigroup.  That is there exists a set A, which is a proper 
subset of S, such that A is a group (under the operations of S ), that is φ  ≠ A ⊂ S.  Now 
let N be any set and S(N) denotes the set of all mappings from N to N. Clearly S(N) is 
a Smarandache semigroup. Now using the classical Cayley' s theorem for groups we 
can always have an isomorphism from A to a subgroup of S(N) for an appropriate N. 
Hence the theorem.  

 
Thus by defining the notion of Smarandache semigroups one is able to extend the 

classical theorem of Cayley. Now we are interested to finding the appropriate 
formulation of Cayley's theorem for loops.  

 
It is important to mention here that loops do not satisfy Cayley's theorem but for 

Smarandache loops the notion of Cayley's theorem unlike Smarandache semigroups is 
an open problem.   

 
Definition 10   
 
Let L and L′ be two Smarandache loops with A and A′ its subgroups respectively. A 
map φ from L to L′ is called Smarandache loop homomorphism if φ restricted to A is 
mapped to a subgroup A′ of L′, that is φ  : A → A′ is a group homomorphism. The 
concept of Smarandache loop homomorphism and automorphism are defined in a 
similar way.  

 
Problem 1  Prove or disprove that every Smarandache loop L is isomorphic with a  

Smarandache Loop L′ or equivalently  
 

Problem 2  Can a loop L′ be constructed having a proper appropriate subset A′ of  
L′ such that A′ is a desired subgroup φ  ≠ A′ ⊂ L′ ? 

 
Problem 3  Characterize all Smarandache loops which have isomorphic subgroups ? 

 
 

Example 3  
 
Let L5(3) be a Smarandache loop given by the following table  
 

 
• e 1 2 3 4 5 
e e 1 2 3 4 5 
1 1 e 4 2 5 3 
2 2 4 e 5 3 1 
3 3 2 5 e 1 4 
4 4 5 3 1 e 2 
5 5 3 1 4 2 e 

 



 
and L7(3) is another Smarandache loop given by the following table  

 
 

• e 1 2 3 4 5 6 7 
e e 1 2 3 4 5 6 7 
1 1 e 4 7 3 6 2 5 
2 2 6 e 5 1 4 7 3 
3 3 4 7 e 6 2 5 1 
4 4 2 5 1 e 7 3 6 
5 5 7 3 6 2 e 1 4 
6 6 5 1 4 7 3 e 2 
7 7 3 6 2 5 1 4 e 

 
 

These two loops have isomorphic subgroup, for L7(3) and L5(3) have subgroups of 
order 2.  

 
Theorem 11 
 
All Smarandache loops Ln(m), where n > 3 , n odd, for varying n and appropriate m, 
have isomorphic subgroups.  

 
Proof 

 
All Smarandache loops Ln(m) have subgroups of order 2. Hence they have 

isomorphic subgroups.  
 

Note-  This does not mean Ln(m) cannot have subgroups of order other than two. the 
main concern is that all loops Ln(m) have subgroups of order 2.  
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