Five conjectures on Sophie Germain primes and Smarandache function and the notion of Smarandache-Germain primes

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract

In this paper I define a new type of pairs of primes, id est the Smarandache-Germain pairs of primes, notion related to Sophie Germain primes and also to Smarandache function, and I conjecture that for all pairs of Sophie Germain primes but a definable set of them there exist corespondent pairs of Smarandache-Germain primes. I also make a conjecture that attributes to the set of Sophie Germain primes but a definable subset of them a corespondent set of smaller primes, id est Coman-Germain primes.

Conjecture 1:

For any pair of Sophie Germain primes [p_{1}, p_{2}] with the property that $S\left(p_{1}-1\right)$ is prime, where S is the Smarandache function, we have a corresponding pair of primes [S ($\left.p_{1}-1\right)$, $\left.S\left(p_{2}-1\right)\right]$, which we named it Smarandache-Germain pair of primes, with the property that between the primes $q_{1}=S\left(p_{1}-\right.$ 1) and $q_{2}=S\left(p_{2}-1\right)$ there exist the following relation: $q_{2}=$ $n * q_{1}+1$, where n is non-null positive integer.

Note:

For a list of Sophie Germain primes see the sequence A005384 in OEIS. For the values of Smarandache function see the sequence AOO2034 in OEIS.

Verifying the Conjecture 1:

(for the first 26 pairs of Sophie Germain primes)
: For $[2,5]$ we have $S(2-1)=1$, not prime;
: For $[3,7]$ we have $S(3-1)=2$, not odd prime;
: For $[5,11]$ we have $S(5-1)=4$, not prime;
: For $[11,23]$ we have $[S(10), S(22)]=[5,11]$
and $5 * 2+1=11$;
: For $[23,47]$ we have $[S(22), S(46)]=[11,23]$ and $11 * 2+1=23$;
: For [29, 59] we have $[S(28), S(58)]=[7,29]$
and $7 * 4+1=29$;
: For $[41,83]$ we have $[S(40), S(82)]=[5,41]$
and $5 * 8+1=11$;
: For [53, 107] we have $[S(52), S(106)]=[13,53]$
and $13 * 4+1=53$;
: For [83, 167] we have [S(82), S(166)] = [41, 83] and $41 * 2+1=83$;
: For $[89,179]$ we have $[S(88), S(178)]=[11,89]$ and $11 * 8+1=89$;
: For [113, 227] we have $[S(112), S(226)]=[7,113]$ and 7*16 + $1=113$;
: For [131, 263] we have $[S(130), S(262)]=[13,131]$ and $13 * 10+1=131$;
: For [173, 347] we have $[S(172), S(346)]=[43,173]$ and $43 * 4+1=173$;
: For [179, 359] we have $[S(178), S(358)]=[89,179]$ and $89 * 2+1=179$;
: For [191, 383] we have $[S(190), S(382)]=[19,191]$ and $19 * 10+1=191$;
: For $[233,467]$ we have $[S(232), S(466)]=[29,233]$ and 29*8 $+1=233$;
: For [239, 479] we have $[S(238), S(478)]=[17,239]$ and $17 * 14+1=239$;
: For [251, 503] we have $S(250-1)=15$, not prime;
: For [281, 563] we have $[S(280), S(562)]=[7,281]$ and 7*40 + $1=281$;
: For [293, 587] we have $[S(292), S(586)]=[73,293]$ and $73 * 4+1=293$;
: For [359, 719] we have $[S(358), S(718)]=[179,359]$ and $179 * 2+1=359$;
: For [419, 839] we have $[S(418), S(838)]=[19,419]$ and $19 * 22+1=419$;
: For $[431,863]$ we have $[S(430), S(862)]=[43,431]$ and $43 * 10+1=431$;
: For [443, 887] we have $[S(442), S(886)]=[17,443]$ and $17 * 26+1=443$;
: For [491, 983] we have $S(491-1)=14, ~ n o t ~ p r i m e ; ~$
: For [509, 1019] we have $[S(508), S(1018)]=[127,509]$ and $127 * 4+1=509$.

Conjecture 2:

There exist an infinity of Smarandache-Germain pairs of primes.

Note:

It can be seen that $q_{2}=S\left(p_{2}-1\right)=p_{1}$ and also n is often a power of the number 2 , so I make a new conjecture:

Conjecture 3:

For any p Sophie Germain prime with the property that $S(p-$ 1) is prime, where S is the Smarandache function, one of the following two statements is true:

1. there exist m non-null positive integer such that (p $1) /\left(2^{\wedge} m\right)=q$, where q is prime, $q \geq 5$;
2. there exist n prime and m non-null positive integer such that $(p-1) /\left(n * 2^{\wedge} m\right)=q$, where q is prime, $q \geq 5$.
Note: we call the primes q from the first statement ComanGermain primes of the first degree; we call the primes q from
the second statement Coman-Germain primes of the second degree.

Verifying the Conjecture 3:

(for the first 21 Sophie Germain primes with the property showed)

The first statement:
: For $p=11,23,83,179$ we have $m=1$ and $q=5,11,41,89 ;$
: For $p=29,53,173,293,509$ we have $m=2$ and $q=7,13,43,73,127 ;$
: For $\mathrm{p}=41,89,233$ we have $m=3$ and $q=5,11,29$;
: For $p=113$ we have $m=4$ and $q=7$.
The second statement:
: For $p=131,191,431$ we have $(m, n)=(1,5)$ and $q=13,19,43$;
: For $p=239$ we have $(m, n)=(1,7)$ and $q=17$;
: For $p=281$ we have $(m, n)=(3,5)$ and $q=7$;
: For $\mathrm{p}=419$ we have $(\mathrm{m}, \mathrm{n})=(1,11)$ and $q=19$;
: For $\mathrm{p}=443$ we have $(\mathrm{m}, \mathrm{n})=(1,13)$ and $q=17$.

Conjecture 4:

There exist an infinity of Coman-Germain primes of the first degree.

Conjecture 5:

There exist an infinity of Coman-Germain primes of the second degree.

Notes:

We have the following sequence of Smarandache-Germain pairs of primes:
$[5,11],[11,23],[7,29],[5,41],[13,53],[41,83],[11$, 89], [7, 113], [13, 131], [43, 173], [89, 179], [19, 191], $[29,233],[17,239],[7,281],[73,293],[179,359],[19$, 419], [43, 431], [17, 443], [127, 509] (...).

We have the following sequence of Coman-Germain primes of the first degree:
5, 11, 7, 5, 13, 41, 11, 7, 13, 43, 89, 29, 73, 179, 127 (...).

We have the following sequence of Coman-Germain primes of the second degree:
13, 19, 17, 7, 19, 43, 17 (...).

